Search results for: nuclear test
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9754

Search results for: nuclear test

9664 An Approach to Analyze Testing of Nano On-Chip Networks

Authors: Farnaz Fotovvatikhah, Javad Akbari

Abstract:

Test time of a test architecture is an important factor which depends on the architecture's delay and test patterns. Here a new architecture to store the test results based on network on chip is presented. In addition, simple analytical model is proposed to calculate link test time for built in self-tester (BIST) and external tester (Ext) in multiprocessor systems. The results extracted from the model are verified using FPGA implementation and experimental measurements. Systems consisting 16, 25, and 36 processors are implemented and simulated and test time is calculated. In addition, BIST and Ext are compared in terms of test time at different conditions such as at different number of test patterns and nodes. Using the model the maximum frequency of testing could be calculated and the test structure could be optimized for high speed testing.

Keywords: test, nano on-chip network, JTAG, modelling

Procedia PDF Downloads 451
9663 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study

Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple

Abstract:

There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.

Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection

Procedia PDF Downloads 129
9662 Controlling RPV Embrittlement through Wet Annealing in Support of Life Extension

Authors: E. A. Krasikov

Abstract:

As a main barrier against radioactivity outlet reactor pressure vessel (RPV) is a key component in terms of NPP safety. Therefore, present-day demands in RPV reliability enhance have to be met by all possible actions for RPV in-service embrittlement mitigation. Annealing treatment is known to be the effective measure to restore the RPV metal properties deteriorated by neutron irradiation. There are two approaches to annealing. The first one is so-called ‘dry’ high temperature (~475°C) annealing. It allows obtaining practically complete recovery, but requires the removal of the reactor core and internals. External heat source (furnace) is required to carry out RPV heat treatment. The alternative approach is to anneal RPV at a maximum coolant temperature which can be obtained using the reactor core or primary circuit pumps while operating within the RPV design limits. This low temperature «wet» annealing, although it cannot be expected to produce complete recovery, is more attractive from the practical point of view especially in cases when the removal of the internals is impossible. The first RPV «wet» annealing was done using nuclear heat (US Army SM-1A reactor). The second one was done by means of primary pumps heat (Belgian BR-3 reactor). As a rule, there is no recovery effect up to annealing and irradiation temperature difference of 70°C. It is known, however, that along with radiation embrittlement neutron irradiation may mitigate the radiation damage in metals. Therefore, we have tried to test the possibility to use the effect of radiation-induced ductilization in ‘wet’ annealing technology by means of nuclear heat utilization as heat and neutron irradiation sources at once. In support of the above-mentioned conception the 3-year duration reactor experiment on 15Cr3NiMoV type steel with preliminary irradiation at operating PWR at 270°C and following extra irradiation (87 h at 330°C) at IR-8 test reactor was fulfilled. In fact, embrittlement was partly suppressed up to value equivalent to 1,5 fold neutron fluence decrease. The degree of recovery in case of radiation enhanced annealing is equal to 27% whereas furnace annealing results in zero effect under existing conditions. Mechanism of the radiation-induced damage mitigation is proposed. It is hoped that «wet » annealing technology will help provide a better management of the RPV degradation as a factor affecting the lifetime of nuclear power plants which, together with associated management methods, will help facilitate safe and economic long-term operation of PWRs.

Keywords: controlling, embrittlement, radiation, steel, wet annealing

Procedia PDF Downloads 353
9661 Nuclear Energy: The Reorientations of the French Public Perception

Authors: Aurélia Jandot

Abstract:

With the oil and economic crises which began in the 1970’s, it has progressively appeared necessary to convince the French “general public“ that a use of new energy sources was essential. In this field, nuclear energy represented the future and concentrated lots of hopes. However, the discourse about nuclear energy has progressively seen negative arguments growing in the French media. The gradual changes in the perception of nuclear energy will be studied here through the arguments given in the main French weekly newsmagazines, which had a great impact on the readers, thus on the “general public“, from the 1970’s to the end of the 1980’s. Indeed, to understand better these changes will be taken into account the major international events, the reorientations of the French domestic policy, and the evolutions of the nuclear technology. As this represents a considerable amount of copies and thus of information, will be selected here the main articles which emphasize the “mental images“ aiming to direct the thought of the readers, and which have led the public awareness and acceptance to evolve. From the 1970’s to the end of the 1980’s, two dichotomous trends are in confrontation : one is promoting the perception of the nuclear energy, the other is discrediting it. Moreover, these two trends are organized in two axes. The first axis is about the engineerings evolutions, such as the main French media represent them, with its approximations, its exaggerations, its fictions sometimes. Is added the will to make accessible to the “general public“ some concepts which are quite difficult to understand for the largest number. The second axis rests on the way the major accidents of the period are approached, including those of Three Mile Island and Chernobyl. Thanks to these accidents and because of the international relations evolutions, the ecologist movements and their impacts have progressively grown, with evident consequences on the public perception of nuclear energy and on the way the successive governments can implement new power plants in France. Then, in both cases, over the period considered, the language has changed, as the perceptible objectives of the communication, allowing to discern the deepest intentions of the newsmagazines editing. This is all these changes that will be emphasized, over a period where the nuclear energy technology, to there a field for specialists, bearing mystery and secret, has become a social issue seemingly open to all.

Keywords: social issues, public acceptance, mediatization, discourse changes

Procedia PDF Downloads 261
9660 Nuclear Decay Data Evaluation for 217Po

Authors: S. S. Nafee, A. M. Al-Ramady, S. A. Shaheen

Abstract:

Evaluated nuclear decay data for the 217Po nuclide ispresented in the present work. These data include recommended values for the half-life T1/2, α-, β--, and γ-ray emission energies and probabilities. Decay data from 221Rn α and 217Bi β—decays are presented. Q(α) has been updated based on the recent published work of the Atomic Mass Evaluation AME2012. In addition, the logft values were calculated using the Logft program from the ENSDF evaluation package. Moreover, the total internal conversion electrons has been calculated using Bricc program. Meanwhile, recommendation values or the multi-polarities have been assigned based on recently measurement yield a better intensity balance at the 254 keV and 264 keV gamma transitions.

