Search results for: oral biofilm forming microorganisms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2653

Search results for: oral biofilm forming microorganisms

2593 Hydro-Mechanical Forming of AZ31 Sheet

Authors: Yong-Nam Kwon

Abstract:

In the present study, we have designed the hydro-mechanical forming in which AZ31 sheet was drawn to a kind of preform step following gas blow forming for accurate geometry. In order to judge a formability enhancement of AZ31 sheet, model geometry came from a practical automotive part which had quite depth with complicated curvatures, which was proven that a single sheet forming could not gave a successful part. Experimentally, we succeeded to make the model part with accurate dimension. The optimum forming conditions for respective forming steps were considered most important technical features of this hydro-mechanical and would be discussed in details. Also, the effort to avoid detrimental abnormal grain growth was given and discussed for a practical application.

Keywords: hydro-mechanical forming, AZ31, abnormal grain growth, model geometry

Procedia PDF Downloads 491
2592 Inhibition of Streptococcus Mutans Biofilm Development of Dental Caries In Vitro and In Vivo by Trachyspermum ammi Seeds: An Approach of Alternative Medicine

Authors: Mohd Adil, Rosina Khan, Danishuddin, Asad U. Khan

Abstract:

The aim of this study was to evaluate the influence of the crude and active solvent fraction of Trachyspermum ammi on S. mutans cariogenicity, effect on expression of genes involved in biofilm formation and caries development in rats. GC–MS was carried out to identify the major components present in the crude and the active fraction of T. ammi. The crude extract and the solvent fraction exhibiting least MIC were selected for further experiments. Scanning electron microscopy was carried out to observe the effect of the extracts on S. mutans biofilm. Comparative gene expression analysis was carried out for nine selected genes. 2-Isopropyl-5-methyl-phenol was found as major compound in crude and the active fraction. Binding site of this compound within the proteins involved in biofilm formation was mapped with the help of docking studies. Real-time RT-PCR analyses revealed significant suppression of the genes involved in biofilm formation. All the test groups showed reduction in caries (smooth surface as well as sulcal surface caries) in rats. Moreover, it also provides new insight to understand the mechanism influencing biofilm formation in S. mutans. Furthermore, the data suggest the putative cariostatic properties of T. Ammi and hence can be used as an alternative medicine to prevent caries infection.

Keywords: bio-film, Streptococcus mutans, dental caries, bio-informatic

Procedia PDF Downloads 450
2591 Contribution of Soluble Microbial Products on Dissolved Organic Nitrogen in Wastewater Effluent from Moving Bed Biofilm Reactor

Authors: Boonsiri Dandumrongsin, Halis Simsek, Chaiwat Rongsayamanont

Abstract:

Dissolved organic nitrogen (DON) is known as one of the persistence nitrogenous pollutant being originated from secondary treated effluent of municipal sewage treatment plant. However, effect of key system operating condition on the fate and behavior of residual DON in the treated effluent is still not known. This study aims to investigate effect of organic loading rate (OLR) on the residual level of DON in the biofilm reactor effluent. Synthetic municipal wastewater was fed into moving bed biofilm reactors at OLR of 1.6x10-3 and 3.2x10-3 kg SCOD/m3-d. The results showed higher organic removal efficiency was found in the reactor operating at higher OLR. However, DON was observed at higher value in the effluent of the higher OLR reactor than that of the lower OLR reactor evidencing a clear influence of OLR on the residual DON level in the treated effluent of the biofilm reactors. It is possible that the lower DON being observed in the reactor at lower OLR is likely to be a result of providing the microbe with the additional period for utilizing the refractory DON molecules during operation at lower organic loading. All the experiments were repeated using raw wastewaters and similar trend was obtained.

Keywords: dissolved organic nitrogen, hydraulic retention time, moving bed biofilm reactor, soluble microbial products

Procedia PDF Downloads 252
2590 Unconventional Strategies for Combating Multidrug Resistant Bacterial Biofilms

Authors: Soheir Mohamed Fathey

Abstract:

Biofilms are complex biological communities which are hard to be eliminated by conventional antibiotic administration and implemented in eighty percent of humans infections. Green remedies have been used for centuries and have shown obvious effects in hindering and combating microbial biofilm infections. Nowadays, there has been a growth in the number of researches on the anti-biofilm performance of natural agents such as plant essential oil (EOs) and propolis. In this study, we investigated the antibiofilm performance of various natural agents, including four essential oils (EOs), cinnamon (Cinnamomum cassia), tea tree (Melaleuca alternifolia), and clove (Syzygium aromaticum), as well as propolis versus the biofilm of both Gram-positive pathogenic bacterium Staphylococcus aureus and Gram-negative pathogenic bacterium Pseudomonas aeruginosa which are major human and animal pathogens rendering a high risk due to their biofilm development ability. The antibiofilm activity of the tested agents was evaluated by crystal violet staining assay and detected by scanning electron and fluorescent microscopy. Antibiofilm performance declared a potent effect of the tested products versus the tested bacterial biofilms.

Keywords: biofilm, essential oils, electron microscopy, fluorescent

Procedia PDF Downloads 63
2589 The Metabolite Profiling of Fulvestrant-3 Boronic Acid under Biological Oxidation

Authors: Changde Zhang, Qiang Zhang, Shilong Zheng, Jiawang Liu, Shanchun Guo, Qiu Zhong, Guangdi Wang

Abstract:

Fulvestrant was approved by FDA to treat breast cancer as a selective estrogen receptor downregulator (SERD) with intramuscular injection administration. ZB716, a fulvestarnt-3 boronic acid, is an SERD with comparable anticancer effect to fulvestrant, but could produce good pharmacokinetic properties under oral administration with mice or rat models. To understand why ZB716 produced much better oral bioavailability, it was proposed that the boronic acid blocked the phase II direct biotransformation with the hydroxyl group on the 3 position of the aromatic ring on fulvestrant. In this study, ZB716 or fulvestrant was incubated with human liver microsome and oxidation cofactor NADPH in vitro. Their metabolites after oxidation were profiled with the Q-Exactive, a high-resolution mass spectrometer. The result showed that ZB716 blocked the forming of hydroxyl groups on its benzene ring except for the oxidation of C-B bond forming fulvestrant in its metabolites, and the concentration of fulvestrant with one more hydroxyl group found in the metabolites from incubation with fulvestrant was about 34 fold high as that formed from incubation with ZB716. Compared to fulvestrant, ZB716 is expected to be much difficult to be further bio-transformed into more hydrophilic compounds, to be difficult excreted out of blood system, and to have longer residence time in blood, which can lead to higher oral bioavailability. This study provided evidence to explain the high bioavailability of ZB716 after oral administration from the perspective of its difficulty of oxidation, a phase I biotransformation, on positions on its aromatic ring.

