Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2799

Search results for: non linear S0

2799 On the Construction of Some Optimal Binary Linear Codes

Authors: Skezeer John B. Paz, Ederlina G. Nocon

Abstract:

Finding an optimal binary linear code is a central problem in coding theory. A binary linear code C = [n, k, d] is called optimal if there is no linear code with higher minimum distance d given the length n and the dimension k. There are bounds giving limits for the minimum distance d of a linear code of fixed length n and dimension k. The lower bound which can be taken by construction process tells that there is a known linear code having this minimum distance. The upper bound is given by theoretic results such as Griesmer bound. One way to find an optimal binary linear code is to make the lower bound of d equal to its higher bound. That is, to construct a binary linear code which achieves the highest possible value of its minimum distance d, given n and k. Some optimal binary linear codes were presented by Andries Brouwer in his published table on bounds of the minimum distance d of binary linear codes for 1 ≤ n ≤ 256 and k ≤ n. This was further improved by Markus Grassl by giving a detailed construction process for each code exhibiting the lower bound. In this paper, we construct new optimal binary linear codes by using some construction processes on existing binary linear codes. Particularly, we developed an algorithm applied to the codes already constructed to extend the list of optimal binary linear codes up to 257 ≤ n ≤ 300 for k ≤ 7.

Keywords: bounds of linear codes, Griesmer bound, construction of linear codes, optimal binary linear codes

Procedia PDF Downloads 492
2798 Extension of Positive Linear Operator

Authors: Manal Azzidani

Abstract:

This research consideres the extension of special functions called Positive Linear Operators. the bounded linear operator which defined from normed space to Banach space will extend to the closure of the its domain, And extend identified linear functional on a vector subspace by Hana-Banach theorem which could be generalized to the positive linear operators.

Keywords: extension, positive operator, Riesz space, sublinear function

Procedia PDF Downloads 378
2797 Reliability Prediction of Tires Using Linear Mixed-Effects Model

Authors: Myung Hwan Na, Ho- Chun Song, EunHee Hong

Abstract:

We widely use normal linear mixed-effects model to analysis data in repeated measurement. In case of detecting heteroscedasticity and the non-normality of the population distribution at the same time, normal linear mixed-effects model can give improper result of analysis. To achieve more robust estimation, we use heavy tailed linear mixed-effects model which gives more exact and reliable analysis conclusion than standard normal linear mixed-effects model.

Keywords: reliability, tires, field data, linear mixed-effects model

Procedia PDF Downloads 451
2796 Measuring Multi-Class Linear Classifier for Image Classification

Authors: Fatma Susilawati Mohamad, Azizah Abdul Manaf, Fadhillah Ahmad, Zarina Mohamad, Wan Suryani Wan Awang

Abstract:

A simple and robust multi-class linear classifier is proposed and implemented. For a pair of classes of the linear boundary, a collection of segments of hyper planes created as perpendicular bisectors of line segments linking centroids of the classes or part of classes. Nearest Neighbor and Linear Discriminant Analysis are compared in the experiments to see the performances of each classifier in discriminating ripeness of oil palm. This paper proposes a multi-class linear classifier using Linear Discriminant Analysis (LDA) for image identification. Result proves that LDA is well capable in separating multi-class features for ripeness identification.

Keywords: multi-class, linear classifier, nearest neighbor, linear discriminant analysis

Procedia PDF Downloads 435
2795 Sensitivity Analysis in Fuzzy Linear Programming Problems

Authors: S. H. Nasseri, A. Ebrahimnejad

Abstract:

Fuzzy set theory has been applied to many fields, such as operations research, control theory, and management sciences. In this paper, we consider two classes of fuzzy linear programming (FLP) problems: Fuzzy number linear programming and linear programming with trapezoidal fuzzy variables problems. We state our recently established results and develop fuzzy primal simplex algorithms for solving these problems. Finally, we give illustrative examples.

