Search results for: opinion formation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3814

Search results for: opinion formation

3454 Cdk1 Gates Cell Cycle-Dependent tRNA Synthesis by Regulating RNA Polymerase III Activity

Authors: Maricarmen Herrera, Pierre Chymkowitch, Joe Robertson, Jens Eriksson, Jorrit Enserink

Abstract:

tRNA genes are transcribed by RNA polymerase III. During recent years, it has become clear that tDNA transcription fluctuates during the cell cycle. However, the mechanism by which the cell cycle controls the amplitude of tDNA transcription remains unknown. We found that the cyclin Clb5 recruits the cyclin dependent kinase Cdk1 to tRNA genes to sharply increase tRNA synthesis during a brief interval in the cell cycle. We show that Cdk1 promotes the interaction of TFIIIB with TFIIIC, that it stimulates the recruitment of TFIIIC to tRNA genes, that it prevents the formation of an overly stable TFIIIB-tDNA complex and that it augments the dynamics of RNA polymerase III. Furthermore, we identify Bdp1 as a novel Cdk1 substrate, and phosphorylation of Bdp1 is required for the cell cycle-dependent increase in tDNA transcription. In addition, we show that phosphorylation of the Cdk1 substrate Nup60 mediates formation of a Nup60-Nup2 complex at tRNA genes, which is also required for cell cycle-dependent tDNA transcription. Together, our findings indicate that Cdk1 activity gates tRNA synthesis by regulating the dynamics of the TFIIIB-TFIIIC-RNAPIII complex, and that it may promote the formation of a nuclear pore microenvironment conducive to efficient tDNA transcription.

Keywords: Cdk1, cell cycle, RNAPIII machinery, tRNA

Procedia PDF Downloads 162
3453 The Effectiveness of Bismuth Addition to Retard the Intermetallic Compound Formation

Authors: I. Siti Rabiatull Aisha, A. Ourdjini, O. Saliza Azlina

Abstract:

The aim of this paper is to study the effectiveness of bismuth addition in the solder alloy to retard the intermetallic compound formation and growth. In this study, three categories of solders such as Sn-4Ag-xCu (x = 0.5, 0.7, 1.0) and Sn-4Ag-0.5Cu-xBi (x = 0.1, 0.2, 0.4) were used. Ni/Au surface finish substrates were dipped into the molten solder at a temperature of 180-190 oC and allowed to cool at room temperature. The intermetallic compound (IMCs) were subjected to the characterization in terms of composition and morphology. The IMC phases were identified by energy dispersive x-ray (EDX), whereas the optical microscope and scanning electron microscopy (SEM) were used to observe microstructure evolution of the solder joint. The results clearly showed that copper concentration dependency was high during the reflow stage. Besides, only Ni3Sn4 and Ni3Sn2 were detected for all copper concentrations. The addition of Bi was found to have no significant effect on the type of IMCs formed, but yet the grain became further refined.

Keywords: Bismuth addition, intermetallic compound, composition, morphology

Procedia PDF Downloads 276
3452 Waterless Fracking: An Alternative to Conventional Fracking

Authors: Shubham Damke, Md Imtiaz, Sanchita Dei

Abstract:

To stimulate the well and to enhance the production from the shaly formations, fracturing is essential. Presently the chiefly employed technology is Hydraulic Fracturing. However Hydraulic Fracturing accompanies itself with problems like disposing large volumes of fracturing wastewater, removal of water from the pores, formation damage due to injection of large amount of chemicals into underground formations and many more. Therefore embarking on the path of innovation new techniques have been developed which uses different gases such as Nitrogen, Carbon dioxide, Frac Oil, LPG, etc. are used as a base fluid for fracturing formation. However LPG proves to be the most favorable of them which eliminates the use of water and chemicals. When using it as a fracturing fluid, within the surface equipment, it is stored, gelled, and proppant blended at a constant pressure. It is then pressurized with high pressure pumps to the required surface injection pressure With lowering the total cost and increasing the productivity, LPG is also very noteworthy for fracturing shale, where if the hydraulic fracturing is done the water ‘swells’ the formation and creates surface tension, both of which inhibit the flow of oil and gas. Also fracturing with LPG increases the effective fracture length and since propane, butane and pentane is used which are already present in the natural gas therefore there is no problem of back flow because these gases get mixed with the natural gas. LPG Fracturing technology can be a promising substitute of the Hydraulic Fracturing, which could substantially reduce the capital cost of fracturing shale and will also restrict the problems with the disposal of water and on the same hand increasing the fracture length and the productivity from the shale.

Keywords: Fracking, Shale, Surface Tension, Viscosity

Procedia PDF Downloads 404
3451 The Effect of SIO2 Addition on the Formation and Superconducting Properties of BI2SR2CACU2O8+D System

Authors: N. Boussouf, M. F. Mosbah, M.Hamel, S. Menassel

Abstract:

SiO2 particles were inserted (added) into Bi2Sr2CaCu2O8+d precursor powders in various weight fractions. The influence of Si addition to the Bi2212 system on its phase formation, microstructure and transport properties is investigated. Samples are characterized by means of X ray diffraction analysis (XRD), scanning electron microscopy (SEM/EDX), magnetic AC susceptibility and resistivity measurements. For 1% of added Si, the results showed an increase of the apparent superconducting volume fraction. All the samples doped with Si contained a majority fraction of the high TC superconducting Bi2212 phase. SEM observation showed that the average grain size of the Si added samples increased more than that of the sample without Si. From resistivity measurement the Tconset was found to be increased by 7 K for 1% and 5% of added Si compared to the pure sample.