Keywords: biotransformation, fulvestrant, metabolite profiling, ZB716

Procedia PDF Downloads 229
2588 The Relation between Vitamin C and Oral Health

Authors: Mai Ashraf Talaat

Abstract:

Background: Vitamin C (ascorbic acid) is an essential nutrient for the development and repair of all body tissues. It can be obtained from a healthy diet or through supplementation. Due to its importance, vitamin C has become a mainstay in the treatment and prevention of many diseases and in maintaining immune, skin, bone and overall health. This review article aims to discuss the studies and case reports conducted to evaluate the effect of Vitamin C on oral health and the recent advances in oral medicine that involve the use of vitamin C. Data/Sources: The review was conducted for clinical studies, case reports and published literature in the English language that addresses this topic. An extensive search in the electronic databases of PubMed, PubMed Central, Web of Science, National Library of Medicine and ResearchGate was performed. Conclusion: Vitamin C is thought to treat periodontal diseases and gingival enlargement. It also affects biofilm formation and therefore, it helps in reducing caries incidence. Recently, vitamin C mesotherapy has been used to treat inflamed gingiva, bleeding gums and gingival hyperpigmentation. More research and randomized controlled trials are needed on this specific topic for more accurate judgment. Clinical significance: A minimally invasive approach - the usage of vitamin C in dental care could drastically reduce the need for surgical intervention.

Keywords: oral health, periodontology, vitamin C, Gingivitis

Procedia PDF Downloads 62
2587 An Improvement of Flow Forming Process for Pressure Vessels by Four Rollers Machine

Authors: P. Sawitri, S. Cdr. Sittha, T. Kritsana

Abstract:

Flow forming is widely used in many industries, especially in defence technology industries. Pressure vessels requirements are high precision, light weight, seamless and optimum strength. For large pressure vessels, flow forming by 3 rollers machine were used. In case of long range rocket motor case flow forming and welding of pressure vessels have been used for manufacturing. Due to complication of welding process, researchers had developed 4 meters length pressure vessels without weldment by 4 rollers flow forming machine. Design and preparation of preform work pieces are performed. The optimization of flow forming parameter such as feed rate, spindle speed and depth of cut will be discussed. The experimental result shown relation of flow forming parameters to quality of flow formed tube and prototype pressure vessels have been made.

Keywords: flow forming, pressure vessel, four rollers, feed rate, spindle speed, cold work

Procedia PDF Downloads 298
2586 Control of Biofilm Formation and Inorganic Particle Accumulation on Reverse Osmosis Membrane by Hypochlorite Washing

Authors: Masaki Ohno, Cervinia Manalo, Tetsuji Okuda, Satoshi Nakai, Wataru Nishijima

Abstract:

Reverse osmosis (RO) membranes have been widely used for desalination to purify water for drinking and other purposes. Although at present most RO membranes have no resistance to chlorine, chlorine-resistant membranes are being developed. Therefore, direct chlorine treatment or chlorine washing will be an option in preventing biofouling on chlorine-resistant membranes. Furthermore, if particle accumulation control is possible by using chlorine washing, expensive pretreatment for particle removal can be removed or simplified. The objective of this study was to determine the effective hypochlorite washing condition required for controlling biofilm formation and inorganic particle accumulation on RO membrane in a continuous flow channel with RO membrane and spacer. In this study, direct chlorine washing was done by soaking fouled RO membranes in hypochlorite solution and fluorescence intensity was used to quantify biofilm on the membrane surface. After 48 h of soaking the membranes in high fouling potential waters, the fluorescence intensity decreased to 0 from 470 using the following washing conditions: 10 mg/L chlorine concentration, 2 times/d washing interval, and 30 min washing time. The chlorine concentration required to control biofilm formation decreased as the chlorine concentration (0.5–10 mg/L), the washing interval (1–4 times/d), or the washing time (1–30 min) increased. For the sample solutions used in the study, 10 mg/L chlorine concentration with 2 times/d interval, and 5 min washing time was required for biofilm control. The optimum chlorine washing conditions obtained from soaking experiments proved to be applicable also in controlling biofilm formation in continuous flow experiments. Moreover, chlorine washing employed in controlling biofilm with suspended particles resulted in lower amounts of organic (0.03 mg/cm2) and inorganic (0.14 mg/cm2) deposits on the membrane than that for sample water without chlorine washing (0.14 mg/cm2 and 0.33 mg/cm2, respectively). The amount of biofilm formed was 79% controlled by continuous washing with 10 mg/L of free chlorine concentration, and the inorganic accumulation amount decreased by 58% to levels similar to that of pure water with kaolin (0.17 mg/cm2) as feed water. These results confirmed the acceleration of particle accumulation due to biofilm formation, and that the inhibition of biofilm growth can almost completely reduce further particle accumulation. In addition, effective hypochlorite washing condition which can control both biofilm formation and particle accumulation could be achieved.