Keywords: fuzzy linear programming, fuzzy numbers, duality, sensitivity analysis

Procedia PDF Downloads 424
2794 A Spectral Decomposition Method for Ordinary Differential Equation Systems with Constant or Linear Right Hand Sides

Authors: R. B. Ogunrinde, C. C. Jibunoh

Abstract:

In this paper, a spectral decomposition method is developed for the direct integration of stiff and nonstiff homogeneous linear (ODE) systems with linear, constant, or zero right hand sides (RHSs). The method does not require iteration but obtains solutions at any random points of t, by direct evaluation, in the interval of integration. All the numerical solutions obtained for the class of systems coincide with the exact theoretical solutions. In particular, solutions of homogeneous linear systems, i.e. with zero RHS, conform to the exact analytical solutions of the systems in terms of t.

Keywords: spectral decomposition, linear RHS, homogeneous linear systems, eigenvalues of the Jacobian

Procedia PDF Downloads 256
2793 Fuzzy Linear Programming Approach for Determining the Production Amounts in Food Industry

Authors: B. Güney, Ç. Teke

Abstract:

In recent years, rapid and correct decision making is crucial for both people and enterprises. However, uncertainty makes decision-making difficult. Fuzzy logic is used for coping with this situation. Thus, fuzzy linear programming models are developed in order to handle uncertainty in objective function and the constraints. In this study, a problem of a factory in food industry is investigated, required data is obtained and the problem is figured out as a fuzzy linear programming model. The model is solved using Zimmerman approach which is one of the approaches for fuzzy linear programming. As a result, the solution gives the amount of production for each product type in order to gain maximum profit.

Keywords: food industry, fuzzy linear programming, fuzzy logic, linear programming

Procedia PDF Downloads 518
2792 Variogram Fitting Based on the Wilcoxon Norm

Authors: Hazem Al-Mofleh, John Daniels, Joseph McKean

Abstract:

Within geostatistics research, effective estimation of the variogram points has been examined, particularly in developing robust alternatives. The parametric fit of these variogram points which eventually defines the kriging weights, however, has not received the same attention from a robust perspective. This paper proposes the use of the non-linear Wilcoxon norm over weighted non-linear least squares as a robust variogram fitting alternative. First, we introduce the concept of variogram estimation and fitting. Then, as an alternative to non-linear weighted least squares, we discuss the non-linear Wilcoxon estimator. Next, the robustness properties of the non-linear Wilcoxon are demonstrated using a contaminated spatial data set. Finally, under simulated conditions, increasing levels of contaminated spatial processes have their variograms points estimated and fit. In the fitting of these variogram points, both non-linear Weighted Least Squares and non-linear Wilcoxon fits are examined for efficiency. At all levels of contamination (including 0%), using a robust estimation and robust fitting procedure, the non-weighted Wilcoxon outperforms weighted Least Squares.

Keywords: non-linear wilcoxon, robust estimation, variogram estimation, wilcoxon norm

Procedia PDF Downloads 345
2791 Analytical Solution of Non–Autonomous Discrete Non-Linear Schrodinger Equation With Saturable Non-Linearity

Authors: Mishu Gupta, Rama Gupta

Abstract:

It has been elucidated here that non- autonomous discrete non-linear Schrödinger equation is associated with saturable non-linearity through photo-refractive media. We have investigated the localized solution of non-autonomous saturable discrete non-linear Schrödinger equations. The similarity transformation has been involved in converting non-autonomous saturable discrete non-linear Schrödinger equation to constant-coefficient saturable discrete non-linear Schrödinger equation (SDNLSE), whose exact solution is already known. By back substitution, the solution of the non-autonomous version has been obtained. We have analysed our solution for the hyperbolic and periodic form of gain/loss term, and interesting results have been obtained. The most important characteristic role is that it helps us to analyse the propagation of electromagnetic waves in glass fibres and other optical wave mediums. Also, the usage of SDNLSE has been seen in tight binding for Bose-Einstein condensates in optical mediums. Even the solutions are interrelated, and its properties are prominently used in various physical aspects like optical waveguides, Bose-Einstein (B-E) condensates in optical mediums, Non-linear optics in photonic crystals, and non-linear kerr–type non-linearity effect and photo refracting medium.

