Search results for: optimum sizing
1935 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures
Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad
Abstract:
Keywords: structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames
Procedia PDF Downloads 3751934 A Comparison Study: Infant and Children’s Clothing Size Charts in South Korea and UK
Authors: Hye-Won Lim, Tom Cassidy, Tracy Cassidy
Abstract:
Infant and children’s body shapes are changing constantly while they are growing up into adults and are also distinctive physically between countries. For this reason, optimum size charts which can represent body sizes and shapes of infants and children are required. In this study, investigations of current size charts in South Korea and UK (n=50 each) were conducted for understanding and figuring out the sizing perspectives of the clothing manufacturers. The size charts of the two countries were collected randomly from online shopping websites and those size charts’ average measurements were compared with both national sizing surveys (SizeKorea and Shape GB). The size charts were also classified by age, gender, clothing type, fitting, and other factors. In addition, the key measurement body parts of size charts of each country were determined and those will be suggested for new size charts and sizing system development.Keywords: infant clothing, children’s clothing, body shapes, size charts
Procedia PDF Downloads 3171933 Developing Structured Sizing Systems for Manufacturing Ready-Made Garments of Indian Females Using Decision Tree-Based Data Mining
Authors: Hina Kausher, Sangita Srivastava
Abstract:
In India, there is a lack of standard, systematic sizing approach for producing readymade garments. Garments manufacturing companies use their own created size tables by modifying international sizing charts of ready-made garments. The purpose of this study is to tabulate the anthropometric data which covers the variety of figure proportions in both height and girth. 3,000 data has been collected by an anthropometric survey undertaken over females between the ages of 16 to 80 years from some states of India to produce the sizing system suitable for clothing manufacture and retailing. This data is used for the statistical analysis of body measurements, the formulation of sizing systems and body measurements tables. Factor analysis technique is used to filter the control body dimensions from a large number of variables. Decision tree-based data mining is used to cluster the data. The standard and structured sizing system can facilitate pattern grading and garment production. Moreover, it can exceed buying ratios and upgrade size allocations to retail segments.Keywords: anthropometric data, data mining, decision tree, garments manufacturing, sizing systems, ready-made garments
Procedia PDF Downloads 1331932 Optimal Placement and Sizing of Energy Storage System in Distribution Network with Photovoltaic Based Distributed Generation Using Improved Firefly Algorithms
Authors: Ling Ai Wong, Hussain Shareef, Azah Mohamed, Ahmad Asrul Ibrahim
Abstract:
The installation of photovoltaic based distributed generation (PVDG) in active distribution system can lead to voltage fluctuation due to the intermittent and unpredictable PVDG output power. This paper presented a method in mitigating the voltage rise by optimally locating and sizing the battery energy storage system (BESS) in PVDG integrated distribution network. The improved firefly algorithm is used to perform optimal placement and sizing. Three objective functions are presented considering the voltage deviation and BESS off-time with state of charge as the constraint. The performance of the proposed method is compared with another optimization method such as the original firefly algorithm and gravitational search algorithm. Simulation results show that the proposed optimum BESS location and size improve the voltage stability.Keywords: BESS, firefly algorithm, PVDG, voltage fluctuation
Procedia PDF Downloads 3211931 Sizing of Hybrid Source Battery/Supercapacitor for Automotive Applications
Authors: Laid Degaa, Bachir Bendjedia, Nassim Rizoug, Abdelkader Saidane
Abstract:
Energy storage system is a key aspect for the development of clean cars. The work proposed here deals with the modeling of hybrid storage sources composed of a combination of lithium-ion battery and supercapacitors. Simulation results show the performance of the active model for a hybrid source and confirm the feasibility of our approach. In this context, sizing of the electrical energy supply is carried out. The aim of this sizing is to propose an 'optimal' solution that improves the performance of electric vehicles in term of weight, cost and aging.Keywords: battery, electric vehicles, energy, hybrid storage, supercapacitor
Procedia PDF Downloads 7921930 Valorisation of Mango Seed: Response Surface Methodology Based Optimization of Starch Extraction from Mango Seeds
Authors: Tamrat Tesfaye, Bruce Sithole
Abstract:
Box-Behnken Response surface methodology was used to determine the optimum processing conditions that give maximum extraction yield and whiteness index from mango seed. The steeping time ranges from 2 to 12 hours and slurring of the steeped seed in sodium metabisulphite solution (0.1 to 0.5 w/v) was carried out. Experiments were designed according to Box-Behnken Design with these three factors and a total of 15 runs experimental variables of were analyzed. At linear level, the concentration of sodium metabisulphite had significant positive influence on percentage yield and whiteness index at p<0.05. At quadratic level, sodium metabisulphite concentration and sodium metabisulphite concentration2 had a significant negative influence on starch yield; sodium metabisulphite concentration and steeping time*temperature had significant (p<0.05) positive influence on whiteness index. The adjusted R2 above 0.8 for starch yield (0.906465) and whiteness index (0.909268) showed a good fit of the model with the experimental data. The optimum sodium metabisulphite concentration, steeping hours, and temperature for starch isolation with maximum starch yield (66.428%) and whiteness index (85%) as set goals for optimization with the desirability of 0.91939 was 0.255w/v concentration, 2hrs and 50 °C respectively. The determined experimental value of each response based on optimal condition was statistically in accordance with predicted levels at p<0.05. The Mango seeds are the by-products obtained during mango processing and possess disposal problem if not handled properly. The substitution of food based sizing agents with mango seed starch can contribute as pertinent resource deployment for value-added product manufacturing and waste utilization which might play significance role of food security in Ethiopia.Keywords: mango, synthetic sizing agent, starch, extraction, textile, sizing
Procedia PDF Downloads 2311929 Enhanced Method of Conceptual Sizing of Aircraft Electro-Thermal De-Icing System
Authors: Ahmed Shinkafi, Craig Lawson
Abstract:
There is a great advancement towards the All-Electric Aircraft (AEA) technology. The AEA concept assumes that all aircraft systems will be integrated into one electrical power source in the future. The principle of the electro-thermal system is to transfer the energy required for anti/de-icing to the protected areas in electrical form. However, powering a large aircraft anti-icing system electrically could be quite excessive in cost and system weight. Hence, maximising the anti/de-icing efficiency of the electro-thermal system in order to minimise its power demand has become crucial to electro-thermal de-icing system sizing. In this work, an enhanced methodology has been developed for conceptual sizing of aircraft electro-thermal de-icing System. The work factored those critical terms overlooked in previous studies which were critical to de-icing energy consumption. A case study of a typical large aircraft wing de-icing was used to test and validate the model. The model was used to optimise the system performance by a trade-off between the de-icing peak power and system energy consumption. The optimum melting surface temperatures and energy flux predicted enabled the reduction in the power required for de-icing. The weight penalty associated with electro-thermal anti-icing/de-icing method could be eliminated using this method without under estimating the de-icing power requirement.Keywords: aircraft, de-icing system, electro-thermal, in-flight icing
Procedia PDF Downloads 5171928 Multiple-Channel Coulter Counter for Cell Sizing and Enumeration
Authors: Yu Chen, Seong-Jin Kim, Jaehoon Chung
Abstract:
High throughput cells counting and sizing are often required for biomedical applications. Here we report design, fabrication and validating of a micro-machined Coulter counter device with multiple-channel to realize such application for low cost. Multiple vertical through-holes were fabricated on a silicon chip, combined with the PDMS micro-fluidics channel that serves as the sensing channel. In order to avoid the crosstalk introduced by the electrical connection, instead of measuring the current passing through, the potential of each channel is monitored, thus the high throughput is possible. A peak of the output potential can be captured when the cell/particle is passing through the microhole. The device was validated by counting and sizing the polystyrene beads with diameter of 6 μm, 10 μm and 15 μm. With the sampling frequency to be set at 100 kHz, up to 5000 counts/sec for each channel can be realized. The counting and enumeration of MCF7 cancer cells are also demonstrated.Keywords: Coulter counter, cell enumeration, high through-put, cell sizing
Procedia PDF Downloads 6101927 Multi Objective Simultaneous Assembly Line Balancing and Buffer Sizing
Authors: Saif Ullah, Guan Zailin, Xu Xianhao, He Zongdong, Wang Baoxi
Abstract:
Assembly line balancing problem is aimed to divide the tasks among the stations in assembly lines and optimize some objectives. In assembly lines the workload on stations is different from each other due to different tasks times and the difference in workloads between stations can cause blockage or starvation in some stations in assembly lines. Buffers are used to store the semi-finished parts between the stations and can help to smooth the assembly production. The assembly line balancing and buffer sizing problem can affect the throughput of the assembly lines. Assembly line balancing and buffer sizing problems have been studied separately in literature and due to their collective contribution in throughput rate of assembly lines, balancing and buffer sizing problem are desired to study simultaneously and therefore they are considered concurrently in current research. Current research is aimed to maximize throughput, minimize total size of buffers in assembly line and minimize workload variations in assembly line simultaneously. A multi objective optimization objective is designed which can give better Pareto solutions from the Pareto front and a simple example problem is solved for assembly line balancing and buffer sizing simultaneously. Current research is significant for assembly line balancing research and it can be significant to introduce optimization approaches which can optimize current multi objective problem in future.Keywords: assembly line balancing, buffer sizing, Pareto solutions
Procedia PDF Downloads 4911926 Prime Mover Sizing for Base-Loaded Combined Heating and Power Systems
Authors: Djalal Boualili
Abstract:
This article considers the problem of sizing prime movers for combined heating and power (CHP) systems operating at full load to satisfy a fraction of a facility's electric load, i.e. a base load. Prime mover sizing is examined using three criteria: operational cost, carbon dioxide emissions (CDE), and primary energy consumption (PEC). The sizing process leads to consider ratios of conversion factors applied to imported electricity to conversion factors applied to fuel consumed. These ratios are labelled RCost, R CDE, R PEC depending on whether the conversion factors are associated with operational cost, CDE, or PEC, respectively. Analytical results show that in order to achieve savings in operational cost, CDE, or PEC, the ratios must be larger than a unique constant R Min that only depends on the CHP components efficiencies. Savings in operational cost, CDE, or PEC due to CHP operation are explicitly formulated using simple equations. This facilitates the process of comparing the tradeoffs of optimizing the savings of one criterion over the other two – a task that has traditionally been accomplished through computer simulations. A hospital building, located in Chlef, Algeria, was used as an example to apply the methodology presented in this article.Keywords: sizing, heating and power, ratios, energy consumption, carbon dioxide emissions
Procedia PDF Downloads 2291925 Practical Aspects Pertaining to the Selection of Size and Location of Source Substations in an Oil Field
Authors: Yadavalli Venkata Sridhar
Abstract:
Finalization of Substation sizing and location is an important task to be carried out by electrical designers in an oil field. Practical issues influence the selection of size and location of the source substations that feed multiple production facilities are listed. Importance of selection of appropriately rated short circuit level for 11KV switchboards and constraints pertaining to availability of manufacturers are highlighted. Without being lost in the research of absolute optimum solution, under time constraints, the importance of practical approach is brought out. Focus on identifying near optimum solutions by process of elimination of unfeasible substation locations with the support of cost figures, is emphasized through a case study.Keywords: substation, size, location, oil field
Procedia PDF Downloads 6641924 A Teaching Learning Based Optimization for Optimal Design of a Hybrid Energy System
Authors: Ahmad Rouhani, Masood Jabbari, Sima Honarmand
Abstract:
This paper introduces a method to optimal design of a hybrid Wind/Photovoltaic/Fuel cell generation system for a typical domestic load that is not located near the electricity grid. In this configuration the combination of a battery, an electrolyser, and a hydrogen storage tank are used as the energy storage system. The aim of this design is minimization of overall cost of generation scheme over 20 years of operation. The Matlab/Simulink is applied for choosing the appropriate structure and the optimization of system sizing. A teaching learning based optimization is used to optimize the cost function. An overall power management strategy is designed for the proposed system to manage power flows among the different energy sources and the storage unit in the system. The results have been analyzed in terms of technics and economics. The simulation results indicate that the proposed hybrid system would be a feasible solution for stand-alone applications at remote locations.Keywords: hybrid energy system, optimum sizing, power management, TLBO
Procedia PDF Downloads 5781923 Modulation of the Interphase in a Glass Epoxy System: Influence of the Sizing Chemistry on Adhesion and Interfacial Properties
Authors: S. Assengone Otogo Be, A. Fahs, L. Belec, T. A. Nguyen Tien, G. Louarn, J-F. Chailan
Abstract:
Glass fiber-reinforced composite materials have gradually developed in all sectors ranging from consumer products to aerospace applications. However, the weak point is most often the fiber/matrix interface, which can reduce the durability of the composite material. To solve this problem, it is essential to control the interphase and improve our understanding of the adhesion mechanism at the fibre/matrix interface. The interphase properties depend on the nature of the sizing applied on the surface of the glass fibers during their manufacture in order to protect them, facilitate their handling, and ensure fibre/matrix adhesion. The sizing composition, and in particular the nature of the coupling agent and the film-former affects the mechanical properties and the durability of composites. The aim of our study is, therefore, to develop and study composite materials with simplified sizing systems in order to understand how the main constituents modify the mechanical properties and the durability of composites from the nanometric to the macroscopic scale. Two model systems were elaborated: an epoxy matrix reinforced with simplified-sized glass fibres and an epoxy coating applied on glass substrates treated with the same sizings as fibres. For the sizing composition, two configurations were chosen. The first configuration possesses a chemical reactivity to link the glass and the matrix, and the second sizing contains non-reactive agents. The chemistry of the sized glass substrates and fibers was analyzed by FT-IR and XPS spectroscopies. The surface morphology was characterized by SEM and AFM microscopies. The observation of the surface samples reveals the presence of sizings which morphology depends on their chemistry. The evaluation of adhesion of coated substrates and composite materials show good interfacial properties for the reactive configuration. However, the non-reactive configuration exhibits an adhesive rupture at the interface of glass/epoxy for both systems. The interfaces and interphases between the matrix and the substrates are characterized at different scales. Correlations are made between the initial properties of the sizings and the mechanical performances of the model composites.Keywords: adhesion, interface, interphase, materials composite, simplified sizing systems, surface properties
Procedia PDF Downloads 1411922 Loss Minimization by Distributed Generation Allocation in Radial Distribution System Using Crow Search Algorithm
Authors: M. Nageswara Rao, V. S. N. K. Chaitanya, K. Amarendranath
Abstract:
This paper presents an optimal allocation and sizing of Distributed Generation (DG) in Radial Distribution Network (RDN) for total power loss minimization and enhances the voltage profile of the system. The two main important part of this study first is to find optimal allocation and second is optimum size of DG. The locations of DGs are identified by Analytical expressions and crow search algorithm has been employed to determine the optimum size of DG. In this study, the DG has been placed on single and multiple allocations.CSA is a meta-heuristic algorithm inspired by the intelligent behavior of the crows. Crows stores their excess food in different locations and memorizes those locations to retrieve it when it is needed. They follow each other to do thievery to obtain better food source. This analysis is tested on IEEE 33 bus and IEEE 69 bus under MATLAB environment and the results are compared with existing methods.Keywords: analytical expression, distributed generation, crow search algorithm, power loss, voltage profile
Procedia PDF Downloads 2351921 Influence of Aluminium on Grain Refinement in As-Rolled Vanadium-Microalloyed Steels
Authors: Kevin Mark Banks, Dannis Rorisang Nkarapa Maubane, Carel Coetzee
Abstract:
The influence of aluminium content, reheating temperature, and sizing (final) strain on the as-rolled microstructure was systematically investigated in vanadium-microalloyed and C-Mn plate steels. Reheating, followed by hot rolling and air cooling simulations were performed on steels containing a range of aluminium and nitrogen contents. Natural air cooling profiles, corresponding to 6 and 20mm thick plates, were applied. The austenite and ferrite/pearlite microstructures were examined using light optical microscopy. Precipitate species and volume fraction were determined on selected specimens. No influence of aluminium content was found below 0.08% on the as-rolled grain size in all steels studied. A low Al-V-steel produced the coarsest initial austenite grain size due to AlN dissolution at low temperatures leading to abnormal grain growth. An Al-free V-N steel had the finest initial microstructure. Although the as-rolled grain size for 20mm plate was similar in all steels tested, the grain distribution was relatively mixed. The final grain size in 6mm plate was similar for most compositions; the exception was an as-cast V low N steel, where the size of the second phase was inversely proportional to the sizing strain. This was attributed to both segregation and a low VN volume fraction available for effective pinning of austenite grain boundaries during cooling. Increasing the sizing strain refined the microstructure significantly in all steels.Keywords: aluminium, grain size, nitrogen, reheating, sizing strain, steel, vanadium
Procedia PDF Downloads 1521920 Combustion Chamber Sizing for Energy Recovery from Furnace Process Gas: Waste to Energy