Keywords: reverse osmosis, washing condition optimization, hypochlorous acid, biofouling control

Procedia PDF Downloads 315
2585 Evidence Based Practice for Oral Care in Children

Authors: T. Turan, Ç. Erdoğan

Abstract:

As far as is known, general nursing care practices do not include specific evidence-based practices related to oral care in children. This study aimed to evaluate the evidence based nursing practice for oral care in children. This article is planned as a review article by searching the literature in this field. According to all age groups and the oral care in various specific situations located evidence in the literature were examined. It has been determined that the methods and frequency used in oral care practices performed by nurses in clinics differ from one hospital to another. In addition, it is seen that different solutions are used in basic oral care, oral care practices to prevent ventilator-associated pneumonia and evidence-based practice in mucositis management in children. As a result, a standard should be established in oral care practices for children and education for children is recommended.

Keywords: evidence-based practice, oral care, nursing, children

Procedia PDF Downloads 260
2584 Inhibitory Effect of Potential Bacillus Probiotic Strains against Pathogenic Bacteria and Yeast Isolated from Oral Cavity

Authors: Fdhila Walid, Bayar Sihem, Khouidi Bochra, Maâtouk Fethi, Ben Amor Feten, Hajer Hentati, Mahdhi Abdelkarim

Abstract:

The presence of resistant bacteria in the oral cavity can be the major cause of dental antibiotic prophylaxis failure. Multidrug efflux has been described for many organisms, including bacteria and fungi as part of their drugs resistance strategy. The potential use of probiotic bacteria can be considered as a new alternative in the prevention or cure of oral cavity diseases. In this study, different Bacillus strains isolated from the environment were isolated and characterized using biochemical and molecular procedures. The inhibitory activity against different pathogenic bacteria and yeast strains was tested using diffusion agar assay method. Our data revealed that the tested strains have an antimicrobial effect against the pathogenic strains such as Streptococcus mutants. The inhibitory effect was variable depending from the probiotic and pathogenic strains. The obtained result demonstrated that Bacillus can be used as a potential candidates probiotic and help in the prevention and treatment of oral infections, including dental caries, periodontal disease and halitosis. Our data, partly encourage the use of probiotic strains because they do not produce acid which can contribute to faster installation decay and these are spore-forming bacteria that can withstand the stress of the oral cavity (acids, alkalis, and salty foods).

Keywords: probiotic, pathogenic bacteria, yeast, oral cavity

Procedia PDF Downloads 348
2583 Forming for Confirmation of Predicted Epoxy Forming Composition Range in Cr-Zn System

Authors: Foad Saadi

Abstract:

Aim of this work was to determine the approximate Epoxy forming composition range of Cr-Zn system for the composites produced by forming compositing. It was predicted by MI edema semi-empirical model that the composition had to be in the range of 30-60 wt. % tin, while Cr-32Zn had the most susceptibility to produce amorphous composite. In the next stage, some different compositions of Cr-Zn were foamingly composited, where one of them had the proper predicted composition. Products were characterized by SDM analysis. There was a good agreement between calculation and experiments, in which Cr-32Zn composite had the most amorphization degree.

Keywords: Cr-Zn system, forming compositing, amorphous composite, MI edema model

Procedia PDF Downloads 266
2582 Design of Process Parameters in Electromagnetic Forming Apparatus by FEM

Authors: Hyeong-Gyu Park, Hak-Gon Noh, Beom-Soo Kang, Jeong Kim

Abstract:

Electromagnetic forming (EMF) process is one of a high-speed forming process, which uses an electromagnetic body (Lorentz) force to deform work-piece. Advantages of EMF are summarized as improvement of formability, reduction in wrinkling, non-contact forming. In this study, the spiral coil is considered to evaluate formability in terms of pressure distribution of the forming process. It also is represented forming results of numerical analysis using ANSYS code. In the numerical simulation, RLC circuit coupled with spiral coil was made to consider the design parameters such as system input current and electromagnetic force. The simulation results show that even though input peak currents level are same level in each case, forming condition is certainly different because of frequency of input current and magnitude of current density and magnetic flux density. Finally, the simulation results appear that electromagnetic forming force apparently affected by input current frequency which determines magnitude of current density and magnetic flux density.

Keywords: electromagnetic forming, high-speed forming, RLC circuit, Lorentz force

Procedia PDF Downloads 428
2581 Assessment of Biofilm Production Capacity of Industrially Important Bacteria under Electroinductive Conditions

Authors: Omolola Ojetayo, Emmanuel Garuba, Obinna Ajunwa, Abiodun A. Onilude

Abstract:

Introduction: Biofilm is a functional community of microorganisms that are associated with a surface or an interface. These adherent cells become embedded within an extracellular matrix composed of polymeric substances, i.e., biofilms refer to biological deposits consisting of both microbes and their extracellular products on biotic and abiotic surfaces. Despite their detrimental effects in medicine, biofilms as natural cell immobilization have found several applications in biotechnology, such as in the treatment of wastewater, bioremediation and biodegradation, desulfurization of gas, and conversion of agro-derived materials into alcohols and organic acids. The means of enhancing immobilized cells have been chemical-inductive, and this affects the medium composition and final product. Physical factors including electrical, magnetic, and electromagnetic flux have shown potential for enhancing biofilms depending on the bacterial species, nature, and intensity of emitted signals, the duration of exposure, and substratum used. However, the concept of cell immobilisation by electrical and magnetic induction is still underexplored. Methods: To assess the effects of physical factors on biofilm formation, six American typed culture collection (Acetobacter aceti ATCC15973, Pseudomonas aeruginosa ATCC9027, Serratia marcescens ATCC14756, Gluconobacter oxydans ATCC19357, Rhodobacter sphaeroides ATCC17023, and Bacillus subtilis ATCC6633) were used. Standard culture techniques for bacterial cells were adopted. Natural autoimmobilisation potentials of test bacteria were carried out by simple biofilms ring formation on tubes, while crystal violet binding assay techniques were adopted in the characterisation of biofilm quantity. Electroinduction of bacterial cells by direct current (DC) application in cell broth, static magnetic field exposure, and electromagnetic flux were carried out, and autoimmobilisation of cells in a biofilm pattern was determined on various substrata tested, including wood, glass, steel, polyvinylchloride (PVC) and polyethylene terephthalate. Biot Savart law was used in quantifying magnetic field intensity, and statistical analyses of data obtained were carried out using the analyses of variance (ANOVA) as well as other statistical tools. Results: Biofilm formation by the selected test bacteria was enhanced by the physical factors applied. Electromagnetic induction had the greatest effect on biofilm formation, with magnetic induction producing the least effect across all substrata used. Microbial cell-cell communication could be a possible means via which physical signals affected the cells in a polarisable manner. Conclusion: The enhancement of biofilm formation by bacteria using physical factors has shown that their inherent capability as a cell immobilization method can be further optimised for industrial applications. A possible relationship between the presence of voltage-dependent channels, mechanosensitive channels, and bacterial biofilms could shed more light on this phenomenon.