Keywords: nuclear decay data evaluation, mass evaluation, total converison coefficients, atomic mass evaluation

Procedia PDF Downloads 392
9659 Role of P53, KI67 and Cyclin a Immunohistochemical Assay in Predicting Wilms’ Tumor Mortality

Authors: Ahmed Atwa, Ashraf Hafez, Mohamed Abdelhameed, Adel Nabeeh, Mohamed Dawaba, Tamer Helmy

Abstract:

Introduction and Objective: Tumour staging and grading do not usually reflect the future behavior of Wilms' tumor (WT) regarding mortality. Therefore, in this study, P53, Ki67 and cyclin A immunohistochemistry were used in a trial to predict WT cancer-specific survival (CSS). Methods: In this nonconcurrent cohort study, patients' archived data, including age at presentation, gender, history, clinical examination and radiological investigations, were retrieved then the patients were reviewed at the outpatient clinic of a tertiary care center by history-taking, clinical examination and radiological investigations to detect the oncological outcome. Cases that received preoperative chemotherapy or died due to causes other than WT were excluded. Formalin-fixed, paraffin-embedded specimens obtained from the previously preserved blocks at the pathology laboratory were taken on positively charged slides for IHC with p53, Ki67 and cyclin A. All specimens were examined by an experienced histopathologist devoted to the urological practice and blinded to the patient's clinical findings. P53 and cyclin A staining were scored as 0 (no nuclear staining),1 (<10% nuclear staining), 2 (10-50% nuclear staining) and 3 (>50% nuclear staining). Ki67 proliferation index (PI) was graded as low, borderline and high. Results: Of the 75 cases, 40 (53.3%) were males and 35 (46.7%) were females, and the median age was 36 months (2-216). With a mean follow-up of 78.6±31 months, cancer-specific mortality (CSM) occurred in 15 (20%) and 11 (14.7%) patients, respectively. Kaplan-Meier curve was used for survival analysis, and groups were compared using the Log-rank test. Multivariate logistic regression and Cox regression were not used because only one variable (cyclin A) had shown statistical significance (P=.02), whereas the other significant factor (residual tumor) had few cases. Conclusions: Cyclin A IHC should be considered as a marker for the prediction of WT CSS. Prospective studies with a larger sample size are needed.

Keywords: wilms’ tumour, nephroblastoma, urology, survival

Procedia PDF Downloads 43
9658 Preliminary Study on the Removal of Solid Uranium Compound in Nuclear Fuel Production System

Authors: Bai Zhiwei, Zhang Shuxia

Abstract:

By sealing constraint, the system of nuclear fuel production penetrates a trace of air in during its service. The vapor in the air can react with material in the system and generate solid uranium compounds. These solid uranium compounds continue to accumulate and attached to the production equipment and pipeline of system, which not only affects the operation reliability of production equipment and give off radiation hazard as well after system retired. Therefore, it is necessary to select a reasonable method to remove it. Through the analysis of physicochemical properties of solid uranium compounds, halogenated fluoride compounds are selected as a cleaning agent, which can remove solid uranium compounds effectively. This paper studied the related chemical reaction under the condition of static test and results show that the selection of high fluoride halogen compounds can be removed solid uranium compounds completely. The study on the influence of reaction pressure with the reaction rate discovered a phenomenon that the higher the pressure, the faster the reaction rate.

Keywords: fluoride halogen compound, remove, radiation, solid uranium compound

Procedia PDF Downloads 276
9657 Quantitative Analysis of Orphan Nuclear Receptors in Insulin Resistant C2C12 Skeletal Muscle Cells

Authors: Masocorro Gawned, Stephen Myers, Guat Siew Chew

Abstract:

Nuclear Receptors (NR) are a super family of transcription factors that play a major role in lipid and glucose metabolism in skeletal muscle. Recently, pharmacological evidence supports the view that stimulation of nuclear receptors alleviates Type 2 Diabetes (T2D). The orphan nuclear receptors (ONR) are members of the nuclear receptor (NR) superfamily whose ligands and physiological functions remain unknown. To date, no systematic studies have been carried out to screen for ONRs expressed in insulin resistant (IR) skeletal muscle cells. Therefore, in this study, we have established a model for IR by treating C2C12 skeletal muscle cells with insulin (10nM) for 48 hours. Western Blot analysis of phosphorylated AKT confirmed IR. Real-time quantitative polymerase chain reaction (qPCR) results highlighted key ONRs including NUR77 (NR4A1), NURR1 (NR4A2) and NOR1 (NR4A3) which have been associated with fatty acid oxidation regulation and glucose homeostasis. Increased mRNA expression levels of estrogen-related receptors (ERRs), REV-ERBα, NUR77, NURR1, NOR1, in insulin resistant C2C12 skeletal muscle cells, indicated that these ONRs could potentially play a pivotal regulatory role of insulin secretion in lipid metabolism. Taken together, this study has successfully contributed to the complete analysis of ONR in IR, and has filled in an important void in the study and treatment of T2D.

Keywords: type 2 diabetes, orphan nuclear receptors, transcription receptors, quantitative mRNA expression

Procedia PDF Downloads 403
9656 EGFR Signal Induced-Nuclear Translocation of Beta-catenin and PKM2 Promotes HCC Malignancy and Indicates Early Recurrence After Curative Resection

Authors: Fangtian Fan, Zhaoguo Liu, Yin Lu

Abstract:

Early recurrence (ER) (< 1 year) after liver resection is one of the most important factors that impacts the prognosis of patients with hepatocellular carcinoma (HCC). However, the molecular mechanisms and predictive indexes of ER after curative resection remain largely unknown. The present study aimed to exploit the role of EGFR signaling in EMT and early recurrence of HCC after curative resection and elucidate the molecular mechanisms. Our results showed that nuclear beta-catenin / PKM2 was a independent predictor of early recurrence after curative resection in EGFR-overexpressed HCC. Mechanistic investigation indicated that nuclear accumulation of beta-catenin and PKM2 induced by EGFR signal promoted HCC cell invasion and proliferation, which were required for early recurrence of HCC. These effects were mediated by PI3K/AKT and ERK pathways rather than the canonical Wnt signaling. In conclusions, EGFR signal induced-nuclear translocation of beta-catenin and PKM2 promotes HCC malignancy and indicates early recurrence after curative resection.