Keywords: superconductors, Bi2212, doping, SiO2 particles

Procedia PDF Downloads 208
3450 Exploring Attachment Mechanisms of Sulfate-Reducing Bacteria Biofilm to X52 Carbon Steel and Effective Mitigation Through Moringa Oleifera Extract

Authors: Hadjer Didouh, Mohammed Hadj Melliani, Izzeddine Sameut Bouhaik

Abstract:

Corrosion is a serious problem in industrial installations or metallic transport pipes. Corrosion is an interfacial process controlled by several parameters. The presence of microorganisms affects the kinetics of corrosion. This type of corrosion is often referred to as bio-corrosion or corrosion influenced by microorganisms (MIC). The action of a microorganism or a bacterium is carried out by the formation of biofilm following its attachment to the metal surface. The formation of biofilm isolates the metal surface from its environment and allows the bacteria to control the parameters of the metal/bacteria interface. Biofilm formation by sulfate-reducing bacteria (SRB) X52 steel poses substantial challenges in the oil and gas industry SONATRACH of Algeria. This research delves into the complex attachment mechanisms employed by SRB biofilm on X52 carbon steel and investigates innovative strategies for effective mitigation using biocides. The exploration commences by elucidating the underlying mechanisms facilitating SRB biofilm adhesion to X52 carbon steel, considering factors such as surface morphology, electrostatic interactions, and microbial extracellular substances. Advanced microscopy and spectroscopic techniques provide support to the attachment processes, laying the foundation for targeted mitigation strategies. The use of 100 ppm of Moringa Oleifera extract biocide as a promising approach to control and prevent SRB biofilm formation on X52 carbon steel surfaces. Green extracts undergo evaluation for their effectiveness in disrupting biofilm development while ensuring the integrity of the steel substrate. Systematic analysis is conducted on the biocide's impact on the biofilm's structural integrity, microbial viability, and overall attachment strength. This two-pronged investigation aims to deepen our comprehension of SRB biofilm dynamics and contribute to the development of effective strategies for mitigating its impact on X52 carbon steel.

Keywords: attachment, bio-corrosion, biofilm, metal/bacteria interface

Procedia PDF Downloads 43
3449 Analysis of Vortical Structures Generated by the Swirler of Combustion Chamber

Authors: Vladislav A. Nazukin, Valery G. Avgustinovich, Vakhtang V. Tsatiashvili

Abstract:

The most important part of modern lean low NOx combustors is a premixer where swirlers are often used for intensification of mixing processes and further formation of required flow pattern in combustor liner. Swirling flow leads to formation of complex eddy structures causing flow perturbations. It is able to cause combustion instability. Therefore, at design phase, it is necessary to pay great attention to aerodynamics of premixers. Analysis based on unsteady CFD modeling of swirling flow in production combustor swirler showed presence of large number of different eddy structures that can be conditionally divided into three types relative to its location of origin and a propagation path. Further, features of each eddy type were subsequently defined. Comparison of calculated and experimental pressure fluctuations spectrums verified correctness of computations.

Keywords: DES simulation, swirler, vortical structures, combustion chamber

Procedia PDF Downloads 336
3448 Understanding Team Member Autonomy and Team Collaboration: A Qualitative Study

Authors: Ayşen Bakioğlu, Gökçen Seyra Çakır

Abstract:

This study aims to explore how research assistants who work in project teams experience team member autonomy and how they reconcile team member autonomy with team collaboration. The study utilizes snowball sampling. 20 research assistants who work the faculties of education in Marmara University and Yıldız Technical University have been interviewed. The analysis of data involves a content analysis MAXQDAPlus 11 which is a qualitative data analysis software is used as the data analysis tool. According to the findings of this study, emerging themes include team norm formation, team coordination management, the role of individual tasks in team collaboration, leadership distribution. According to the findings, interviewees experience team norm formation process in terms of processes, which pertain to task fulfillment, and processes, which pertain to the regulation of team dynamics. Team norm formation process instills a sense of responsibility amongst individual team members. Apart from that, the interviewees’ responses indicate that the realization of the obligation to work in a team contributes to the team norm formation process. The participants indicate that individual expectations are taken into consideration during the coordination of the team. The supervisor of the project team also has a crucial role in maintaining team collaboration. Coordination problems arise when an individual team member does not relate his/her academic field with the research topic of the project team. The findings indicate that the leadership distribution in the project teams involves two leadership processes: leadership distribution which is based on the processes that focus on individual team members and leadership distribution which is based on the processes that focus on team interaction. Apart from that, individual tasks serve as a facilitator of collaboration amongst team members. Interviewees also indicate that individual tasks also facilitate the expression of individuality.