Keywords: B-E-Bose-Einstein, DNLSE-Discrete non linear schrodinger equation, NLSE-non linear schrodinger equation, SDNLSE - saturable discrete non linear Schrodinger equation

Procedia PDF Downloads 65
2790 System of Linear Equations, Gaussian Elimination

Authors: Rabia Khan, Nargis Munir, Suriya Gharib, Syeda Roshana Ali

Abstract:

In this paper linear equations are discussed in detail along with elimination method. Gaussian elimination and Gauss Jordan schemes are carried out to solve the linear system of equation. This paper comprises of matrix introduction, and the direct methods for linear equations. The goal of this research was to analyze different elimination techniques of linear equations and measure the performance of Gaussian elimination and Gauss Jordan method, in order to find their relative importance and advantage in the field of symbolic and numeric computation. The purpose of this research is to revise an introductory concept of linear equations, matrix theory and forms of Gaussian elimination through which the performance of Gauss Jordan and Gaussian elimination can be measured.

Keywords: direct, indirect, backward stage, forward stage

Procedia PDF Downloads 427
2789 Use of Linear Programming for Optimal Production in a Production Line in Saudi Food Co.

Authors: Qasim M. Kriri

Abstract:

Few Saudi Arabia production companies face financial profit issues until this moment. This work presents a linear integer programming model that solves a production problem of a Saudi Food Company in Saudi Arabia. An optimal solution to the above-mentioned problem is a Linear Programming solution. In this regard, the main purpose of this project is to maximize profit. Linear Programming Technique has been used to derive the maximum profit from production of natural juice at Saudi Food Co. The operations of production of the company were formulated and optimal results are found out by using Lindo Software that employed Sensitivity Analysis and Parametric linear programming in order develop Linear Programming. In addition, the parameter values are increased, then the values of the objective function will be increased.

Keywords: parameter linear programming, objective function, sensitivity analysis, optimize profit

Procedia PDF Downloads 121
2788 New Segmentation of Piecewise Linear Regression Models Using Reversible Jump MCMC Algorithm

Authors: Suparman

Abstract:

Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studies the problem of parameter estimation of piecewise linear regression models. The method used to estimate the parameters of picewise linear regression models is Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems, the reversible jump MCMC algorithm is proposed. Reversible jump MCMC algorithm generates the Markov chain converges to the limit distribution of the posterior distribution of the parameters of picewise linear regression models. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of picewise linear regression models.

Keywords: regression, piecewise, Bayesian, reversible Jump MCMC

Procedia PDF Downloads 423
2787 Least Squares Solution for Linear Quadratic Gaussian Problem with Stochastic Approximation Approach

Authors: Sie Long Kek, Wah June Leong, Kok Lay Teo

Abstract:

Linear quadratic Gaussian model is a standard mathematical model for the stochastic optimal control problem. The combination of the linear quadratic estimation and the linear quadratic regulator allows the state estimation and the optimal control policy to be designed separately. This is known as the separation principle. In this paper, an efficient computational method is proposed to solve the linear quadratic Gaussian problem. In our approach, the Hamiltonian function is defined, and the necessary conditions are derived. In addition to this, the output error is defined and the least-square optimization problem is introduced. By determining the first-order necessary condition, the gradient of the sum squares of output error is established. On this point of view, the stochastic approximation approach is employed such that the optimal control policy is updated. Within a given tolerance, the iteration procedure would be stopped and the optimal solution of the linear-quadratic Gaussian problem is obtained. For illustration, an example of the linear-quadratic Gaussian problem is studied. The result shows the efficiency of the approach proposed. In conclusion, the applicability of the approach proposed for solving the linear quadratic Gaussian problem is highly demonstrated.