Authors: Balram Panjwani, Bernd Wittgens, Jan Erik Olsen, Stein Tore Johansen
Abstract:
The Norwegian ferroalloy industry is a world leader in sustainable production of ferrosilicon, silicon and manganese alloys with the lowest global specific energy consumption. One of the byproducts during the metal reduction process is energy rich off-gas and usually this energy is not harnessed. A novel concept for sustainable energy recovery from ferroalloy off-gas is discussed. The concept is founded on the idea of introducing a combustion chamber in the off-gas section in which energy rich off-gas mainly consisting of CO will be combusted. This will provide an additional degree of freedom for optimizing energy recovery. A well-controlled and high off-gas temperature will assure a significant increase in energy recovery and reduction of emissions to the atmosphere. Design and operation of the combustion chamber depend on many parameters, including the total power capacity of the combustion chamber, sufficient residence time for combusting the complex Poly Aromatic Hydrocarbon (PAH), NOx, as well as converting other potential pollutants. The design criteria for the combustion chamber have been identified and discussed and sizing of the combustion chamber has been carried out considering these design criteria. Computational Fluid Dynamics (CFD) has been utilized extensively for sizing the combustion chamber. The results from our CFD simulations of the flow in the combustion chamber and exploring different off-gas fuel composition are presented. In brief, the paper covers all aspect which impacts the sizing of the combustion chamber, including insulation thickness, choice of insulating material, heat transfer through extended surfaces, multi-staging and secondary air injection.Keywords: CFD, combustion chamber, arc furnace, energy recovery
Procedia PDF Downloads 3191919 Technical, Environmental and Financial Assessment for Optimal Sizing of Run-of-River Small Hydropower Project: Case Study in Colombia
Authors: David Calderon Villegas, Thomas Kaltizky
Abstract:
Run-of-river (RoR) hydropower projects represent a viable, clean, and cost-effective alternative to dam-based plants and provide decentralized power production. However, RoR schemes cost-effectiveness depends on the proper selection of site and design flow, which is a challenging task because it requires multivariate analysis. In this respect, this study presents the development of an investment decision support tool for assessing the optimal size of an RoR scheme considering the technical, environmental, and cost constraints. The net present value (NPV) from a project perspective is used as an objective function for supporting the investment decision. The tool has been tested by applying it to an actual RoR project recently proposed in Colombia. The obtained results show that the optimum point in financial terms does not match the flow that maximizes energy generation from exploiting the river's available flow. For the case study, the flow that maximizes energy corresponds to a value of 5.1 m3/s. In comparison, an amount of 2.1 m3/s maximizes the investors NPV. Finally, a sensitivity analysis is performed to determine the NPV as a function of the debt rate changes and the electricity prices and the CapEx. Even for the worst-case scenario, the optimal size represents a positive business case with an NPV of 2.2 USD million and an IRR 1.5 times higher than the discount rate.Keywords: small hydropower, renewable energy, RoR schemes, optimal sizing, objective function
Procedia PDF Downloads 1321918 Optimum Design of Heat Exchanger in Diesel Engine Cold EGR for Pollutants Reduction
Authors: Nasser Ghassembaglou, Armin Rahmatfam, Faramarz Ranjbar
Abstract:
Using of cold EGR method with variable venturi and turbocharger has a very significant affection on the reduction of NOX and grime simultaneously. EGR cooler is one of the most important parts in the cold EGR circuit. In this paper optimum design of cooler for working in different percents of EGR and for determining of optimum temperature of exhausted gases, growth of efficiency, reduction of weight, reduction of dimension and expenditures, and reduction of sediment and optimum performance by using gas oil which has significant amounts of brimstone are investigated and optimized.Keywords: cold EGR, NOX, cooler, gas oil
Procedia PDF Downloads 4931917 Hybrid Renewable Energy System Development Towards Autonomous Operation: The Deployment Potential in Greece
Authors: Afroditi Zamanidou, Dionysios Giannakopoulos, Konstantinos Manolitsis
Abstract:
A notable amount of electrical energy demand in many countries worldwide is used to cover public energy demand for road, square and other public spaces’ lighting. Renewable energy can contribute in a significant way to the electrical energy demand coverage for public lighting. This paper focuses on the sizing and design of a hybrid energy system (HES) exploiting the solar-wind energy potential to meet the electrical energy needs of lighting roads, squares and other public spaces. Moreover, the proposed HES provides coverage of the electrical energy demand for a Wi-Fi hotspot and a charging hotspot for the end-users. Alongside the sizing of the energy production system of the proposed HES, in order to ensure a reliable supply without interruptions, a storage system is added and sized. Multiple scenarios of energy consumption are assumed and applied in order to optimize the sizing of the energy production system and the energy storage system. A database with meteorological prediction data for 51 areas in Greece is developed in order to assess the possible deployment of the proposed HES. Since there are detailed meteorological prediction data for all 51 areas under investigation, the use of these data is evaluated, comparing them to real meteorological data. The meteorological prediction data are exploited to form three hourly production profiles for each area for every month of the year; minimum, average and maximum energy production. The energy production profiles are combined with the energy consumption scenarios and the sizing results of the energy production system and the energy storage system are extracted and presented for every area. Finally, the economic performance of the proposed HES in terms of Levelized cost of energy is estimated by calculating and assessing construction, operation and maintenance costs.Keywords: energy production system sizing, Greece’s deployment potential, meteorological prediction data, wind-solar hybrid energy system, levelized cost of energy
Procedia PDF Downloads 1541916 Hydrodynamic Study and Sizing of a Distillation Column by HYSYS Software
Authors: Derrouazin Mohammed Redhouane, Souakri Mohammed Lotfi, Henini Ghania
Abstract:
This work consists, first of all, of mastering one of the powerful process simulation tools currently used in the industrial processes, which is the HYSYS sizing software, and second, of simulating a petroleum distillation column. This study is divided into two parts; where the first one consists of a dimensioning of the column with a fast approximating method using state equations, iterative calculations, and then a precise simulation method with the HYSYS software. The second part of this study is a hydrodynamic study in order to verify by obtained results the proper functioning of the plates.Keywords: industry process engineering, water distillation, environment, HYSYS simulation tool
Procedia PDF Downloads 1291915 Application of Analytical Method for Placement of DG Unit for Loss Reduction in Distribution Systems
Authors: G. V. Siva Krishna Rao, B. Srinivasa Rao
Abstract:
The main aim of the paper is to implement a technique using distributed generation in distribution systems to reduce the distribution system losses and to improve voltage profiles. The fuzzy logic technique is used to select the proper location of DG and an analytical method is proposed to calculate the size of DG unit at any power factor. The optimal sizes of DG units are compared with optimal sizes obtained using the genetic algorithm. The suggested method is programmed under Matlab software and is tested on IEEE 33 bus system and the results are presented.Keywords: DG Units, sizing of DG units, analytical methods, optimum size
Procedia PDF Downloads 4741914 A Ground Structure Method to Minimize the Total Installed Cost of Steel Frame Structures
Authors: Filippo Ranalli, Forest Flager, Martin Fischer
Abstract:
This paper presents a ground structure method to optimize the topology and discrete member sizing of steel frame structures in order to minimize total installed cost, including material, fabrication and erection components. The proposed method improves upon existing cost-based ground structure methods by incorporating constructability considerations well as satisfying both strength and serviceability constraints. The architecture for the method is a bi-level Multidisciplinary Feasible (MDF) architecture in which the discrete member sizing optimization is nested within the topology optimization process. For each structural topology generated, the sizing optimization process seek to find a set of discrete member sizes that result in the lowest total installed cost while satisfying strength (member utilization) and serviceability (node deflection and story drift) criteria. To accurately assess cost, the connection details for the structure are generated automatically using accurate site-specific cost information obtained directly from fabricators and erectors. Member continuity rules are also applied to each node in the structure to improve constructability. The proposed optimization method is benchmarked against conventional weight-based ground structure optimization methods resulting in an average cost savings of up to 30% with comparable computational efficiency.Keywords: cost-based structural optimization, cost-based topology and sizing, optimization, steel frame ground structure optimization, multidisciplinary optimization of steel structures
Procedia PDF Downloads 3411913 Optimization of Tilt Angle for Solar Collectors: A Case Study for Bursa, Turkey
Authors: N. Arslanoglu
Abstract:
This paper deals with the optimum tilt angle for the solar collector in order to collect the maximum solar radiation. The optimum angle for tilted surfaces varying from 0◦ to 90◦ in steps of 1◦ was computed. In present study, a theoretical model is used to predict the global solar radiation on a tilted surface and to obtain the optimum tilt angle for a solar collector in Bursa, Turkey. Global solar energy radiation on the solar collector surface with an optimum tilt angle is calculated for specific periods. It is determined that the optimum slope angle varies between 0◦ (June) and 59◦ (December) throughout the year. In winter (December, January, and February) the tilt should be 55◦, in spring (March, April, and May) 19.6◦, in summer (June, July, and August) 5.6◦, and in autumn (September, October, and November) 44.3◦. The yearly average of this value was obtained to be 31.1◦ and this would be the optimum fixed slope throughout the year.Keywords: Bursa, global solar radiation, optimum tilt angle, tilted surface
Procedia PDF Downloads 2601912 Expected Present Value of Losses in the Computation of Optimum Seismic Design Parameters
Authors: J. García-Pérez
Abstract:
An approach to compute optimum seismic design parameters is presented. It is based on the optimization of the expected present value of the total cost, which includes the initial cost of structures as well as the cost due to earthquakes. Different types of seismicity models are considered, including one for characteristic earthquakes. Uncertainties are included in some variables to observe the influence on optimum values. Optimum seismic design coefficients are computed for three different structural types representing high, medium and low rise buildings, located near and far from the seismic sources. Ordinary and important structures are considered in the analysis. The results of optimum values show an important influence of seismicity models as well as of uncertainties on the variables.Keywords: importance factors, optimum parameters, seismic losses, seismic risk, total cost
Procedia PDF Downloads 2841911 Optimization and Feasibility Analysis of a PV/Wind/ Battery Hybrid Energy Conversion
Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassan T. Dorra
Abstract:
In this paper, the optimum design for renewable energy system powered an aquaculture pond was determined. Hybrid Optimization Model for Electric Renewable (HOMER) software program, which is developed by U.S National Renewable Energy Laboratory (NREL), is used for analyzing the feasibility of the stand-alone and hybrid system in this study. HOMER program determines whether renewable energy resources satisfy hourly electric demand or not. The program calculates energy balance for every 8760 hours in a year to simulate operation of the system. This optimization compares the demand for the electrical energy for each hour of the year with the energy supplied by the system for that hour and calculates the relevant energy flow for each component in the model. The essential principle is to minimize the total system cost while HOMER ensures control of the system. Moreover the feasibility analysis of the energy system is also studied. Wind speed, solar irradiance, interest rate and capacity shortage are the parameters which are taken into consideration. The simulation results indicate that the hybrid system is the best choice in this study, yielding lower net present cost. Thus, it provides higher system performance than PV or wind stand-alone systems.Keywords: wind stand-alone system, photovoltaic stand-alone system, hybrid system, optimum system sizing, feasibility, cost analysis
Procedia PDF Downloads 3401910 Optimum Stratification of a Skewed Population
Authors: D. K. Rao, M. G. M. Khan, K. G. Reddy
Abstract:
The focus of this paper is to develop a technique of solving a combined problem of determining Optimum Strata Boundaries (OSB) and Optimum Sample Size (OSS) of each stratum, when the population understudy is skewed and the study variable has a Pareto frequency distribution. The problem of determining the OSB is formulated as a Mathematical Programming Problem (MPP) which is then solved by dynamic programming technique. A numerical example is presented to illustrate the computational details of the proposed method. The proposed technique is useful to obtain OSB and OSS for a Pareto type skewed population, which minimizes the variance of the estimate of population mean.Keywords: stratified sampling, optimum strata boundaries, optimum sample size, pareto distribution, mathematical programming problem, dynamic programming technique
Procedia PDF Downloads 4541909 Application of Imperialist Competitive Algorithm for Optimal Location and Sizing of Static Compensator Considering Voltage Profile
Authors: Vahid Rashtchi, Ashkan Pirooz
Abstract:
This paper applies the Imperialist Competitive Algorithm (ICA) to find the optimal place and size of Static Compensator (STATCOM) in power systems. The output of the algorithm is a two dimensional array which indicates the best bus number and STATCOM's optimal size that minimizes all bus voltage deviations from their nominal value. Simulations are performed on IEEE 5, 14, and 30 bus test systems. Also some comparisons have been done between ICA and the famous Particle Swarm Optimization (PSO) algorithm. Results show that how this method can be considered as one of the most precise evolutionary methods for the use of optimum compensator placement in electrical grids.Keywords: evolutionary computation, imperialist competitive algorithm, power systems compensation, static compensators, voltage profile