Keywords: project teams in higher education, research assistant teams, team collaboration, team member autonomy

Procedia PDF Downloads 335
3447 A Mathematical Analysis of a Model in Capillary Formation: The Roles of Endothelial, Pericyte and Macrophages in the Initiation of Angiogenesis

Authors: Serdal Pamuk, Irem Cay

Abstract:

Our model is based on the theory of reinforced random walks coupled with Michealis-Menten mechanisms which view endothelial cell receptors as the catalysts for transforming both tumor and macrophage derived tumor angiogenesis factor (TAF) into proteolytic enzyme which in turn degrade the basal lamina. The model consists of two main parts. First part has seven differential equations (DE’s) in one space dimension over the capillary, whereas the second part has the same number of DE’s in two space dimensions in the extra cellular matrix (ECM). We connect these two parts via some boundary conditions to move the cells into the ECM in order to initiate capillary formation. But, when does this movement begin? To address this question we estimate the thresholds that activate the transport equations in the capillary. We do this by using steady-state analysis of TAF equation under some assumptions. Once these equations are activated endothelial, pericyte and macrophage cells begin to move into the ECM for the initiation of angiogenesis. We do believe that our results play an important role for the mechanisms of cell migration which are crucial for tumor angiogenesis. Furthermore, we estimate the long time tendency of these three cells, and find that they tend to the transition probability functions as time evolves. We provide our numerical solutions which are in good agreement with our theoretical results.

Keywords: angiogenesis, capillary formation, mathematical analysis, steady-state, transition probability function

Procedia PDF Downloads 127
3446 Nanosilver Containing Biodegradable Bionanocomposites for Antimicrobial Application: Design, Preparation and Study

Authors: Nino Kupatadze, Shorena Tskhadadze, Mzevinar Bedinashvili, David Tugushi, Ramaz Katsarava

Abstract:

Surgical device-associated infection and biofilm formation are some of the major problems in biomedicine for today. The losing protection ability of conventional antimicrobial-drugs leads to the challenges in the current antibiotic therapy, the most serious of which is antibiotic resistance. Our strategy to overcome the biofilm formation consists in coating devices with polymeric film containing nanosilver(AgNPs) as a bactericidal agent. Such bionanocomposites are also promising as wound dressing materials. For this purpose, we have developed a new generation of AgNPs containing polymeric composites in which amino acid based biodegradable poly(ester amide)s (PEAs) were served as both matrices and AgNPs stabilizers. The AgNPs were formed by photochemical (daylight) reduction of AgNO3 in ethanol solution. The formation of AgNPs was monitored by coloring the solution in brownish-red and appearance of the absorption maximum at 420-430 nm in UV spectrum. Comparative studies of PEAs with polyvinylpyrrolidone (PVP) as particle stabilizers were carried out. It was found that PVP is better stabilizer in terms of particles yield and stability. Therefore, in subsequent experiments blends of PEAs and PVP were used as stabilizers for fabricating AgNPs. As expected, PVP increased the stabilizing effect and this apparently observed in the UV spectrum of the samples after 7 h daylight irradiation: for pure PVP λmax = 430 nm, D = 2.03, for pure PEA λmax= 420 nm, D = 0.65, and for the blend of PVP and PEA λmax = 435 nm, D = 1.88. Further study of the obtained nanobiocomposites is in progress now.

Keywords: biodegradation, bionanocompositions, polymer, nanosilver

Procedia PDF Downloads 319
3445 Use of Waste Active Sludge for Reducing Fe₂O₃

Authors: A. Parra Parra, M. Vlasova, P. A. Marquez, M. Kakazey, M. C. Resendiz Gonzalez

Abstract:

The work of water treatment plants from various sources of pollution includes a biological treatment stage using activated sludge. Due to the large volume of toxic activated sludge waste (WAS) generated and soil contamination during its storage, WAS disposal technologies are being continuously developed. The most common is the carbonization of WAS. The carbonization products are various forms of ordered and disordered carbon material having different reactivity. The aim of this work was to study the reduction process of Fe₂O₃ mixed with activated sludge waste (WAS). It could be assumed that the simultaneous action of the WAS thermal decomposition process, accompanied by the formation of reactive nano-carbon, with carbothermal reduction of the Fe₂O₃, will permit intensify reduction of metal oxide up to stage of metal and iron carbide formation. The studies showed that the temperature treatment in the region of (800-1000) °C for 1 hour under conditions of oxygen deficiency is accompanied by the occurrence of reactions: Fe₂O₃ → Fe₃O₄ → FeO → Fe, which are typical for the metallurgical process of iron smelting, but less energy-intensive. Depending on the ratio of the WAS - Fe₂O₃ components and the temperature-time regime of reduction of iron oxide, it is possible to distinguish the stages of the predominant formation of ferromagnetic compounds, cast iron, and iron carbide. The results indicated the promise of using WAS as a metals oxide reducing agent and obtaining of ceramic-based on metal carbides.

Keywords: carbothermal reduction, Fe₂O₃, FeₓOᵧ-C, waste activated sludge

Procedia PDF Downloads 105
3444 Analysis of the Factors of Local Acceptance of Wind Power Generation Facilities

Authors: Hyunjoo Park, Taehyun Kim, Taehyun Kim

Abstract:

The government that declared 'de-nuclearization' pushes up renewable energy policies such as solar power and wind power as an alternative to nuclear power generation. However, local residents who are concerned about the development and natural disasters have been hit by opposition, and related businesses around the country are experiencing difficulties. There is also a voice saying that installing a large wind power generator will cause landslides, low frequencies and noise, which will have a bad influence. Renewal is only a harmful and disgusting facility for the residents. In this way, it is expected that extreme social conflicts will occur in the decision making process related to the locally unwanted land-use (LULU). The government's efforts to solve this problem have been steadily progressing, but the systematic methodology for bringing in active participation and opinion gathering of the residents has not yet been established except for the simple opinion poll or referendum. Therefore, it is time to identify the factors that concern the local residents about the wind power generation facilities, and to find ways to make policy decision-making possible. In this study, we analyze the perception of people about offshore and onshore wind power facilities through questionnaires or interviews, and examine quantitative and qualitative precedent studies to analyze them. In addition, the study evaluates what factors affect the local acceptance of wind power facilities. As a result of the factor analysis of the questionnaire items, factors affecting the residents' acceptance of the wind power facility were extracted from four factors such as environmental, economic, risk, social, and management factor. The study also found that the influence of the determinants of local acceptance on the regional acceptability differs according to the demographic characteristics such as gender and income level. This study will contribute to minimizing the conflict on the installation of wind power facilities through communication among the local residents.