Keywords: beta-catenin, early recurrence, hepatocellular carcinoma, malignancy, PKM2

Procedia PDF Downloads 328
9655 Fast Robust Switching Control Scheme for PWR-Type Nuclear Power Plants

Authors: Piyush V. Surjagade, Jiamei Deng, Paul Doney, S. R. Shimjith, A. John Arul

Abstract:

In sophisticated and complex systems such as nuclear power plants, maintaining the system's stability in the presence of uncertainties and disturbances and obtaining a fast dynamic response are the most challenging problems. Thus, to ensure the satisfactory and safe operation of nuclear power plants, this work proposes a new fast, robust optimal switching control strategy for pressurized water reactor-type nuclear power plants. The proposed control strategy guarantees a substantial degree of robustness, fast dynamic response over the entire operational envelope, and optimal performance during the nominal operation of the plant. To improve the robustness, obtain a fast dynamic response, and make the system optimal, a bank of controllers is designed. Various controllers, like a baseline proportional-integral-derivative controller, an optimal linear quadratic Gaussian controller, and a robust adaptive L1 controller, are designed to perform distinct tasks in a specific situation. At any instant of time, the most suitable controller from the bank of controllers is selected using the switching logic unit that designates the controller by monitoring the health of the nuclear power plant or transients. The proposed switching control strategy optimizes the overall performance and increases operational safety and efficiency. Simulation studies have been performed considering various uncertainties and disturbances that demonstrate the applicability and effectiveness of the proposed switching control strategy over some conventional control techniques.

Keywords: switching control, robust control, optimal control, nuclear power control

Procedia PDF Downloads 81
9654 Generation of Waste Streams in Small Model Reactors

Authors: Sara Mostofian

Abstract:

The nuclear industry is a technology that can fulfill future energy needs but requires special attention to ensure safety and reliability while minimizing any environmental impact. To meet these expectations, the nuclear industry is exploring different reactor technologies for power production. Several designs are under development and the technical viability of these new designs is the subject of many ongoing studies. One of these studies considers the radioactive emissions and radioactive waste generated during the life of a nuclear power production plant to allow a successful license process. For all the modern technologies, a good understanding of the radioactivity generated in the process systems of the plant is essential. Some of that understanding may be gleaned from the performance of some prototype reactors of similar design that operated decades ago. This paper presents how, with that understanding, a model can be developed to estimate the emissions as well as the radioactive waste during the normal operation of a nuclear power plant. The model would predict the radioactive material concentrations in different waste streams. Using this information, the radioactive emission and waste generated during the life of these new technologies can be estimated during the early stages of the design of the plant.

Keywords: SMRs, activity transport, model, radioactive waste

Procedia PDF Downloads 67
9653 The Preparation of Titanate Nano-Materials Removing Efficiently Cs-137 from Waste Water in Nuclear Power Plants

Authors: Liu De-jun, Fu Jing, Zhang Rong, Luo Tian, Ma Ning

Abstract:

Cs-137, the radioactive fission products of uranium, can be easily dissolved in water during the accident of nuclear power plant, such as Chernobyl, Three Mile Island, Fukushima accidents. The concentration of Cs in the groundwater around the nuclear power plant exceeded the standard value almost 10,000 times after the Fukushima accident. The adsorption capacity of Titanate nano-materials for radioactive cation (Cs+) is very strong. Moreover, the radioactive ion can be tightly contained in the nanotubes or nanofibers without reversible adsorption, and it can safely be fixed. In addition, the nano-material has good chemical stability, thermal stability and mechanical stability to minimize the environmental impact of nuclear waste and waste volume. The preparation of titanate nanotubes or nanofibers was studied by hydrothermal methods, and chemical kinetics of removal of Cs by nano-materials was obtained. The adsorption time with maximum adsorption capacity and the effects of pH, coexisting ion concentration and the optimum adsorption conditions on the removal of Cs by titanate nano-materials were also obtained. The adsorption boundary curves, adsorption isotherm and the maximum adsorption capacity of Cs-137 as tracer on the nano-materials were studied in the research. The experimental results showed that the removal rate of Cs-137 in 0.01 tons of waste water with only 1 gram nano-materials could reach above 98%, according to the optimum adsorption conditions.

Keywords: preparation, titanate, cs-137, removal, nuclear

Procedia PDF Downloads 237
9652 Approaches for Minimizing Radioactive Tritium and ¹⁴C in Advanced High Temperature Gas-Cooled Reactors

Authors: Longkui Zhu, Zhengcao Li

Abstract:

High temperature gas-cooled reactors (HTGRs) are considered as one of the next-generation advanced nuclear reactors, in which porous nuclear graphite is used as neutron moderators, reflectors, structure materials, and cooled by inert helium. Radioactive tritium and ¹⁴C are generated in terms of reactions of thermal neutrons and ⁶Li, ¹⁴N, ¹⁰B impurely within nuclear graphite and the coolant during HTGRs operation. Currently, hydrogen and nitrogen diffusion behavior together with nuclear graphite microstructure evolution were investigated to minimize the radioactive waste release, using thermogravimetric analysis, X-ray computed tomography, the BET and mercury standard porosimetry methods. It is found that the peak value of graphite weight loss emerged at 573-673 K owing to nitrogen diffusion from graphite pores to outside when the system was subjected to vacuum. Macropore volume became larger while porosity for mesopores was smaller with temperature ranging from ambient temperature to 1073 K, which was primarily induced by coalescence of the subscale pores. It is suggested that the porous nuclear graphite should be first subjected to vacuum at 573-673 K to minimize the nitrogen and the radioactive 14°C before operation in HTGRs. Then, results on hydrogen diffusion show that the diffusible hydrogen and tritium could permeate into the coolant with diffusion coefficients of > 0.5 × 10⁻⁴ cm²·s⁻¹ at 50 bar. As a consequence, the freshly-generated diffusible tritium could release quickly to outside once formed, and an effective approach for minimizing the amount of radioactive tritium is to make the impurity contents extremely low in nuclear graphite and the coolant. Besides, both two- and three-dimensional observations indicate that macro and mesopore volume along with total porosity decreased with temperature at 50 bar on account of synergistic effects of applied compression strain, sharpened pore morphology, and non-uniform temperature distribution.