Procedia PDF Downloads 6051908 How to Applicate Knowledge Management in Security Environment within the Scope of Optimum Balance Model
Authors: Hakan Erol, Altan Elibol, Ömer Eryılmaz, Mehmet Şimşek
Abstract:
Organizations aim to manage information in a most possible effective way for sustainment and development. In doing so, they apply various procedures and methods. The very same situation is valid for each service of Armed Forces. During long-lasting endeavors such as shaping and maintaining security environment, supporting and securing peace, knowledge management is a crucial asset. Optimum Balance Model aims to promote the system from a decisive point to a higher decisive point. In this context, this paper analyses the application of optimum balance model to knowledge management in Armed Forces and tries to find answer to the question how Optimum Balance Model is integrated in knowledge management.Keywords: optimum balance model, knowledge management, security environment, supporting peace
Procedia PDF Downloads 3971907 Stochastic Fleet Sizing and Routing in Drone Delivery
Authors: Amin Karimi, Lele Zhang, Mark Fackrell
Abstract:
Rural-to-urban population migrations are a global phenomenon, with projections indicating that by 2050, 68% of the world's population will inhabit densely populated urban centers. Concurrently, the popularity of e-commerce shopping has surged, evidenced by a 51% increase in total e-commerce sales from 2017 to 2021. Consequently, distribution and logistics systems, integral to effective supply chain management, confront escalating hurdles in efficiently delivering and distributing products within bustling urban environments. Additionally, events like environmental challenges and the COVID-19 pandemic have indicated that decision-makers are facing numerous sources of uncertainty. Therefore, to design an efficient and reliable logistics system, uncertainty must be considered. In this study, it examine fleet sizing and routing while considering uncertainty in demand rate. Fleet sizing is typically a strategic-level decision, while routing is an operational-level one. In this study, a carrier must make two types of decisions: strategic-level decisions regarding the number and types of drones to be purchased, and operational-level decisions regarding planning routes based on available fleet and realized demand. If the available fleets are insufficient to serve some customers, the carrier must outsource that delivery at a relatively high cost, calculated per order. With this hierarchy of decisions, it can model the problem using two-stage stochastic programming. The first-stage decisions involve planning the number and type of drones to be purchased, while the second-stage decisions involve planning routes. To solve this model, it employ logic-based benders decomposition, which decomposes the problem into a master problem and a set of sub-problems. The master problem becomes a mixed integer programming model to find the best fleet sizing decisions, and the sub-problems become capacitated vehicle routing problems considering battery status. Additionally, it assume a heterogeneous fleet based on load and battery capacity, and it consider that battery health deteriorates over time as it plan for multiple periods.Keywords: drone-delivery, stochastic demand, VRP, fleet sizing
Procedia PDF Downloads 561906 Optimal Simultaneous Sizing and Siting of DGs and Smart Meters Considering Voltage Profile Improvement in Active Distribution Networks
Authors: T. Sattarpour, D. Nazarpour
Abstract:
This paper investigates the effect of simultaneous placement of DGs and smart meters (SMs), on voltage profile improvement in active distribution networks (ADNs). A substantial center of attention has recently been on responsive loads initiated in power system problem studies such as distributed generations (DGs). Existence of responsive loads in active distribution networks (ADNs) would have undeniable effect on sizing and siting of DGs. For this reason, an optimal framework is proposed for sizing and siting of DGs and SMs in ADNs. SMs are taken into consideration for the sake of successful implementing of demand response programs (DRPs) such as direct load control (DLC) with end-side consumers. Looking for voltage profile improvement, the optimization procedure is solved by genetic algorithm (GA) and tested on IEEE 33-bus distribution test system. Different scenarios with variations in the number of DG units, individual or simultaneous placing of DGs and SMs, and adaptive power factor (APF) mode for DGs to support reactive power have been established. The obtained results confirm the significant effect of DRPs and APF mode in determining the optimal size and site of DGs to be connected in ADN resulting to the improvement of voltage profile as well.Keywords: active distribution network (ADN), distributed generations (DGs), smart meters (SMs), demand response programs (DRPs), adaptive power factor (APF)
Procedia PDF Downloads 302