Keywords: iteration procedure, least squares solution, linear quadratic Gaussian, output error, stochastic approximation

Procedia PDF Downloads 71
2786 Airy Wave Packet for a Particle in a Time-Dependant Linear Potential

Authors: M. Berrehail, F. Benamira

Abstract:

We study the quantum motion of a particle in the presence of a time- dependent linear potential using an operator invariant that is quadratic in p and linear in q within the framework of the Lewis-Riesenfeld invariant, The special invariant operator proposed in this work is demonstrated to be an Hermitian operator which has an Airy wave packet as its Eigenfunction

Keywords: airy wave packet, ivariant, time-dependent linear potential, unitary transformation

Procedia PDF Downloads 415
2785 A Fuzzy Programming Approach for Solving Intuitionistic Fuzzy Linear Fractional Programming Problem

Authors: Sujeet Kumar Singh, Shiv Prasad Yadav

Abstract:

This paper develops an approach for solving intuitionistic fuzzy linear fractional programming (IFLFP) problem where the cost of the objective function, the resources, and the technological coefficients are triangular intuitionistic fuzzy numbers. Here, the IFLFP problem is transformed into an equivalent crisp multi-objective linear fractional programming (MOLFP) problem. By using fuzzy mathematical programming approach the transformed MOLFP problem is reduced into a single objective linear programming (LP) problem. The proposed procedure is illustrated through a numerical example.

Keywords: triangular intuitionistic fuzzy number, linear programming problem, multi objective linear programming problem, fuzzy mathematical programming, membership function

Procedia PDF Downloads 452
2784 Approximation of Analytic Functions of Several Variables by Linear K-Positive Operators in the Closed Domain

Authors: Tulin Coskun

Abstract:

We investigate the approximation of analytic functions of several variables in polydisc by the sequences of linear k-positive operators in Gadjiev sence. The approximation of analytic functions of complex variable by linear k-positive operators was tackled, and k-positive operators and formulated theorems of Korovkin's type for these operators in the space of analytic functions on the unit disc were introduced in the past. Recently, very general results on convergence of the sequences of linear k-positive operators on a simply connected bounded domain within the space of analytic functions were proved. In this presentation, we extend some of these results to the approximation of analytic functions of several complex variables by sequences of linear k-positive operators.

Keywords: analytic functions, approximation of analytic functions, Linear k-positive operators, Korovkin type theorems

Procedia PDF Downloads 247
2783 Online Robust Model Predictive Control for Linear Fractional Transformation Systems Using Linear Matrix Inequalities

Authors: Peyman Sindareh Esfahani, Jeffery Kurt Pieper

Abstract:

In this paper, the problem of robust model predictive control (MPC) for discrete-time linear systems in linear fractional transformation form with structured uncertainty and norm-bounded disturbance is investigated. The problem of minimization of the cost function for MPC design is converted to minimization of the worst case of the cost function. Then, this problem is reduced to minimization of an upper bound of the cost function subject to a terminal inequality satisfying the l2-norm of the closed loop system. The characteristic of the linear fractional transformation system is taken into account, and by using some mathematical tools, the robust predictive controller design problem is turned into a linear matrix inequality minimization problem. Afterwards, a formulation which includes an integrator to improve the performance of the proposed robust model predictive controller in steady state condition is studied. The validity of the approaches is illustrated through a robust control benchmark problem.