Keywords: advanced high temperature gas-cooled reactor, hydrogen and nitrogen diffusion, microstructure evolution, nuclear graphite, radioactive waste management

Procedia PDF Downloads 287
9651 Participation in IAEA Proficiency Test to Analyse Cobalt, Strontium and Caesium in Seawater Using Direct Counting and Radiochemical Techniques

Authors: S. Visetpotjanakit, C. Khrautongkieo

Abstract:

Radiation monitoring in the environment and foodstuffs is one of the main responsibilities of Office of Atoms for Peace (OAP) as the nuclear regulatory body of Thailand. The main goal of the OAP is to assure the safety of the Thai people and environment from any radiological incidents. Various radioanalytical methods have been developed to monitor radiation and radionuclides in the environmental and foodstuff samples. To validate our analytical performance, several proficiency test exercises from the International Atomic Energy Agency (IAEA) have been performed. Here, the results of a proficiency test exercise referred to as the Proficiency Test for Tritium, Cobalt, Strontium and Caesium Isotopes in Seawater 2017 (IAEA-RML-2017-01) are presented. All radionuclides excepting ³H were analysed using various radioanalytical methods, i.e. direct gamma-ray counting for determining ⁶⁰Co, ¹³⁴Cs and ¹³⁷Cs and developed radiochemical techniques for analysing ¹³⁴Cs, ¹³⁷Cs using AMP pre-concentration technique and 90Sr using di-(2-ethylhexyl) phosphoric acid (HDEHP) liquid extraction technique. The analysis results were submitted to IAEA. All results passed IAEA criteria, i.e. accuracy, precision and trueness and obtained ‘Accepted’ statuses. These confirm the data quality from the OAP environmental radiation laboratory to monitor radiation in the environment.

Keywords: international atomic energy agency, proficiency test, radiation monitoring, seawater

Procedia PDF Downloads 148
9650 A Study on Design for Parallel Test Based on Embedded System

Authors: Zheng Sun, Weiwei Cui, Xiaodong Ma, Hongxin Jin, Dongpao Hong, Jinsong Yang, Jingyi Sun

Abstract:

With the improvement of the performance and complexity of modern equipment, automatic test system (ATS) becomes widely used for condition monitoring and fault diagnosis. However, the conventional ATS mainly works in a serial mode, and lacks the ability of testing several equipments at the same time. That leads to low test efficiency and ATS redundancy. Especially for a large majority of equipment under test, the conventional ATS cannot meet the requirement of efficient testing. To reduce the support resource and increase test efficiency, we propose a method of design for the parallel test based on the embedded system in this paper. Firstly, we put forward the general framework of the parallel test system, and the system contains a central management system (CMS) and several distributed test subsystems (DTS). Then we give a detailed design of the system. For the hardware of the system, we use embedded architecture to design DTS. For the software of the system, we use test program set to improve the test adaption. By deploying the parallel test system, the time to test five devices is now equal to the time to test one device in the past. Compared with the conventional test system, the proposed test system reduces the size and improves testing efficiency. This is of great significance for equipment to be put into operation swiftly. Finally, we take an industrial control system as an example to verify the effectiveness of the proposed method. The result shows that the method is reasonable, and the efficiency is improved up to 500%.

Keywords: parallel test, embedded system, automatic test system, automatic test system (ATS), central management system, central management system (CMS), distributed test subsystems, distributed test subsystems (DTS)

Procedia PDF Downloads 264
9649 Practice on Design Knowledge Management and Transfer across the Life Cycle of a New-Built Nuclear Power Plant in China

Authors: Danying Gu, Xiaoyan Li, Yuanlei He

Abstract:

As a knowledge-intensive industry, nuclear industry highly values the importance of safety and quality. The life cycle of a NPP (Nuclear Power Plant) can last 100 years from the initial research and design to its decommissioning. How to implement the high-quality knowledge management and how to contribute to a more safe, advanced and economic NPP (Nuclear Power Plant) is the most important issue and responsibility for knowledge management. As the lead of nuclear industry, nuclear research and design institute has competitive advantages of its advanced technology, knowledge and information, DKM (Design Knowledge Management) of nuclear research and design institute is the core of the knowledge management in the whole nuclear industry. In this paper, the study and practice on DKM and knowledge transfer across the life cycle of a new-built NPP in China is introduced. For this digital intelligent NPP, the whole design process is based on a digital design platform which includes NPP engineering and design dynamic analyzer, visualization engineering verification platform, digital operation maintenance support platform and digital equipment design, manufacture integrated collaborative platform. In order to make all the design data and information transfer across design, construction, commissioning and operation, the overall architecture of new-built digital NPP should become a modern knowledge management system. So a digital information transfer model across the NPP life cycle is proposed in this paper. The challenges related to design knowledge transfer is also discussed, such as digital information handover, data center and data sorting, unified data coding system. On the other hand, effective delivery of design information during the construction and operation phase will contribute to the comprehensive understanding of design ideas and components and systems for the construction contractor and operation unit, largely increasing the safety, quality and economic benefits during the life cycle. The operation and maintenance records generated from the NPP operation process have great significance for maintaining the operating state of NPP, especially the comprehensiveness, validity and traceability of the records. So the requirements of an online monitoring and smart diagnosis system of NPP is also proposed, to help utility-owners to improve the safety and efficiency.