Keywords: factor analysis, local acceptance, locally unwanted land-use, LULU, wind power generation facilities

Procedia PDF Downloads 132
3443 Dry High Speed Orthogonal Turning of Ti-6Al-4V Titanium Alloy

Authors: M. Benghersallah, G. List, G. Sutter

Abstract:

The present work is an experimental study on the dry high speed turning of Ti-6Al-4V titanium alloy. The objective of this study is to see for high cutting speeds, how wear occurs on the face of insert and how to evolve cutting forces and chip formation. Cutting speeds tested is 600, 800, 1000, and 1200 m/min in orthogonal turning with a carbide insert tool H13A uncoated on a cylindrical titanium alloy part. Investigation on the wear inserts with 3D scanning microscope revered the crater formation is instantaneous and a chip adhesion (welded chip) causes detachment of carbide particles. Cutting forces increase and stabilize before removing the tool. The chip reaches a very high temperature.

Keywords: titanium alloy, dry hjgh speed turning, wear insert, MQL technique

Procedia PDF Downloads 530
3442 Culture of Argumentative Discourse Formation as an Inevitable Element of Professional Development of Foreign Language Teachers

Authors: Kuznetsova Tamara, Sametova Fauziya

Abstract:

Modern period of educational development is characterized by various attempts in higher quality and effective result provision. Having acquired the modernized educational paradigm, our academic community placed the personality development through language and culture under the focus of primary research. The competency-based concept claims for professionally ready specialists who are capable of solving practical problems. In this sense, under the circumstances of the current development of Kazakhstani society, it is inevitable to form the ability to conduct argumentative discourse as the crucial element of intercultural communicative competence. This article particularly states the necessity of the culture of argumentative discourse formation presents theoretical background of its organization and aims at identifying important argumentative skills within educational process.

Keywords: argumentative discourse, teaching process, skills, competency

Procedia PDF Downloads 335
3441 Nanomaterials-Assisted Drilling Fluids for Application in Oil Fields - Challenges and Prospects

Authors: Husam Mohammed Saleh Alziyadi

Abstract:

The drilling fluid has a significant impact on drilling efficiency. Drilling fluids have several functions which make them most important within the drilling process, such as lubricating and cooling the drill bit, removing cuttings from down of hole, preventing formation damage, suspending drill bit cuttings, , and also removing permeable formation as a result, the flow of fluid into the formation process is delayed. In the oil and gas sector, unconventional shale reserves have been a central player in meeting world energy demands. Oil-based drilling fluids (OBM) are generally favored for drilling shale plays due to negligible chemical interactions. Nevertheless, the industry has been inspired by strict environmental regulations to design water-based drilling fluids (WBM) capable of regulating shale-water interactions to boost their efficiency. However, traditional additives are too large to plug the micro-fractures and nanopores of the shale. Recently, nanotechnology in the oil and gas industries has shown a lot of promise, especially with drilling fluids based on nanoparticles. Nanotechnology has already made a huge contribution to technical developments in the energy sector. In the drilling industry, nanotechnology can make revolutionary changes. Nanotechnology creates nanomaterials with many attractive properties that can play an important role in improving the consistency of mud cake, reducing friction, preventing differential pipe sticking, preserving the stability of the borehole, protecting reservoirs, and improving the recovery of oil and gas. The selection of suitable nanomaterials should be based on the shale formation characteristics intended for drilling. The size, concentration, and stability of the NPs are three more important considerations. The effects of the environment are highly sensitive to these materials, such as changes in ionic strength, temperature, or pH, all of which occur under downhole conditions. This review paper focused on the previous research and recent development of environmentally friendly drilling fluids according to the regulatory environment and cost challenges.

Keywords: nanotechnology, WBM, Drilling Fluid, nanofluids

Procedia PDF Downloads 96
3440 The Consequences of Regime Change in Iraq; Formation and Continuation of Geopolitical Crises

Authors: Ali Asghar Sotoudeh

Abstract:

Since the US invasion of Iraq in 2003 and the subsequent regime change, internal conflicts between political and ethnic-religious groups have become a hallmark of Iraqi political dynamism. The most important manifestations of these conflicts are the Kurdish-central government conflicts, as well as fundamentalism since 2003. As a result, it seems not only US presence in Iraq under the pretext of fighting terrorism and expanding democracy has not had a positive effect on controlling fundamentalism and political stability in Iraq, but it has paved the way for the formation and continuation of geopolitical crises in the form of disputes over territory and sources of power. In this regard, given the importance of the study, the main purpose of this study is to examine the process of the impact of US regime-change policy on the formation and continuation of geopolitical crises in Iraq. The central question of this study is, what effect has the US regime change policy had on Iraq's domestic political processes? Findings show that regime change and subsequent imposed federalism have widened the gaps in Iraq's sectarian-ethnic system. As a result, the geopolitical crisis in the context of the dispute over geographical territory and sources of power between ethnic-religious groups has become the most important political dynamic in Iraq since the occupation. The research method in this article is descriptive-analytical, and the data collection method is library and internet resources.