Keywords: linear fractional transformation, linear matrix inequality, robust model predictive control, state feedback control

Procedia PDF Downloads 311
2782 Penetration Depth Study of Linear Siloxanes through Human Skin

Authors: K. Szymkowska, K. Mojsiewicz- Pieńkowska

Abstract:

Siloxanes are a common ingredients in medicinal products used on the skin, as well as cosmetics. It is widely believed that the silicones are not capable of overcoming the skin barrier. The aim of the study was to verify the possibility of penetration and permeation of linear siloxanes through human skin and determine depth penetration limit of these compounds. Based on the results it was found that human skin is not a barrier for linear siloxanes. PDMS 50 cSt was not identified in the dermis suggests that this molecular size of silicones (3780Da) is safe when it is used in the skin formulations.

Keywords: linear siloxanes, methyl siloxanes, skin penetration, skin permeation

Procedia PDF Downloads 313
2781 Resistivity Tomography Optimization Based on Parallel Electrode Linear Back Projection Algorithm

Authors: Yiwei Huang, Chunyu Zhao, Jingjing Ding

Abstract:

Electrical Resistivity Tomography has been widely used in the medicine and the geology, such as the imaging of the lung impedance and the analysis of the soil impedance, etc. Linear Back Projection is the core algorithm of Electrical Resistivity Tomography, but the traditional Linear Back Projection can not make full use of the information of the electric field. In this paper, an imaging method of Parallel Electrode Linear Back Projection for Electrical Resistivity Tomography is proposed, which generates the electric field distribution that is not linearly related to the traditional Linear Back Projection, captures the new information and improves the imaging accuracy without increasing the number of electrodes by changing the connection mode of the electrodes. The simulation results show that the accuracy of the image obtained by the inverse operation obtained by the Parallel Electrode Linear Back Projection can be improved by about 20%.

Keywords: electrical resistivity tomography, finite element simulation, image optimization, parallel electrode linear back projection

Procedia PDF Downloads 58
2780 A Simple Low-Cost 2-D Optical Measurement System for Linear Guideways

Authors: Wen-Yuh Jywe, Bor-Jeng Lin, Jing-Chung Shen, Jeng-Dao Lee, Hsueh-Liang Huang, Tung-Hsien Hsieh

Abstract:

In this study, a simple 2-D measurement system based on optical design was developed to measure the motion errors of the linear guideway. Compared with the transitional methods about the linear guideway for measuring the motion errors, our proposed 2-D optical measurement system can simultaneously measure horizontal and vertical running straightness errors for the linear guideway. The performance of the 2-D optical measurement system is verified by experimental results. The standard deviation of the 2-D optical measurement system is about 0.4 μm in the measurement range of 100 mm. The maximum measuring speed of the proposed automatic measurement instrument is 1 m/sec.

Keywords: 2-D measurement, linear guideway, motion errors, running straightness

Procedia PDF Downloads 396
2779 Variations of the Modal Characteristics of the Feeding Stage with Different Preloaded Linear Guide

Authors: Jui-Pui Hung, Yong-Run Chen, Wei-Cheng Shih, Chun-Wei Lin

Abstract:

This study was aimed to assess the variations of the modal characteristics of the feeding stage with different linear guide modulus. The dynamic characteristics of the feeding stage were characterized in terms of the modal stiffness, modal frequency and modal damping, which are assessed from the vibration tests. According to the experimental measurements, the actual preload of the linear guide modulus was found to deviate from the rated values as setting in factory. This may be due to the assemblage errors of guide modules. For the stage with linear guides, the dynamic stiffness was affected to change by the preload set on the rolling balls. The variation of the dynamic stiffness at first and second modes is 20.8 and 10.5%, respectively when the linear guide preload is adjusted from medium and high amount. But the modal damping ratio is reduced by 8.97 and 9.65%, respectively. For high-frequency mode, the modal stiffness increases by 171.2% and the damping ratio reduced by 34.4%. Current results demonstrate the importance in the determining the preloaded amount of linear guide modulus in practical application.