Keywords: design knowledge management, digital nuclear power plant, knowledge transfer, life cycle

Procedia PDF Downloads 244
9648 Factors Affecting Test Automation Stability and Their Solutions

Authors: Nagmani Lnu

Abstract:

Test automation is a vital requirement of any organization to release products faster to their customers. In most cases, an organization has an approach to developing automation but struggles to maintain it. It results in an increased number of Flaky Tests, reducing return on investments and stakeholders’ confidence. Challenges grow in multiple folds when automation is for UI behaviors. This paper describes the approaches taken to identify the root cause of automation instability in an extensive payments application and the best practices to address that using processes, tools, and technologies, resulting in a 75% reduction of effort.

Keywords: automation stability, test stability, Flaky Test, test quality, test automation quality

Procedia PDF Downloads 43
9647 Sustainable Technologies for Decommissioning of Nuclear Facilities

Authors: Ahmed Stifi, Sascha Gentes

Abstract:

The German nuclear industry, while implementing the German policy, believes that the journey towards the green-field, namely phasing out of nuclear energy, should be achieved through green techniques. The most important techniques required for the wide range of decommissioning activities are decontamination techniques, cutting techniques, radioactivity measuring techniques, remote control techniques, techniques for worker and environmental protection and techniques for treating, preconditioning and conditioning nuclear waste. Many decontamination techniques are used for removing contamination from metal, concrete or other surfaces like the scales inside pipes. As the pipeline system is one of the important components of nuclear power plants, the process of decontamination in tubing is of more significance. The development of energy sectors like oil sector, gas sector and nuclear sector, since the middle of 20th century, increased the pipeline industry and the research in the decontamination of tubing in each sector is found to serve each other. The extraction of natural products and material through the pipeline can result in scale formation. These scales can be radioactively contaminated through an accumulation process especially in the petrochemical industry when oil and gas are extracted from the underground reservoir. The radioactivity measured in these scales can be significantly high and pose a great threat to people and the environment. At present, the decontamination process involves using high pressure water jets with or without abrasive material and this technology produces a high amount of secondary waste. In order to overcome it, the research team within Karlsruhe Institute of Technology developed a new sustainable method to carry out the decontamination of tubing without producing any secondary waste. This method is based on vibration technique which removes scales and also does not require any auxiliary materials. The outcome of the research project proves that the vibration technique used for decontamination of tubing is environmental friendly in other words a sustainable technique.

Keywords: sustainable technologies, decontamination, pipeline, nuclear industry

Procedia PDF Downloads 277
9646 Nuclear Near Misses and Their Learning for Healthcare

Authors: Nick Woodier, Iain Moppett

Abstract:

Background: It is estimated that one in ten patients admitted to hospital will suffer an adverse event in their care. While the majority of these will result in low harm, patients are being significantly harmed by the processes meant to help them. Healthcare, therefore, seeks to make improvements in patient safety by taking learning from other industries that are perceived to be more mature in their management of safety events. Of particular interest to healthcare are ‘near misses,’ those events that almost happened but for an intervention. Healthcare does not have any guidance as to how best to manage and learn from near misses to reduce the chances of harm to patients. The authors, as part of a larger study of near-miss management in healthcare, sought to learn from the UK nuclear sector to develop principles for how healthcare can identify, report, and learn from near misses to improve patient safety. The nuclear sector was chosen as an exemplar due to its status as an ultra-safe industry. Methods: A Grounded Theory (GT) methodology, augmented by a scoping review, was used. Data collection included interviews, scenario discussion, field notes, and the literature. The review protocol is accessible online. The GT aimed to develop theories about how nuclear manages near misses with a focus on defining them and clarifying how best to support reporting and analysis to extract learning. Near misses related to radiation release or exposure were focused on. Results: Eightnuclear interviews contributed to the GT across nuclear power, decommissioning, weapons, and propulsion. The scoping review identified 83 articles across a range of safety-critical industries, with only six focused on nuclear. The GT identified that nuclear has a particular focus on precursors and low-level events, with regulation supporting their management. Exploration of definitions led to the recognition of the importance of several interventions in a sequence of events, but that do not solely rely on humans as these cannot be assumed to be robust barriers. Regarding reporting and analysis, no consistent methods were identified, but for learning, the role of operating experience learning groups was identified as an exemplar. The safety culture across nuclear, however, was heard to vary, which undermined reporting of near misses and other safety events. Some parts of the industry described that their focus on near misses is new and that despite potential risks existing, progress to mitigate hazards is slow. Conclusions: Healthcare often sees ‘nuclear,’ as well as other ultra-safe industries such as ‘aviation,’ as homogenous. However, the findings here suggest significant differences in safety culture and maturity across various parts of the nuclear sector. Healthcare can take learning from some aspects of management of near misses in nuclear, such as how they are defined and how learning is shared through operating experience networks. However, healthcare also needs to recognise that variability exists across industries, and comparably, it may be more mature in some areas of safety.

Keywords: culture, definitions, near miss, nuclear safety, patient safety

Procedia PDF Downloads 79
9645 Theoretical Study of Electronic Structure of Erbium (Er), Fermium (Fm), and Nobelium (No)

Authors: Saleh O. Allehabi, V. A. Dzubaa, V. V. Flambaum, Jiguang Li, A. V. Afanasjev, S. E. Agbemava

Abstract:

Recently developed versions of the configuration method for open shells, configuration interaction with perturbation theory (CIPT), and configuration interaction with many-body perturbation theory (CI+MBPT) techniques are used to study the electronic structure of Er, Fm, and No atoms. Excitation energies of odd states connected to the even ground state by electric dipole transitions, the corresponding transition rates, isotope shift, hyperfine structure, ionization potentials, and static scalar polarizabilities are calculated. The way of extracting parameters of nuclear charge distribution beyond nuclear root mean square (RMS) radius, e.g., a parameter of quadrupole deformation β, is demonstrated. In nuclei with spin > 1/2, parameter β is extracted from the quadrupole hyperfine structure. With zero nuclear spin or spin 1/2, it is impossible since quadrupole zero, so a different method was developed. The measurements of at least two atomic transitions are needed to disentangle the contributions of the changes in deformation and nuclear RMS radius into field isotopic shift. This is important for testing nuclear theory and for searching for the hypothetical island of stability. Fm and No are heavy elements approaching the superheavy region, for which the experimental data are very poor, only seven lines for the Fm element and one line for the No element. Since Er and Fm have similar electronic structures, calculations for Er serve as a guide to the accuracy of the calculations. Twenty-eight new levels of Fm atom are reported.