Keywords: Iraq, united states, geopolitical crisis, ethno-religious conflict, political federalism

Procedia PDF Downloads 124
3439 Formation and Characterization of the Epoxy Resin-Porous Glass Interphases

Authors: Aleksander Ostrowski, Hugh J. Byrne, Roland Sanctuary

Abstract:

Investigation of the polymer interphases is an emerging field nowadays. In many cases interphases determine the functionality of a system. There is a great demand for exploration of fundamental understanding of the interphases and elucidation of their formation, dimensions dependent on various influencing factors, change of functional properties, etc. The epoxy applied on porous glass penetrates its pores with an extent dependent on the pore size, temperature and epoxy components mixing ratio. Developed over the recent time challenging sample preparation procedure allowed to produce very smooth epoxy-porous glass cross-sections. In this study, Raman spectroscopy was used to investigate the epoxy-porous glass interphases. It allowed for chemical differentiation between different regions at the cross-section and determination of the degree of cure of epoxy system in the porous glass.

Keywords: interphases, Raman spectroscopy, epoxy, porous glass

Procedia PDF Downloads 369
3438 Structural and Optical Characterization of Silica@PbS Core–Shell Nanoparticles

Authors: A. Pourahmad, Sh. Gharipour

Abstract:

The present work describes the preparation and characterization of nanosized SiO2@PbS core-shell particles by using a simple wet chemical route. This method utilizes silica spheres formation followed by successive ionic layer adsorption and reaction method assisted lead sulphide shell layer formation. The final product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis spectroscopic, infrared spectroscopy (IR) and transmission electron microscopy (TEM) experiments. The morphological studies revealed the uniformity in size distribution with core size of 250 nm and shell thickness of 18 nm. The electron microscopic images also indicate the irregular morphology of lead sulphide shell layer. The structural studies indicate the face-centered cubic system of PbS shell with no other trace for impurities in the crystal structure.

Keywords: core-shell, nanostructure, semiconductor, optical property, XRD

Procedia PDF Downloads 275
3437 Influence of MgO Physically Mixed with Tungsten Oxide Supported Silica Catalyst on Coke Formation

Authors: Thidaya Thitiapichart

Abstract:

The effect of additional magnesium oxide (MgO) was investigated by using the tungsten oxide supported on silica catalyst (WOx/SiO2) physically mixed with MgO in a weight ratio 1:1. The both fresh and spent catalysts were characterized by FT-Raman spectrometer, UV-Vis spectrometer, X-Ray diffraction (XRD), and temperature programmed oxidation (TPO). The results indicated that the additional MgO could enhance the conversion of trans-2-butene due to isomerization reaction. However, adding MgO would increase the amount of coke deposit on the WOx/SiO2 catalyst. The TPO profile presents two peaks when the WOx/SiO2 catalyst was physically mixed with MgO. The further peak was suggested to be coming from the coke precursor that could be produced by isomerization reaction of the undesired product. Then, the occurred coke precursor could deposit and form coke on the acid catalyst.

Keywords: coke formation, metathesis, magnesium oxide, physically mix

Procedia PDF Downloads 226
3436 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception

Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu

Abstract:

Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.

Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish

Procedia PDF Downloads 115
3435 Formation of Protective Aluminum-Oxide Layer on the Surface of Fe-Cr-Al Sintered-Metal-Fibers via Multi-Stage Thermal Oxidation

Authors: Loai Ben Naji, Osama M. Ibrahim, Khaled J. Al-Fadhalah

Abstract:

The objective of this paper is to investigate the formation and adhesion of a protective aluminum-oxide (Al2O3, alumina) layer on the surface of Iron-Chromium-Aluminum Alloy (Fe-Cr-Al) sintered-metal-fibers. The oxide-scale layer was developed via multi-stage thermal oxidation at 930 oC for 1 hour, followed by 1 hour at 960 oC, and finally at 990 oC for 2 hours. Scanning Electron Microscope (SEM) images show that the multi-stage thermal oxidation resulted in the formation of predominantly Al2O3 platelets-like and whiskers. SEM images also reveal non-uniform oxide-scale growth on the surface of the fibers. Furthermore, peeling/spalling of the alumina protective layer occurred after minimum handling, which indicates weak adhesion forces between the protective layer and the base metal alloy.  Energy Dispersive Spectroscopy (EDS) analysis of the heat-treated Fe-Cr-Al sintered-metal-fibers confirmed the high aluminum content on the surface of the protective layer, and the low aluminum content on the exposed base metal alloy surface. In conclusion, the failure of the oxide-scale protective layer exposes the base metal alloy to further oxidation, and the fragile non-uniform oxide-scale is not suitable as a support for catalysts.