Keywords: contact stiffness, feeding stage, linear guides, modal characteristics, pre-load

Procedia PDF Downloads 335
2778 Blood Glucose Measurement and Analysis: Methodology

Authors: I. M. Abd Rahim, H. Abdul Rahim, R. Ghazali

Abstract:

There is numerous non-invasive blood glucose measurement technique developed by researchers, and near infrared (NIR) is the potential technique nowadays. However, there are some disagreements on the optimal wavelength range that is suitable to be used as the reference of the glucose substance in the blood. This paper focuses on the experimental data collection technique and also the analysis method used to analyze the data gained from the experiment. The selection of suitable linear and non-linear model structure is essential in prediction system, as the system developed need to be conceivably accurate.

Keywords: linear, near-infrared (NIR), non-invasive, non-linear, prediction system

Procedia PDF Downloads 374
2777 Electrical Load Estimation Using Estimated Fuzzy Linear Parameters

Authors: Bader Alkandari, Jamal Y. Madouh, Ahmad M. Alkandari, Anwar A. Alnaqi

Abstract:

A new formulation of fuzzy linear estimation problem is presented. It is formulated as a linear programming problem. The objective is to minimize the spread of the data points, taking into consideration the type of the membership function of the fuzzy parameters to satisfy the constraints on each measurement point and to insure that the original membership is included in the estimated membership. Different models are developed for a fuzzy triangular membership. The proposed models are applied to different examples from the area of fuzzy linear regression and finally to different examples for estimating the electrical load on a busbar. It had been found that the proposed technique is more suited for electrical load estimation, since the nature of the load is characterized by the uncertainty and vagueness.

Keywords: fuzzy regression, load estimation, fuzzy linear parameters, electrical load estimation

Procedia PDF Downloads 452
2776 Donoho-Stark’s and Hardy’s Uncertainty Principles for the Short-Time Quaternion Offset Linear Canonical Transform

Authors: Mohammad Younus Bhat

Abstract:

The quaternion offset linear canonical transform (QOLCT), which isa time-shifted and frequency-modulated version of the quaternion linear canonical transform (QLCT), provides a more general framework of most existing signal processing tools. For the generalized QOLCT, the classical Heisenberg’s and Lieb’s uncertainty principles have been studied recently. In this paper, we first define the short-time quaternion offset linear canonical transform (ST-QOLCT) and drive its relationship with the quaternion Fourier transform (QFT). The crux of the paper lies in the generalization of several well-known uncertainty principles for the ST-QOLCT, including Donoho-Stark’s uncertainty principle, Hardy’s uncertainty principle, Beurling’s uncertainty principle, and the logarithmic uncertainty principle.

Keywords: Quaternion Fourier transform, Quaternion offset linear canonical transform, short-time quaternion offset linear canonical transform, uncertainty principle

Procedia PDF Downloads 92
2775 Study on the DC Linear Stepper Motor to Industrial Applications

Authors: Nolvi Francisco Baggio Filho, Roniele Belusso

Abstract:

Many industrial processes require a precise linear motion. Usually, this movement is achieved with the use of rotary motors combined with electrical control systems and mechanical systems such as gears, pulleys and bearings. Other types of devices are based on linear motors, where the linear motion is obtained directly. The Linear Stepper Motor (MLP) is an excellent solution for industrial applications that require precise positioning and high speed. This study presents an MLP formed by a linear structure and static ferromagnetic material, and a mover structure in which three coils are mounted. Mechanical suspension systems allow a linear movement between static and mover parts, maintaining a constant air gap. The operating principle is based on the tendency of alignment of magnetic flux through the path of least reluctance. The force proportional to the intensity of the electric current and the speed proportional to the frequency of the excitation coils. The study of this device is still based on the use of a numerical and experimental analysis to verify the relationship among electric current applied and planar force developed. In addition, the magnetic field in the air gap region is also monitored.

Keywords: linear stepper motor, planar traction force, reluctance magnetic, industry applications

Procedia PDF Downloads 428
2774 Statistical Convergence for the Approximation of Linear Positive Operators

Authors: Neha Bhardwaj

Abstract:

In this paper, we consider positive linear operators and study the Voronovskaya type result of the operator then obtain an error estimate in terms of the higher order modulus of continuity of the function being approximated and its A-statistical convergence. Also, we compute the corresponding rate of A-statistical convergence for the linear positive operators.