Keywords: atomic spectra, electronic transitions, isotope effect, electron correlation calculations for atoms

Procedia PDF Downloads 129
9644 Considering Aerosol Processes in Nuclear Transport Package Containment Safety Cases

Authors: Andrew Cummings, Rhianne Boag, Sarah Bryson, Gordon Turner

Abstract:

Packages designed for transport of radioactive material must satisfy rigorous safety regulations specified by the International Atomic Energy Agency (IAEA). Higher Activity Waste (HAW) transport packages have to maintain containment of their contents during normal and accident conditions of transport (NCT and ACT). To ensure containment criteria is satisfied these packages are required to be leak-tight in all transport conditions to meet allowable activity release rates. Package design safety reports are the safety cases that provide the claims, evidence and arguments to demonstrate that packages meet the regulations and once approved by the competent authority (in the UK this is the Office for Nuclear Regulation) a licence to transport radioactive material is issued for the package(s). The standard approach to demonstrating containment in the RWM transport safety case is set out in BS EN ISO 12807. In this document a method for measuring a leak rate from the package is explained by way of a small interspace test volume situated between two O-ring seals on the underside of the package lid. The interspace volume is pressurised and a pressure drop measured. A small interspace test volume makes the method more sensitive enabling the measurement of smaller leak rates. By ascertaining the activity of the contents, identifying a releasable fraction of material and by treating that fraction of material as a gas, allowable leak rates for NCT and ACT are calculated. The adherence to basic safety principles in ISO12807 is very pessimistic and current practice in the demonstration of transport safety, which is accepted by the UK regulator. It is UK government policy that management of HAW will be through geological disposal. It is proposed that the intermediate level waste be transported to the geological disposal facility (GDF) in large cuboid packages. This poses a challenge for containment demonstration because such packages will have long seals and therefore large interspace test volumes. There is also uncertainty on the releasable fraction of material within the package ullage space. This is because the waste may be in many different forms which makes it difficult to define the fraction of material released by the waste package. Additionally because of the large interspace test volume, measuring the calculated leak rates may not be achievable. For this reason a justification for a lower releasable fraction of material is sought. This paper considers the use of aerosol processes to reduce the releasable fraction for both NCT and ACT. It reviews the basic coagulation and removal processes and applies the dynamic aerosol balance equation. The proposed solution includes only the most well understood physical processes namely; Brownian coagulation and gravitational settling. Other processes have been eliminated either on the basis that they would serve to reduce the release to the environment further (pessimistically in keeping with the essence of nuclear transport safety cases) or that they are not credible in the conditions of transport considered.

Keywords: aerosol processes, Brownian coagulation, gravitational settling, transport regulations

Procedia PDF Downloads 89
9643 A History of Taiwan’s Secret Nuclear Program

Authors: Hsiao-ting Lin

Abstract:

This paper analyzes the history of Taiwan’s secret program to develop its nuclear weapons during the Cold War. In July 1971, US President Richard Nixon shocked the world when he announced that his national security adviser Henry Kissinger had made a secret trip to China and that he himself had accepted an invitation to travel to Beijing. This huge breakthrough in the US-PRC relationship was followed by Taipei’s loss of political legitimacy and international credibility as a result of its UN debacle in the fall that year. Confronted with the Nixon White House’s opening to the PRC, leaders in Taiwan felt being betrayed and abandoned, and they were obliged to take countermeasures for the sake of national interest and regime survival. Taipei’s endeavor to create an effective nuclear program, including the possible development of nuclear weapons capabilities, fully demonstrates the government’s resolution to pursue its own national policy, even if such a policy was guaranteed to undermine its relations with the United States. With hindsight, Taiwan’s attempt to develop its own nuclear weapons did not succeed in sabotaging the warming of US-PRC relations. Worse, it was forced to come to a full stop when, in early 1988, the US government pressured Taipei to close related facilities and programs on the island. However, Taiwan’s abortive attempt to develop its nuclear capability did influence Washington’s and Beijing’s handling of their new relationship. There did develop recognition of a common American and PRC interest in avoiding a nuclearized Taiwan. From this perspective, Beijing’s interests would best be served by allowing the island to remain under loose and relatively benign American influence. As for the top leaders on Taiwan, such a policy choice demonstrated how they perceived the shifting dynamics of international politics in the 1960s and 1970s and how they struggled to break free and pursue their own independent national policy within the rigid framework of the US-Taiwan alliance during the Cold War.