Keywords: high-temperature oxidation, iron-chromium-aluminum alloy, alumina protective layer, sintered-metal-fibers

Procedia PDF Downloads 175
3434 Gender-Based Differences in the Social Judgment of Hungarian Politicians' Sex Scandals

Authors: Sara Dalma Galgoczi, Judith Gabriella Kengyel

Abstract:

Sex scandals are quite an engaging topic to work with, especially with their judgment in society. Most people are interested in other people's lives, specifically in public figures' such as celebrities or politicians, because ordinary people feel like they have the right to know more things about the famous and notorious ones than they would probably willing to share. Intimacy and sexual acts aren't exceptions; moreover, sexuality is one of the central interests of humans ever since. Besides, knowing and having an opinion about any kind of scandal can change even whole social groups or classes estimation of anyone. This study aims to research the social judgment of some Hungarian politicians' sex scandals and asks important questions like diverse public opinions in the light of gender or delegates’ abuse of power. Considering that this study is about collecting and evaluating opinions from the public, and no one before researched and published this exact topic and cases, an online survey was created. In the survey were different sections. We collected data about party-preference, conservativism-liberalism scale; then we used the following questionnaires: from Zero-sum perspective with regard to gender equality (Ruthig, Kehn, Gamblin, Vanderzanden & Jones, 2017), Ambivalent Sexism Inventory (ASI; Glick & Fiske, 1996), Ambivalence Toward Men Inventory (AMI; Glick & Fiske, 1999). Finally, 5 short summaries were presented about five Hungarian politicians' sex scandal cases (3 males, 2 females) from the recent past. These stories were followed by questions about their opinion of the party and attitudes towards the parties' reactions to the cases. We came to the conclusion that people are more permissive with the scandals of men, and benevolent sexism and ambivalence towards men mediate this relation. Men tend to see these cases as part of politicians' private lives more than women. Party preference had a significant effect - people tend to pass a sentence the delegates of the opposing parties, and they rather release the delegates of their preferred party.

Keywords: sex scandal, sexism, social judgement, politician

Procedia PDF Downloads 98
3433 Arta (Calligonum Comosum, L'her.) Shoot Extract: Bio-mediator in Silver Nanoparticles Formation and Antimycotic Potential

Authors: Afrah E. Mohammed, Mudawi M. Nour

Abstract:

Environmentally friendly green synthesis of nanomaterial has a very significant part in nanotechnology. In the present research, the synthesis of silver nanoparticles (AgNPs) was established by treating silver ions with the aqueous extract of Calligonum comosum green shoots at room temperature. AgNPs formation was firstly detected by the colour change of mixed extract (plant extract and AgNO3). Further characterization was done by ultraviolet (UV)-Vis spectrophotometer, transmission electron microscopy (TEM), scanning electron microscopy (SEM), zeta potential and fourier transform infrared spectroscopy (FTIR). The peak values for UV-VIS- spectroscopy were in the range of 440 nm, TEM micrograph showed a spherical shape for the particles and zeta potential showed the formation of negative charged nanoparticles with an average size of about 105.8 nm. 1635.41 and 3249.83 cm−1 are the peaks detected from the FTIR analysis. In this study, biosynthesized silver nanoparticles mediated by C. comosum were tested for their antimycotic activity using a well diffusion method against fungal species; Aspergillus flavus, Penicillium sp, Fusarium oxysporum. Our findings indicated that biosynthesized AgNPs showed an efficient antimycotic activity against tested species. The antimycotic action of AgNPs varied according to different fungal species. Results confirmed the ability of C. comosum green shoot extract to act as an reducing and stabilizing agent during the synthesis of AgNPs.

Keywords: AGNPS, zeta potential, TEM, SEM

Procedia PDF Downloads 55
3432 Gas While Drilling (GWD) Classification in Betara Complex; An Effective Approachment to Optimize Future Candidate of Gumai Reservoir

Authors: I. Gusti Agung Aditya Surya Wibawa, Andri Syafriya, Beiruny Syam

Abstract:

Gumai Formation which acts as regional seal for Talang Akar Formation becomes one of the most prolific reservoir in South Sumatra Basin and the primary exploration target in this area. Marine conditions were eventually established during the continuation of transgression sequence leads an open marine facies deposition in Early Miocene. Marine clastic deposits where calcareous shales, claystone and siltstones interbedded with fine-grained calcareous and glauconitic sandstones are the domination of lithology which targeted as the hydrocarbon reservoir. All this time, the main objective of PetroChina’s exploration and production in Betara area is only from Lower Talang Akar Formation. Successful testing in some exploration wells which flowed gas & condensate from Gumai Formation, opened the opportunity to optimize new reservoir objective in Betara area. Limitation of conventional wireline logs data in Gumai interval is generating technical challenge in term of geological approach. A utilization of Gas While Drilling indicator initiated with the objective to determine the next Gumai reservoir candidate which capable to increase Jabung hydrocarbon discoveries. This paper describes how Gas While Drilling indicator is processed to generate potential and non-potential zone by cut-off analysis. Validation which performed by correlation and comparison with well logs, Drill Stem Test (DST), and Reservoir Performance Monitor (RPM) data succeed to observe Gumai reservoir in Betara Complex. After we integrated all of data, we are able to generate a Betara Complex potential map and overlaid with reservoir characterization distribution as a part of risk assessment in term of potential zone presence. Mud log utilization and geophysical data information successfully covered the geological challenges in this study.