Keywords: bacteria, biofilm, cell immobilization, electromagnetic induction, substrata

Procedia PDF Downloads 157
2580 Effect of Environmental Conditions on E. Coli o157:h7 Atcc 43888 and L. Monocytogenes Atcc 7644 Cell Surface Hydrophobicity, Motility and Cell Attachment on Food-Contact Surfaces

Authors: Stanley Dula, Oluwatosini A. Ijabadeniyi

Abstract:

Biofilm formation is a major source of materials and foodstuffs contamination, contributing to occurrence of pathogenic and spoilage microbes in food processing resulting in food spoilage, transmission of diseases and significant food hygiene and safety issues. This study elucidates biofilm formation of E. coli O157:H7 and L. monocytogenes ATCC 7644 grown under food related environmental stress conditions of varying pH (5.0;7.0; and 8.5) and temperature (15, 25 and 37 ℃). Both strains showed confluent biofilm formation at 25 ℃ and 37 ℃, at pH 8.5 after 5 days. E. coli showed curli fimbriae production at various temperatures, while L. monocytogenes did not show pronounced expression. Swarm, swimming and twitching plate assays were used to determine strain motilities. Characterization of cell hydrophobicity was done using the microbial adhesion to hydrocarbons (MATH) assay using n-hexadecane. Both strains showed hydrophilic characteristics as they fell within a < 20 % interval. FT-IR revealed COOH at 1622 cm-1, and a strong absorption band at 3650 cm-1 – 3200 cm-1 indicating the presence of both -OH and -NH groups. Both strains were hydrophilic and could form biofilm at different combinations of temperature and pH. EPS produced in both species proved to be an acidic hetero-polysaccharide.

Keywords: biofilm, pathogens, hydrophobicity, motility

Procedia PDF Downloads 208
2579 Simulation-Based Parametric Study for the Hybrid Superplastic Forming of AZ31

Authors: Fatima Ghassan Al-Abtah, Naser Al-Huniti, Elsadig Mahdi

Abstract:

As the lightest constructional metal on earth, magnesium alloys offer excellent potential for weight reduction in the transportation industry, and it was observed that some magnesium alloys exhibit superior ductility and superplastic behavior at high temperatures. The main limitation of the superplastic forming (SPF) includes the low production rate since it needs a long forming time for each part. Through this study, an SPF process that starts with a mechanical pre-forming stage is developed to promote formability and reduce forming time. A two-dimensional finite element model is used to simulate the process. The forming process consists of two steps. At the pre-forming step (deep drawing), the sheet is drawn into the die to a preselected level, using a mechanical punch, and at the second step (SPF) a pressurized gas is applied at a controlled rate. It is shown that a significant reduction in forming time and improved final thickness uniformity can be achieved when the hybrid forming technique is used, where the process achieved a fully formed part at 400°C. Investigation for the impact of different forming process parameters achieved by comparing forming time and the distribution of final thickness that were obtained from the simulation analysis. Maximum thinning decreased from over 67% to less than 55% and forming time significantly decreased by more than 6 minutes, and the required gas pressure profile was predicted for optimum forming process parameters based on the 0.001/sec target constant strain rate within the sheet.

Keywords: magnesium, plasticity, superplastic forming, finite element analysis

Procedia PDF Downloads 125
2578 A Comparison of Single Point Incremental Forming Formability between Carbon Steel and Stainless Steel

Authors: Kittiphat Rattanachan

Abstract:

The sheet metal forming process, the raw material mechanical properties are important parameters. This paper is to compare the wall’s incline angle or formability of SS 400 steel and SUS 304 stainless steel in single point incremental forming. The two materials are ferrous base alloy, which have the different cell unit, mechanical property and chemical composition. They were forming into cone shape specimens 100 mm diameter with different wall’s incline angle: 90o, 75o, and 60o. The investigation, the specimens were forming until the surface fracture was occurred. The experimental result showed that both materials with the smaller wall’s incline angle, the higher formability. The formability limited of the ferrous base alloy was approx. 60o wall’s incline angle. By nature, SS 400 was higher formability than SUS 304. This result could be used as the initial utilized data in designing the single point incremental forming parts.

Keywords: NC incremental forming, single point incremental forming, wall incline angle, formability

Procedia PDF Downloads 321
2577 Thresholding Approach for Automatic Detection of Pseudomonas aeruginosa Biofilms from Fluorescence in situ Hybridization Images

Authors: Zonglin Yang, Tatsuya Akiyama, Kerry S. Williamson, Michael J. Franklin, Thiruvarangan Ramaraj

Abstract:

Pseudomonas aeruginosa is an opportunistic pathogen that forms surface-associated microbial communities (biofilms) on artificial implant devices and on human tissue. Biofilm infections are difficult to treat with antibiotics, in part, because the bacteria in biofilms are physiologically heterogeneous. One measure of biological heterogeneity in a population of cells is to quantify the cellular concentrations of ribosomes, which can be probed with fluorescently labeled nucleic acids. The fluorescent signal intensity following fluorescence in situ hybridization (FISH) analysis correlates to the cellular level of ribosomes. The goals here are to provide computationally and statistically robust approaches to automatically quantify cellular heterogeneity in biofilms from a large library of epifluorescent microscopy FISH images. In this work, the initial steps were developed toward these goals by developing an automated biofilm detection approach for use with FISH images. The approach allows rapid identification of biofilm regions from FISH images that are counterstained with fluorescent dyes. This methodology provides advances over other computational methods, allowing subtraction of spurious signals and non-biological fluorescent substrata. This method will be a robust and user-friendly approach which will enable users to semi-automatically detect biofilm boundaries and extract intensity values from fluorescent images for quantitative analysis of biofilm heterogeneity.