Keywords: taiwan, richard nixon, nuclear program, chiang Kai-shek, chiang ching-kuo

Procedia PDF Downloads 98
9642 Absence of Malignancy in Oral Epithelial Cells from Individuals Occupationally Exposed to Organic Solvents Working in the Shoe Industry

Authors: B. González-Yebra, B. Flores-Nieto, P. Aguilar-Salinas, M. Preciado Puga, A. L. González Yebra

Abstract:

The monitoring of populations occupationally exposed to organic solvents has been an important issue for several shoe factories for years since the International Agency for Research on Cancer (IARC) has advised on the potential carcinogenic risk of chemicals related to occupations. In order to detect if exposition to organic solvents used in some Mexican shoe factories contributes to oral carcinogenesis, we performed monitoring in three factories. Occupational exposure was determined by using monitors 3M. Organic solvents were assessed by gas chromatography. Then, we recruited 30 shoe workers (30.2 ± 8.4 years) and 10 unexposed subjects (43.3 ± 11.2 years) for the micronuclei (MN) test and immunodetection of some cancer biomarkers (ki-67, p16, caspase-3) in scraped oral epithelial cells. Monitored solvents detected were acetone, benzene, hexane, methyl ethyl ketone, and toluene in acceptable levels according to Official Mexican Norm. We found by MN test higher incidence of nuclear abnormalities (karyorrhexis, pycnosis, karyolysis, condensed chromatin, and macronuclei) in the exposed group than the non-exposed group. On the other hand, we found, a negative expression for Ki-67 and p16 in exfoliated epithelial cells from exposed and non-exposed to organic solvents subjects. Only caspase-3 shown positive patter of expression in 9/30 (30%) exposed subjects, and we detected high karyolysis incidence in caspase-3 subjects (p = 0.021). The absence of expression of proliferation markers p16 and ki-67 and presence of apoptosis marker caspase-3 are indicating the absence of malignancy in oral epithelial cells and low risk for oral cancer. It is a fact that the MN test is a very effective method to detect nuclear abnormalities in exfoliated buccal cells from subjects that have been exposed to organic solvents in the shoe industry. However, in order to improve this tool and predict cancer risk is it is mandatory to implement complementary tests as other biomarkers that can help to detect malignancy in individuals occupationally exposed.

Keywords: biomarkers, oral cancer, organic solvents, shoe industries

Procedia PDF Downloads 106
9641 Using Audit Tools to Maintain Data Quality for ACC/NCDR PCI Registry Abstraction

Authors: Vikrum Malhotra, Manpreet Kaur, Ayesha Ghotto

Abstract:

Background: Cardiac registries such as ACC Percutaneous Coronary Intervention Registry require high quality data to be abstracted, including data elements such as nuclear cardiology, diagnostic coronary angiography, and PCI. Introduction: The audit tool created is used by data abstractors to provide data audits and assess the accuracy and inter-rater reliability of abstraction performed by the abstractors for a health system. This audit tool solution has been developed across 13 registries, including ACC/NCDR registries, PCI, STS, Get with the Guidelines. Methodology: The data audit tool was used to audit internal registry abstraction for all data elements, including stress test performed, type of stress test, data of stress test, results of stress test, risk/extent of ischemia, diagnostic catheterization detail, and PCI data elements for ACC/NCDR PCI registries. This is being used across 20 hospital systems internally and providing abstraction and audit services for them. Results: The data audit tool had inter-rater reliability and accuracy greater than 95% data accuracy and IRR score for the PCI registry in 50 PCI registry cases in 2021. Conclusion: The tool is being used internally for surgical societies and across hospital systems. The audit tool enables the abstractor to be assessed by an external abstractor and includes all of the data dictionary fields for each registry.

Keywords: abstraction, cardiac registry, cardiovascular registry, registry, data

Procedia PDF Downloads 75
9640 Assertion-Driven Test Repair Based on Priority Criteria

Authors: Ruilian Zhao, Shukai Zhang, Yan Wang, Weiwei Wang

Abstract:

Repairing broken test cases is an expensive and challenging task in evolving software systems. Although an automated repair technique with intent preservation has been proposed, but it does not take into account the association between test repairs and assertions, leading to a large number of irrelevant candidates and decreasing the repair capability. This paper proposes an assertion-driven test repair approach. Furthermore, an intent-oriented priority criterion is raised to guide the repair candidate generation, making the repairs closer to the intent of the test. In more detail, repair targets are determined through post-dominance relations between assertions and the methods that directly cause compilation errors. Then, test repairs are generated from the target in a bottom-up way, guided by the intent-oriented priority criteria. Finally, the generated repair candidates are prioritized to match the original test intent. The approach is implemented and evaluated on the benchmark of 4 open-source programs and 91 broken test cases. The result shows that the approach can fix 89% (81/91) of broken test cases, which is more effective than the existing intentpreserved test repair approach, and our intent-oriented priority criteria work well.

Keywords: test repair, test intent, software test, test case evolution

Procedia PDF Downloads 89
9639 Derivation of Neutrino Mass Parameters from the Study of Neutrinoless Double Beta Decay

Authors: Sabin Stoica

Abstract:

In this paper the theoretical challenges in the study of neutrinoless double beta decay are reviewed. Then, new upper limits of the neutrino mass parameters in the case of three isotopes are derived; 48Ca, 76Ge, and 82Se, assuming two possible mechanisms of occurrence of this nuclear process, namely the exchange of i) light left-handed neutrinos and ii) heavy right-handed neutrinos, between two nucleons inside the nucleus. The derivation is based on accurate calculations of the phase space factors and nuclear matrix elements performed with new high-performance computer codes, which are described in more detail in recent publications. These results are useful both for a better understanding of the scale of neutrino absolute mass and for the planning of future double beta decay experiments.

Keywords: double beta decay, neutrino properties, nuclear matrix elements, phase space factors

Procedia PDF Downloads 577
9638 Ecological Art in the Nuclear Anthropocene

Authors: Eve-Andree Laramee

Abstract:

The aesthetics and ethics of the Nuclear Anthropocene are explored through artists responses to the impact of radioactive materials on ecological systems, global issues, energy policies and ourselves. This presentation tracks and reveals the invisible traces of the nuclear weapons complex and the nuclear energy industry, in relation to environmental justice. Radioactive pollution transgresses international borders, boundaries between land and water, contaminating ecological systems. Radioactive waste is never disposed of; it is dispositioned, placed out of sight and out of mind. These materials leave behind an invisible toxic legacy lasting millions of years. As we are learning post-Fukushima, when climate change occurs and vulnerability spectrums shift, nuclear sites and the life forms surrounding them are at increased risk. By visualizing this contamination through art installations, videos, and social-sculpture interventions, information is shared with the public, raising awareness, and activating community participation in remediation and nonproliferation efforts. The emerging Ecological Art genre proposes paradigms sustainable with the life forms and resources of our planet. It is comprised of artists, scientists, philosophers and activists devoted to these. EcoArt is distinguished by a focus on systems and interrelationships within our environment: the ecological, geographic, political, biological and cultural. This presentation will cover artworks addressing the recent Fukushima meltdowns, weapons proliferation, climate change, radioactive waste disposal and environmental justice. Possibilities for art-and-science collaborations will be discussed as projects that sharpen our ethics and politics in our behaviors and social interactions. The presentation will consist of a PowerPoint talk (paper presentation) accompanied by images and video clips.