Keywords: Gumai, gas while drilling, classification, reservoir, potential

Procedia PDF Downloads 332
3431 Trends of Municipal Council Members in Practicing His Role on Municipality's Main Municipal Activities in the Kingdom of Saudi Arabia

Authors: Ameer Alalwan

Abstract:

Summary: The aim of this research is to identify trends of municipal council member in practicing his administrative control, decision-making, and counsultive role on municipalities' main municipal activities in the kingdom of Saudi Arabia. This research is conducted after the implementation of the new municipal system resolution no. (M\61) in 1435 in the work of municipal councils for the third session. To achieve the goal of this research, a questionnaire has been designed to obtain the opinion of municipal councils on this matter. This questionnaire has been tested for reliability and validity. The results of this research show that in general performance of municipal council is moderate after the implementation of the new municipal system resolution no. (M\61) in 1435 in the work of municipal councils for the third session. Also, extend that municipal council member practice his roles on the main municipality activities is moderate and weak. In addition, results show that municipal council member practice big role in decision-making, and moderate role in administrative control, and weaker role in giving opinion on municipality main issues. Furthermore, the results show that there is a significant difference between municipal council member's responses by the change of their Personal characteristics. Educated and appointed municipal council members practicing their role more than others do. In addition, municipal council presidents, and vice presidents, and in regional and sub-regional municipalities practice their role more than others do. Finally, this research in general recommened that muincialty council member must be empowered, so that he can practice his role on muicipality main activities. In addition, research suggest, granting municipal council member the authority, resources needed, training and appointment of qualified members, so that they will be able to practice their roles. Furthermore, this research suggest for the time being maintain certain percent of municipal council's appointed until this experience mature in the kingdom.

Keywords: municipal council, municipal council member, municipality, decision-making role

Procedia PDF Downloads 102
3430 Effect of Serine/Threonine Kinases on Autophagy Mechanism

Authors: Ozlem Oral, Seval Kilic, Ozlem Yedier, Serap Dokmeci, Devrim Gozuacik

Abstract:

Autophagy is a degradation pathway, activating under stress conditions. It digests macromolecules, such as abnormal proteins and long-lived organelles by engulfing them and by subsequent delivery of the cargo to lysosomes. The members of the phospholipid-dependent serine/threonine kinases, involved in many signaling pathways, which are necessary for the regulation of cellular metabolic activation. Previous studies implicate that, serine/threonine kinases have crucial roles in the mechanism of many diseases depend on the activated and/or inactivated signaling pathway. Data indicates, the signaling pathways activated by serine/threonine kinases are also involved in activation of autophagy mechanism. However, the information about the effect of serine/threonine kinases on autophagy mechanism and the roles of these effects in disease formation is limited. In this study, we investigated the effect of activated serine/threonine kinases on autophagic pathway. We performed a commonly used autophagy technique, GFP-LC3 dot formation and by using microscopy analyses, we evaluated promotion and/or inhibition of autophagy in serine/threonine kinase-overexpressed fibroblasts as well as cancer cells. In addition, we carried out confocal microscopy analyses and examined autophagic flux by utilizing the differential pH sensitivities of RFP and GFP in mRFP-GFP-LC3 probe. Based on the shRNA-library based screening, we identified autophagy-related proteins affected by serine/threonine kinases. We further studied the involvement of serine/threonine kinases on the molecular mechanism of newly identified autophagy proteins and found that, autophagic pathway is indirectly controlled by serine/threonine kinases via specific autophagic proteins. Our data indicate the molecular connection between two critical cellular mechanisms, which have important roles in the formation of many disease pathologies, particularly cancer. This project is supported by TUBITAK-1001-Scientific and Technological Research Projects Funding Program, Project No: 114Z836.

Keywords: autophagy, GFP-LC3 dot formation assay, serine/threonine kinases, shRNA-library screening

Procedia PDF Downloads 269
3429 Comparison of Formation Sensitivity Gap between Islamic Maybank Indonesia and Islamic Maybank Malaysia

Authors: Puji Sucia Sukmaningrum, Achsania Hendratmi, Noven Suprayogi, Muhammad Madyan

Abstract:

Theoretically, Islamic banks in Indonesia and Malaysia not necessarily aware to the interest rate fluctuation, since they don’t use interest-based instruments. Both countries use dual banking system in which Islamic and conventional banking system are exist. This situation makes the profit-sharing level of the Islamic banks will be indirectly affected by the interest rate fluctuation from the conventional banks system. One of the risk management tools for anticipating the risk of interest rate fluctuation is gap management, which has purpose to narrow the difference between Rate Sensitive Asset (RSA) and Rate Sensitive Liability (RSL). This formed gap will give the information about the risk potential in Islamic banks which respect to the fluctuation on the interest rate. This study aims to determine the position of the gap formed at Islamic Maybank Indonesia and Islamic Maybank Malaysia, and analyze the difference in the formation of gap based on the period of sensitivity. This study is a quantitative research with comparative study using sensitivity gap analysis, independent sample t-test, and Mann-Whitney method. The data being used was secondary data from Maturity Profile contained in the Annual Financial Report of Islamic Maybank Indonesia and Islamic Maybank Malaysia from 2011 to 2015 period. The result shows that, cumulatively the formation of the gap was negative gap. From the results of independent sample t-test and Mann-Whitney, the formation of the gap in Islamic Maybank Indonesia and Islamic Maybank Malaysia for a period of sensitivity of ≤ 1 month and >1-3 months show a significant difference, while the period of sensitivity >3-12 months does not. The result shows, even though Indonesia and Malaysia using same dual banking systems, the gap values are different. The difference in debt policy between Indonesia and Malaysia also affecting the gap sensitivity in debt. In can be concluded that each country needs an appropriate gap management to support its Islamic banking performance specifically.