Keywords: image informatics, Pseudomonas aeruginosa, biofilm, FISH, computer vision, data visualization

Procedia PDF Downloads 106
2576 Investigations into the in situ Enterococcus faecalis Biofilm Removal Efficacies of Passive and Active Sodium Hypochlorite Irrigant Delivered into Lateral Canal of a Simulated Root Canal Model

Authors: Saifalarab A. Mohmmed, Morgana E. Vianna, Jonathan C. Knowles

Abstract:

The issue of apical periodontitis has received considerable critical attention. Bacteria is integrated into communities, attached to surfaces and consequently form biofilm. The biofilm structure provides bacteria with a series protection skills against, antimicrobial agents and enhances pathogenicity (e.g. apical periodontitis). Sodium hypochlorite (NaOCl) has become the irrigant of choice for elimination of bacteria from the root canal system based on its antimicrobial findings. The aim of the study was to investigate the effect of different agitation techniques on the efficacy of 2.5% NaOCl to eliminate the biofilm from the surface of the lateral canal using the residual biofilm, and removal rate of biofilm as outcome measures. The effect of canal complexity (lateral canal) on the efficacy of the irrigation procedure was also assessed. Forty root canal models (n = 10 per group) were manufactured using 3D printing and resin materials. Each model consisted of two halves of an 18 mm length root canal with apical size 30 and taper 0.06, and a lateral canal of 3 mm length, 0.3 mm diameter located at 3 mm from the apical terminus. E. faecalis biofilms were grown on the apical 3 mm and lateral canal of the models for 10 days in Brain Heart Infusion broth. Biofilms were stained using crystal violet for visualisation. The model halves were reassembled, attached to an apparatus and tested under a fluorescence microscope. Syringe and needle irrigation protocol was performed using 9 mL of 2.5% NaOCl irrigant for 60 seconds. The irrigant was either left stagnant in the canal or activated for 30 seconds using manual (gutta-percha), sonic and ultrasonic methods. Images were then captured every second using an external camera. The percentages of residual biofilm were measured using image analysis software. The data were analysed using generalised linear mixed models. The greatest removal was associated with the ultrasonic group (66.76%) followed by sonic (45.49%), manual (43.97%), and passive irrigation group (control) (38.67%) respectively. No marked reduction in the efficiency of NaOCl to remove biofilm was found between the simple and complex anatomy models (p = 0.098). The removal efficacy of NaOCl on the biofilm was limited to the 1 mm level of the lateral canal. The agitation of NaOCl results in better penetration of the irrigant into the lateral canals. Ultrasonic agitation of NaOCl improved the removal of bacterial biofilm.

Keywords: 3D printing, biofilm, root canal irrigation, sodium hypochlorite

Procedia PDF Downloads 205
2575 Evaluation of DNA Microarray System in the Identification of Microorganisms Isolated from Blood

Authors: Merih Şimşek, Recep Keşli, Özgül Çetinkaya, Cengiz Demir, Adem Aslan

Abstract:

Bacteremia is a clinical entity with high morbidity and mortality rates when immediate diagnose, or treatment cannot be achieved. Microorganisms which can cause sepsis or bacteremia are easily isolated from blood cultures. Fifty-five positive blood cultures were included in this study. Microorganisms in 55 blood cultures were isolated by conventional microbiological methods; afterwards, microorganisms were defined in terms of the phenotypic aspects by the Vitek-2 system. The same microorganisms in all blood culture samples were defined in terms of genotypic aspects again by Multiplex-PCR DNA Low-Density Microarray System. At the end of the identification process, the DNA microarray system’s success in identification was evaluated based on the Vitek-2 system. The Vitek-2 system and DNA Microarray system were able to identify the same microorganisms in 53 samples; on the other hand, different microorganisms were identified in the 2 blood cultures by DNA Microarray system. The microorganisms identified by Vitek-2 system were found to be identical to 96.4 % of microorganisms identified by DNA Microarrays system. In addition to bacteria identified by Vitek-2, the presence of a second bacterium has been detected in 5 blood cultures by the DNA Microarray system. It was identified 18 of 55 positive blood culture as E.coli strains with both Vitek 2 and DNA microarray systems. The same identification numbers were found 6 and 8 for Acinetobacter baumanii, 10 and 10 for K.pneumoniae, 5 and 5 for S.aureus, 7 and 11 for Enterococcus spp, 5 and 5 for P.aeruginosa, 2 and 2 for C.albicans respectively. According to these results, DNA Microarray system requires both a technical device and experienced staff support; besides, it requires more expensive kits than Vitek-2. However, this method should be used in conjunction with conventional microbiological methods. Thus, large microbiology laboratories will produce faster, more sensitive and more successful results in the identification of cultured microorganisms.

Keywords: microarray, Vitek-2, blood culture, bacteremia

Procedia PDF Downloads 314
2574 Antimicrobial Agents Produced by Yeasts

Authors: T. Büyüksırıt, H. Kuleaşan

Abstract:

Natural antimicrobials are used to preserve foods that can be found in plants, animals, and microorganisms. Antimicrobial substances are natural or artificial agents that produced by microorganisms or obtained semi/total chemical synthesis are used at low concentrations to inhibit the growth of other microorganisms. Food borne pathogens and spoilage microorganisms are inactivated by the use of antagonistic microorganisms and their metabolites. Yeasts can produce toxic proteins or glycoproteins (toxins) that cause inhibition of sensitive bacteria and yeast species. Antimicrobial substance producing phenotypes belonging different yeast genus were isolated from different sources. Toxins secreted by many yeast strains inhibiting the growth of other yeast strains. These strains show antimicrobial activity, inhibiting the growth of mold and bacteria. The effect of antimicrobial agents produced by yeasts can be extremely fast, and therefore may be used in various treatment procedures. Rapid inhibition of microorganisms is possibly caused by microbial cell membrane lipopolysaccharide binding and in activation (neutralization) effect. Antimicrobial agents inhibit the target cells via different mechanisms of action.