Keywords: Poisson distribution, Voronovskaya, modulus of continuity, a-statistical convergence

Procedia PDF Downloads 237
2773 Harmonic Pollution Caused by Non-Linear Load: Analysis and Identification

Authors: K. Khlifi, A. Haddouk, M. Hlaili, H. Mechergui

Abstract:

The present paper provides a detailed analysis of prior methods and approaches for non-linear load identification in residential buildings. The main goal of this analysis is to decipher the distorted signals and to estimate the harmonics influence on power systems. We have performed an analytical study of non-linear loads behavior in the residential environment. Simulations have been performed in order to evaluate the distorted rate of the current and follow his behavior. To complete this work, an instrumental platform has been realized to carry out practical tests on single-phase non-linear loads which illustrate the current consumption of some domestic appliances supplied with single-phase sinusoidal voltage. These non-linear loads have been processed and tracked in order to limit their influence on the power grid and to reduce the Joule effect losses. As a result, the study has allowed to identify responsible circuits of harmonic pollution.

Keywords: distortion rate, harmonic analysis, harmonic pollution, non-linear load, power factor

Procedia PDF Downloads 71
2772 Determination of the Axial-Vector from an Extended Linear Sigma Model

Authors: Tarek Sayed Taha Ali

Abstract:

The dependence of the axial-vector coupling constant gA on the quark masses has been investigated in the frame work of the extended linear sigma model. The field equations have been solved in the mean-field approximation. Our study shows a better fitting to the experimental data compared with the existing models.

Keywords: extended linear sigma model, nucleon properties, axial coupling constant, physic

Procedia PDF Downloads 354
2771 Semigroups of Linear Transformations with Fixed Subspaces: Green’s Relations and Ideals

Authors: Yanisa Chaiya, Jintana Sanwong

Abstract:

Let V be a vector space over a field and W a subspace of V. Let Fix(V,W) denote the set of all linear transformations on V with fix all elements in W. In this paper, we show that Fix(V,W) is a semigroup under the composition of maps and describe Green’s relations on this semigroup in terms of images, kernels and the dimensions of subspaces of the quotient space V/W where V/W = {v+W : v is an element in V} with v+W = {v+w : w is an element in W}. Let dim(U) denote the dimension of a vector space U and Vα = {vα : v is an element in V} where vα is an image of v under a linear transformation α. For any cardinal number a let a'= min{b : b > a}. We also show that the ideals of Fix(V,W) are precisely the sets. Fix(r) ={α ∊ Fix(V,W) : dim(Vα/W) < r} where 1 ≤ r ≤ a' and a = dim(V/W). Moreover, we prove that if V is a finite-dimensional vector space, then every ideal of Fix(V,W) is principle.

Keywords: Green’s relations, ideals, linear transformation semi-groups, principle ideals

Procedia PDF Downloads 215
2770 Robust Variogram Fitting Using Non-Linear Rank-Based Estimators

Authors: Hazem M. Al-Mofleh, John E. Daniels, Joseph W. McKean

Abstract:

In this paper numerous robust fitting procedures are considered in estimating spatial variograms. In spatial statistics, the conventional variogram fitting procedure (non-linear weighted least squares) suffers from the same outlier problem that has plagued this method from its inception. Even a 3-parameter model, like the variogram, can be adversely affected by a single outlier. This paper uses the Hogg-Type adaptive procedures to select an optimal score function for a rank-based estimator for these non-linear models. Numeric examples and simulation studies will demonstrate the robustness, utility, efficiency, and validity of these estimates.

Keywords: asymptotic relative efficiency, non-linear rank-based, rank estimates, variogram

Procedia PDF Downloads 321