Keywords: art, ecology, environment, anthropocene, nuclear

Procedia PDF Downloads 204
9637 Communicating Nuclear Energy in Southeast Asia: A Cross-Country Comparison of Communication Channels and Source Credibility

Authors: Shirley S. Ho, Alisius X. L. D. Leong, Jiemin Looi, Agnes S. F. Chuah

Abstract:

Nuclear energy is a contentious technology that has attracted much public debate over the years. The prominence of nuclear energy in Southeast Asia (SEA) has burgeoned due to the surge of interest and plans for nuclear development in the region. Understanding public perceptions of nuclear energy in SEA is pertinent given the limited number of studies conducted. In particular, five SEA nations – Singapore, Malaysia, Indonesia, Thailand, and Vietnam are of immediate interest as that they are amongst the most economically developed or developing nations in the SEA region. High energy demands from economic development in these nations have led to considerations of adopting nuclear energy as an alternative source of energy. This study aims to explore whether differences in the nuclear developmental stage in each country affects public perceptions of nuclear energy. In addition, this study seeks to find out about the type and importance of communication credibility as a judgement heuristic in facilitating message acceptance across these five countries. Credibility of a communication channel is a crucial component influencing public perception, acceptance, and attitudes towards nuclear energy. Aside from simply identifying the frequently used communication channels, it is of greater significance to understand public perception of source and media credibility. Given the lack of studies conducted in SEA, this exploratory study adopts a qualitative approach to elicit a spectrum of opinions and insights regarding the key communication aspects influencing public perceptions of nuclear energy. Specifically, the capitals of each of the abovementioned countries - Kuala Lumpur, Bangkok, and Hanoi - were selected, with the exception of Singapore, an island city-state, and Yogyakarta, the most populous island of Indonesia to better understand public perception towards nuclear energy. Focus group discussions were utilized as the mode of data collection to elicit a wide variety of viewpoints held by the participants, which is well-suited for exploratory research. In total, 156 participants took part in the 13 focus group discussions. The participants were either local citizens or permanent residents aged between 18 and 69 years old. Each of the focus groups consists of 8-10 participants, including both male and female participants. The transcripts from each focus group were analysed using NVivo 10, and the text was organised according to the emerging themes or categories. The general public in all the countries was familiar but had no in-depth knowledge with nuclear energy. Four dimensions of nuclear energy communication were identified based on the focus group discussions: communication channels, perceived credibility of sources, circumstances for discussion, and discussion style. The first dimension, communication channels refers to the medium through which participants receive information about nuclear energy. Four types of media emerged from the discussions. They included online and social media, broadcast media, print media, and word-of- mouth (WOM). Collectively, across all five countries, participants were found to engage in different types of knowledge acquisition and information seeking behavior depending on the communication channels used.

Keywords: nuclear energy, public perception, communication, Southeast Asia, source credibility

Procedia PDF Downloads 279
9636 Correlation of Material Mechanical Characteristics Obtained by Means of Standardized and Miniature Test Specimens

Authors: Vaclav Mentl, P. Zlabek, J. Volak

Abstract:

New methods of mechanical testing were developed recently that are based on making use of miniature test specimens (e.g. Small Punch Test). The most important advantage of these method is the nearly non-destructive withdrawal of test material and small size of test specimen what is interesting in cases of remaining lifetime assessment when a sufficient volume of the representative material cannot be withdrawn of the component in question. In opposite, the most important disadvantage of such methods stems from the necessity to correlate test results with the results of standardised test procedures and to build up a database of material data in service. The correlations among the miniature test specimen data and the results of standardised tests are necessary. The paper describes the results of fatigue tests performed on miniature tests specimens in comparison with traditional fatigue tests for several steels applied in power producing industry. Special miniature test specimens fixtures were designed and manufactured for the purposes of fatigue testing at the Zwick/Roell 10HPF5100 testing machine. The miniature test specimens were produced of the traditional test specimens. Seven different steels were fatigue loaded (R = 0.1) at room temperature.

Keywords: mechanical properties, miniature test specimens, correlations, small punch test, micro-tensile test, mini-charpy impact test

Procedia PDF Downloads 507
9635 Multi-Criteria Test Case Selection Using Ant Colony Optimization

Authors: Niranjana Devi N.

Abstract:

Test case selection is to select the subset of only the fit test cases and remove the unfit, ambiguous, redundant, unnecessary test cases which in turn improve the quality and reduce the cost of software testing. Test cases optimization is the problem of finding the best subset of test cases from a pool of the test cases to be audited. It will meet all the objectives of testing concurrently. But most of the research have evaluated the fitness of test cases only on single parameter fault detecting capability and optimize the test cases using a single objective. In the proposed approach, nine parameters are considered for test case selection and the best subset of parameters for test case selection is obtained using Interval Type-2 Fuzzy Rough Set. Test case selection is done in two stages. The first stage is the fuzzy entropy-based filtration technique, used for estimating and reducing the ambiguity in test case fitness evaluation and selection. The second stage is the ant colony optimization-based wrapper technique with a forward search strategy, employed to select test cases from the reduced test suite of the first stage. The results are evaluated using the Coverage parameters, Precision, Recall, F-Measure, APSC, APDC, and SSR. The experimental evaluation demonstrates that by this approach considerable computational effort can be avoided.

Keywords: ant colony optimization, fuzzy entropy, interval type-2 fuzzy rough set, test case selection

Procedia PDF Downloads 630