Keywords: antimicrobial agents, yeast, toxic protein, glycoprotein

Procedia PDF Downloads 319
2573 Comparison of Microbiological Assessment of Non-adhesive Use and the Use of Adhesive on Complete Dentures

Authors: Hyvee Gean Cabuso, Arvin Taruc, Danielle Villanueva, Channela Anais Hipolito, Jia Bianca Alfonso

Abstract:

Introduction: Denture adhesive aids to provide additional retention, support and comfort for patients with loose dentures, as well as for patients who seek to achieve optimal denture adhesion. But due to its growing popularity, arising oral health issues should be considered, including its possible impact that may alter the microbiological condition of the denture. Changes as such may further resolve to denture-related oral diseases that can affect the day-to-day lives of patients. Purpose: The study aims to assess and compare the microbiological status of dentures without adhesives versus dentures when adhesives were applied. The study also intends to identify the presence of specific microorganisms, their colony concentration and their possible effects on the oral microflora. This study also aims to educate subjects by introducing an alternative denture cleaning method as well as denture and oral health care. Methodology: Edentulous subjects age 50-80 years old, both physically and medically fit, were selected to participate. Before obtaining samples for the study, the alternative cleaning method was introduced by demonstrating a step-by-step cleaning process. Samples were obtained by swabbing the intaglio surface of their upper and lower prosthesis. These swabs were placed in a thioglycollate broth, which served as a transport and enrichment medium. The swabs were then processed through bacterial culture. The colony-forming units (CFUs) were calculated on MacConkey Agar Plate (MAP) and Blood Agar Plate (BAP) in order to identify and assess the microbiological status, including species identification and microbial counting. Result: Upon evaluation and analysis of collected data, the microbiological assessment of the upper dentures with adhesives showed little to no difference compared to dentures without adhesives, but for the lower dentures, (P=0.005), which is less than α = 0.05; therefore, the researchers reject (Ho) and that there is a significant difference between the mean ranks of the lower denture without adhesive to those with, implying that there is a significant decrease in the bacterial count. Conclusion: These results findings may implicate the possibility that the addition of denture adhesives may contribute to the significant decrease of microbial colonization on the dentures.

Keywords: denture, denture adhesive, denture-related, microbiological assessment

Procedia PDF Downloads 105
2572 Investigation of a Hybrid Process: Multipoint Incremental Forming

Authors: Safa Boudhaouia, Mohamed Amen Gahbiche, Eliane Giraud, Wacef Ben Salem, Philippe Dal Santo

Abstract:

Multi-point forming (MPF) and asymmetric incremental forming (ISF) are two flexible processes for sheet metal manufacturing. To take advantages of these two techniques, a hybrid process has been developed: The Multipoint Incremental Forming (MPIF). This process accumulates at once the advantages of each of these last mentioned forming techniques, which makes it a very interesting and particularly an efficient process for single, small, and medium series production. In this paper, an experimental and a numerical investigation of this technique are presented. To highlight the flexibility of this process and its capacity to manufacture standard and complex shapes, several pieces were produced by using MPIF. The forming experiments are performed on a 3-axis CNC machine. Moreover, a numerical model of the MPIF process has been implemented in ABAQUS and the analysis showed a good agreement with experimental results in terms of deformed shape. Furthermore, the use of an elastomeric interpolator allows avoiding classical local defaults like dimples, which are generally caused by the asymmetric contact and also improves the distribution of residual strain. Future works will apply this approach to other alloys used in aeronautic or automotive applications.

Keywords: incremental forming, numerical simulation, MPIF, multipoint forming

Procedia PDF Downloads 319
2571 Activity of Commonly Used Intravenous Nutrient and Bisolvon in Neonatal Intensive Care Units against Biofilm Cells and Their Synergetic Effect with Antibiotics

Authors: Marwa Fady Abozed, Hemat Abd El Latif, Fathy Serry, Lotfi El Sayed

Abstract:

The purpose of this study was to investigate the efficacy of intravenous nutrient(soluvit, vitalipid, aminoven infant, lipovenos) and bisolvon commonly used in neonatal intensive care units against biofilm cells of staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aerguinosa and klebseilla pneumonia as they are the most commonly isolated organisms and are biofilm producers. Also, the synergetic acticity of soluvit, heparin, bisolvon with antibiotics and its effect on minimum biofilm eradication concentration(MBEC) was tested. Intravenous nutrient and bromohexine are widely used in newborns. Numbers of viable cell count released from biofilm after treatment with intravenous nutrient and bromohexine were counted to compare the efficacy. The percentage of reduction in biofilm regrowth in case of using soluvit was 43-51% and 36-42 % for Gram positive and Gram negative respectively, on adding the vitalipid the percentage was 45-50 %and 37-41% for Gram positive and Gram negative respectively. While, in case of using bisolvon the percentage was 46-52% and 47-48% for Gram positive and Gram negative respectively. Adding lipovenos had a reduction percentage of 48-52% and 48-49% for Gram positive and Gram negative respectively. While, adding aminoven infant the percentage was 10-15% and 9-11% for Gram positive and Gram negative respectively. Adding soluvit, heparin and bisolvon to antibiotics had synergic effect. soluvit with ciprofloxacin has 8-16 times decrease than minimum biofilm eradication concentration (MBEC) for ciprofloxacin alone. While, by adding soluvit to vancomycin the MBEC reduced by 16 times than MBEC of vancomycin alone. In case of combination soluvit with cefotaxime, amikacin and gentamycin the reduction in MBEC was 16, 8 and 6-32 times respectively. The synergetic effect of adding heparin to ciprofloxacin, vancomycin, cefotaxime, amikacin and gentamicin was 2 times reduction with all except in case of gram negative the range of reduction was 0-2 with both gentamycin and ciprofloxacin. Bisolvon exihited synergetic effect with ciprofloxacin, vancomycin, cefotaxime, amikacin and gentamicin by 16, 32, 32, 8, 32-64 and 32 times decrease in MBEC respectively.