Keywords: assets and liability management, gap management, interest rate risk, Islamic bank

Procedia PDF Downloads 242
3428 Propylene Self-Metathesis to Ethylene and Butene over WOx/SiO2, Effect of Nano-Sized Extra Supports (SiO2 and TiO2)

Authors: Adisak Guntida

Abstract:

Propylene self-metathesis to ethylene and butene was studied over WOx/SiO2 catalysts at 450 °C and atmospheric pressure. The WOx/SiO2 catalysts were prepared by incipient wetness impregnation of ammonium metatungstate aqueous solution. It was found that, adding nano-sized extra supports (SiO2 and TiO2) by physical mixing with the WOx/SiO2 enhanced propylene conversion. The UV-Vis and FT-Raman results revealed that WOx could migrate from the original silica support to the extra support, leading to a better dispersion of WOx. The ICP-OES results also indicate that WOx existed on the extra support. Coke formation was investigated on the catalysts after 10 h time-on-stream by TPO. However, adding nano-sized extra supports led to higher coke formation which may be related to acidity as characterized by NH3-TPD.

Keywords: extra support, nanomaterial, propylene self-metathesis, tungsten oxide

Procedia PDF Downloads 220
3427 Influence of Argon Gas Concentration in N2-Ar Plasma for the Nitridation of Si in Abnormal Glow Discharge

Authors: K. Abbas, R. Ahmad, I. A. Khan, S. Saleem, U. Ikhlaq

Abstract:

Nitriding of p-type Si samples by pulsed DC glow discharge is carried out for different Ar concentrations (30% to 90%) in nitrogen-argon plasma whereas the other parameters like pressure (2 mbar), treatment time (4 hr) and power (175 W) are kept constant. The phase identification, crystal structure, crystallinity, chemical composition, surface morphology and topography of the nitrided layer are studied using X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) respectively. The XRD patterns reveal the development of different diffraction planes of Si3N4 confirming the formation of polycrystalline layer. FTIR spectrum confirms the formation of bond between Si and N. Results reveal that addition of Ar into N2 plasma plays an important role to enhance the production of active species which facilitate the nitrogen diffusion.

Keywords: crystallinity, glow discharge, nitriding, sputtering

Procedia PDF Downloads 392
3426 Structural and Magnetic Properties of CoFe2-xNdxO4 Spinel Ferrite Nanoparticles

Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, M. Hajdúchová, V. Enev, J. Wasserbauer

Abstract:

In this present work, CoFe2-xNdxO4 (0.0 ≤ x ≥0.1) spinel ferrite nanoparticles were synthesized by starch-assisted sol-gel auto-combustion method. Powder X-ray diffraction patterns were revealed the formation of cubic spinel ferrite with the signature of NdFeO3 phase at higher Nd3+ concentration. The field emission scanning electron microscopy study demonstrated the spherical nanoparticle in the size range between 5-15 nm. Raman and Fourier Transform Infrared spectra supported the formation of the spinel ferrite structure in the nanocrystalline form. The X-ray photoelectron spectroscopy (XPS) analysis confirmed the presence of Co2+ and Fe3+ at octahedral as well as a tetrahedral site in CoFe2-xNdxO4 nanoparticles. The change in magnetic properties with a variation of concentration of Nd3+ ions in cobalt ferrite nanoparticles was observed.

Keywords: nanoparticles, spinel ferrites, sol-gel auto-combustion method, CoFe2-xNdxO4

Procedia PDF Downloads 472
3425 DNA-Polycation Condensation by Coarse-Grained Molecular Dynamics

Authors: Titus A. Beu

Abstract:

Many modern gene-delivery protocols rely on condensed complexes of DNA with polycations to introduce the genetic payload into cells by endocytosis. In particular, polyethyleneimine (PEI) stands out by a high buffering capacity (enabling the efficient condensation of DNA) and relatively simple fabrication. Realistic computational studies can offer essential insights into the formation process of DNA-PEI polyplexes, providing hints on efficient designs and engineering routes. We present comprehensive computational investigations of solvated PEI and DNA-PEI polyplexes involving calculations at three levels: ab initio, all-atom (AA), and coarse-grained (CG) molecular mechanics. In the first stage, we developed a rigorous AA CHARMM (Chemistry at Harvard Macromolecular Mechanics) force field (FF) for PEI on the basis of accurate ab initio calculations on protonated model pentamers. We validated this atomistic FF by matching the results of extensive molecular dynamics (MD) simulations of structural and dynamical properties of PEI with experimental data. In a second stage, we developed a CG MARTINI FF for PEI by Boltzmann inversion techniques from bead-based probability distributions obtained from AA simulations and ensuring an optimal match between the AA and CG structural and dynamical properties. In a third stage, we combined the developed CG FF for PEI with the standard MARTINI FF for DNA and performed comprehensive CG simulations of DNA-PEI complex formation and condensation. Various technical aspects which are crucial for the realistic modeling of DNA-PEI polyplexes, such as options of treating electrostatics and the relevance of polarizable water models, are discussed in detail. Massive CG simulations (with up to 500 000 beads) shed light on the mechanism and provide time scales for DNA polyplex formation independence of PEI chain size and protonation pattern. The DNA-PEI condensation mechanism is shown to primarily rely on the formation of DNA bundles, rather than by changes of the DNA-strand curvature. The gained insights are expected to be of significant help for designing effective gene-delivery applications.

Keywords: DNA condensation, gene-delivery, polyethylene-imine, molecular dynamics.

Procedia PDF Downloads 96