Keywords: biofilm, neonatal intensive care units, antibiofilm agents, intravenous nutrient

Procedia PDF Downloads 303
2570 Up-Flow Sponge Submerged Biofilm Reactor for Municipal Sewage Treatment

Authors: Saber A. El-Shafai, Waleed M. Zahid

Abstract:

An up-flow submerged biofilm reactor packed with sponge was investigated for sewage treatment. The reactor was operated two cycles as single aerobic (1-1 at 3.5 L/L.d HLR and 1-2 at 3.8 L/L.day HLR) and four cycles as single anaerobic/aerobic reactor; 2-1 and 2-2 at low HLR (3.7 and 3.5 L/L.day) and 2-3 and 2-4 at high HLR (5.1 and 5.4 L/L.day). During the aerobic cycles, 50% effluent recycling significantly reduces the system performance except for phosphorous. In case of the anaerobic/aerobic reactor, the effluent recycling, significantly improves system performance at low HLR while at high HLR only phosphorous removal was improved. Excess sludge production was limited to 0.133 g TSS/g COD with better sludge volume index (SVI) in case of anaerobic/aerobic cycles; (54.7 versus 58.5 ml/g).

Keywords: aerobic, anaerobic/aerobic, up-flow, submerged biofilm, sponge

Procedia PDF Downloads 266
2569 Antibacterial and Anti-Biofilm Activity of Vaccinium meridionale S. Pomace Extract Against Staphylococcus aureus, Escherichia coli and Salmonella Enterica

Authors: Carlos Y. Soto, Camila A. Lota, G. Astrid Garzón

Abstract:

Bacterial biofilms cause an ongoing problem for food safety. They are formed when microorganisms aggregate to form a community that attaches to solid surfaces. Biofilms increase the resistance of pathogens to cleaning, disinfection and antibacterial products. This resistance gives rise to problems for human health, industry, and agriculture. At present, plant extracts rich in polyphenolics are being investigated as natural alternatives to degrade bacterial biofilms. The pomace of the tropical Berry Vaccinium meridionale S. contains high amounts of phenolic compounds. Therefore, in the current study, the antimicrobial and antibiofilm effects of extracts from the pomace of Vaccinium meridionale S. were tested on three foodborne pathogens: Enterohaemorrhagic Escherichia coli O157:H7 (ATCC®700728TM), Staphylococcus aureus subsp. aureus (ATCC® 6538TM), and Salmonella enterica serovar Enteritidis (ATCC® 13076TM). Microwave-assisted extraction was used to extract polyphenols with aqueous methanol (80% v/v) at a solid to solvent ratio of 1:10 (w/v) for 20 min. The magnetic stirring was set at 400 rpm, and the microwave power was adjusted to 400 W. The antimicrobial effect of the extract was assessed by determining the half maximal inhibitory concentration (IC50) against the three food poisoning pathogens at concentrations ranging from 50 to 2,850 μg gallic acid equivalents (GAE)/mL of the extract. Biofilm inhibition was assessed using a crystal violet assay applying the same range of concentration. Three replications of the experiments were carried out, and all analyses were run in triplicate. IC50 values were determined using the GraphPad Prism8® program. Significant differences (P<0.05) among means were identified using one-factor analysis of variance (ANOVA) and the post-hoc least significant difference (LSD) test using the Statgraphics plus program, version 2.1.There was significant difference among the mean IC50 values for the tested bacteria. The IC50 for S. aureus was 48 ± 9 μg GAE/mL, followed by 123 ± 49 μg GAE/mL for Salmonella and 376 ± 32 μg GAE/mL for E. coli. The percent inhibition of the extract on biofilm formation was significantly higher for S. aureus (85.8  0.3), followed by E. coli (74.5  1.0) and Salmonella (53.6  9.7). These findings suggest that polyphenolic extracts obtained from the pomace of V. meridionale S. might be used as natural antimicrobial and anti-biofilm natural agents, effective against S. aureus, E. coli and Salmonella enterica.

Keywords: antibiofilm, antimicrobial, E. coli, S. aureus, salmonella, IC50, pomace, V. meridionale

Procedia PDF Downloads 34
2568 A Mathematical Based Prediction of the Forming Limit of Thin-Walled Sheet Metals

Authors: Masoud Ghermezi

Abstract:

Studying the sheet metals is one of the most important research areas in the field of metal forming due to their extensive applications in the aerospace industries. A useful method for determining the forming limit of these materials and consequently preventing the rupture of sheet metals during the forming process is the use of the forming limit curve (FLC). In addition to specifying the forming limit, this curve also delineates a boundary for the allowed values of strain in sheet metal forming; these characteristics of the FLC along with its accuracy of computation and wide range of applications have made this curve the basis of research in the present paper. This study presents a new model that not only agrees with the results obtained from the above mentioned theory, but also eliminates its shortcomings. In this theory, like in the M-K theory, a thin sheet with an inhomogeneity as a gradient thickness reduction with a sinusoidal function has been chosen and subjected to two-dimensional stress. Through analytical evaluation, ultimately, a governing differential equation has been obtained. The numerical solution of this equation for the range of positive strains (stretched region) yields the results that agree with the results obtained from M-K theory. Also the solution of this equation for the range of negative strains (tension region) completes the FLC curve. The findings obtained by applying this equation on two alloys with the hardening exponents of 0.4 and 0.24 indicate the validity of the presented equation.

Keywords: sheet metal, metal forming, forming limit curve (FLC), M-K theory

Procedia PDF Downloads 336
2567 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System

Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid

Abstract:

Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.

Keywords: artificial neural network, bending angle, fuzzy logic, laser forming

Procedia PDF Downloads 558
2566 Roll Forming Process and Die Design for a Large Size Square Tube

Authors: Jinn-Jong Sheu, Cang-Fu Liang, Cheng-Hsien Yu

Abstract:

This paper proposed the cold roll forming process and the die design methods for a 400mm by 400 mm square tube with 16 mm in thickness. The tubular blank made by cold roll forming is 508mm in diameter. The square tube roll forming process was designed considering the layout of rolls and the compression ratio distribution for each stand. The final tube corner radius and the edge straightness in the front end of the tube are to be controlled according to the tube specification. A five-stand forming design using four rolls at each stand was proposed to establish the base reference of square tube roll forming quality. Different numbers of pass and roll designs were proposed and compared to the base design in order to find the feasibility of increase pass number to improve the square tube quality. The proposed roll forming processes were simulated using FEM analysis. The thickness variations of the corner and the edge areas were examined. The maximum loads and the torques of each stand were calculated to study the power consumption of the roll forming machine. The simulation results showed the square tube thickness variations and concavity of the edge are acceptable with the JIS tube specifications for the base design. But the maximum loads and torques are very high. By changing the layout and the number of the rolls were able to obtain better tube geometry and decrease the maximum load and torque of each stand. This paper had shown the feasibility of designing the roll forming process and the layout of dies using FEM simulation. The obtained information is helpful to the roll forming machine design for a large size square tube making.

Keywords: cold roll forming, FEM analysis, roll forming die design, tube roll forming

Procedia PDF Downloads 270
2565 Prevalence of Oral Mucosal Lesions in Malaysia: A Teaching Hospital Based Study

Authors: Renjith George Pallivathukal, Preethy Mary Donald

Abstract:

Asymptomatic oral lesions are often ignored by the patients and usually will be identified only in advanced stages. Early detection of precancerous lesions is important for better prognosis. It is also important for the oral health care person to be aware of the regional prevalence of oral lesions in order to provide early care for the same. We conducted a retrospective study to assess the prevalence of oral lesions based on the information available from patient records in a teaching dental school. Dental records of patients who attended the department of Oral medicine and diagnosis between September 2014 and September 2016 were retrieved and verified for oral lesions. Results: The ages of the patients ranged from 13 to 38 years with a mean age of 21.8 years. The lesions were classified as white (40.5%), red (23%), ulcerated (10.5%), pigmented (15.2%) and soft tissue enlargements (10.8%). 52% of the patients were unaware of the oral lesions before the dental visit. Overall, the prevalence of lesions in dental patients lower to national estimates, but the prevalence of some lesions showed variations.

Keywords: oral mucosal lesion, pre-cancer, prevalence, soft tissue lesion

Procedia PDF Downloads 326
2564 Antimicrobial Nanocompositions Made of Amino Acid Based Biodegradable Polymers

Authors: Nino Kupatadze, Mzevinar Bedinashvili, Tamar Memanishvili, Manana Gurielidze, David Tugushi, Ramaz Katsarava

Abstract:

Bacteria easily colonize the surfaces of tissues, surgical devices (implants, orthopedics, catheters, etc.), and instruments causing surgical device related infections. Therefore, the battle against bacteria and the prevention of surgical devices from biofilm formation is one of the main challenges of biomedicine today. Our strategy to the solution of this problem consists in using antimicrobial polymeric coatings as effective “shields” to protect surfaces from bacteria’s colonization and biofilm formation. As one of the most promising approaches look be the use of antimicrobial bioerodible polymeric nanocomposites containing silver nanoparticles (AgNPs). We assume that the combination of an erodible polymer with a strong bactericide should put obstacles to bacteria to occupy the surface and to form biofilm. It has to be noted that this kind of nanocomposites are also promising as wound dressing materials to treat infected superficial wounds. Various synthetic and natural polymers were used for creating biocomposites containing AgNPs as both particles' stabilizers and matrices forming elastic films at surfaces. One of the most effective systems to fabricate AgNPs is an ethanol solution of polyvinylpyrrolidone(PVP) with dissolved AgNO3–ethanol serves as a AgNO3 reductant and PVP as AgNPs stabilizer (through the interaction of nanoparticles with nitrogen atom of the amide group). Though PVP is biocompatible and film-forming polymer, it is not a good candidate to design either "biofilm shield" or wound dressing material because of a high solubility in water – though the solubility of PVP provides the desirable release of AgNPs from the matrix, but the coating is easily washable away from the surfaces. More promising as matrices look water insoluble but bioerodible polymers that can provide the release of AgNPs and form long-lasting coatings at the surfaces. For creating bioerodible water-insoluble antimicrobial coatings containing AgNPs, we selected amino acid based biodegradable polymers(AABBPs)–poly(ester amide)s, poly(ester urea)s, their copolymers containing amide and related groups capable to stabilize AgNPs. Among a huge variety of AABBPs reported we selected the polymers soluble in ethanol. For preparing AgNPs containing nanocompositions AABBPs and AgNO3 were dissolved in ethanol and subjected to photochemical reduction using daylight-irradiation. The formation of AgNPs was observed visually by coloring the solutions in brownish-red. The obtained AgNPs were characterized by UV-spectroscopy, transmission electron microscopy(TEM), and dynamic light scattering(DLS). According to the UV and TEM data, the photochemical reduction resulted presumably in spherical AgNPs with rather high contribution of the particles below 10 nm that are known as responsible for the antimicrobial activity. DLS study showed that average size of nanoparticles formed after photo-reduction in ethanol solution ranged within 50 nm. The in vitro antimicrobial activity study of the new nanocomposite material is in progress now.

Keywords: nanocomposites, silver nanoparticles, polymer, biodegradable

Procedia PDF Downloads 372