Search results for: molecular dipole moment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2932

Search results for: molecular dipole moment

2752 Experimental Study on the Molecular Spring Isolator

Authors: Muchun Yu, Xue Gao, Qian Chen

Abstract:

As a novel passive vibration isolation technology, molecular spring isolator (MSI) is investigated in this paper. An MSI consists of water and hydrophobic zeolites as working medium. Under periodic excitation, water molecules intrude into hydrophobic pores of zeolites when the pressure rises and water molecules extrude from hydrophobic pores when pressure drops. At the same time, energy is stored, released and dissipated. An MSI of piston-cylinder structure was designed in this work. Experiments were conducted to investigate the stiffness properties of MSI. The results show that MSI exhibits high-static-low dynamic (HSLD) stiffness. Furthermore, factors such as the quantity of zeolites, temperature, and ions in water are proved to have an influence on the stiffness properties of MSI.

Keywords: hydrophobic zeolites, molecular spring, stiffness, vibration isolation

Procedia PDF Downloads 438
2751 Efficient Moment Frame Structure

Authors: Mircea I. Pastrav, Cornelia Baera, Florea Dinu

Abstract:

A different concept for designing and detailing of reinforced concrete precast frame structures is analyzed in this paper. The new detailing of the joints derives from the special hybrid moment frame joints. The special reinforcements of this alternative detailing, named modified special hybrid joint, are bondless with respect to both column and beams. Full scale tests were performed on a plan model, which represents a part of 5 story structure, cropped in the middle of the beams and columns spans. Theoretical approach was developed, based on testing results on twice repaired model, subjected to lateral seismic type loading. Discussion regarding the modified special hybrid joint behavior and further on widening research needed concludes the presentation.

Keywords: modified hybrid joint, repair, seismic loading type, acceptance criteria

Procedia PDF Downloads 493
2750 A Study on the Failure Modes of Steel Moment Frame in Post-Earthquake Fire Using Coupled Mechanical-Thermal Analysis

Authors: Ehsan Asgari, Meisam Afazeli, Nezhla Attarchian

Abstract:

Post-earthquake fire is considered as a major threat in seismic areas. After an earthquake, fire is possible in structures. In this research, the effect of post-earthquake fire on steel moment frames with and without fireproofing coating is investigated. For this purpose, finite element method is employed. For the verification of finite element results, the results of an experimental study carried out by previous researchers are used, and the predicted FE results are compared with the test results, and good agreement is observed. After ensuring the accuracy of the predictions of finite element models, the effect of post-earthquake fire on the frames is investigated taking into account the parameters including the presence or absence of fire protection, frame design assumptions, earthquake type and different fire scenario. Ordinary fire and post-earthquake fire effect on the frames is also studied. The plastic hinges induced by earthquake in the structure are determined in the beam to the column connection and in panel zone. These areas should be accurately considered when providing fireproofing coatings. The results of the study show that the occurrence of fire beside corner columns is the most damaging scenario that results in progressive collapse of structure. It was also concluded that the behavior of structure in fire after a strong ground motion is significantly different from that in a normal fire.

Keywords: post earthquake fire, moment frame, finite element simulation, coupled temperature-displacement analysis, fire scenario

Procedia PDF Downloads 125
2749 Non-Linear Assessment of Chromatographic Lipophilicity of Selected Steroid Derivatives

Authors: Milica Karadžić, Lidija Jevrić, Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Anamarija Mandić, Aleksandar Oklješa, Andrea Nikolić, Marija Sakač, Katarina Penov Gaši

Abstract:

Using chemometric approach, the relationships between the chromatographic lipophilicity and in silico molecular descriptors for twenty-nine selected steroid derivatives were studied. The chromatographic lipophilicity was predicted using artificial neural networks (ANNs) method. The most important in silico molecular descriptors were selected applying stepwise selection (SS) paired with partial least squares (PLS) method. Molecular descriptors with satisfactory variable importance in projection (VIP) values were selected for ANN modeling. The usefulness of generated models was confirmed by detailed statistical validation. High agreement between experimental and predicted values indicated that obtained models have good quality and high predictive ability. Global sensitivity analysis (GSA) confirmed the importance of each molecular descriptor used as an input variable. High-quality networks indicate a strong non-linear relationship between chromatographic lipophilicity and used in silico molecular descriptors. Applying selected molecular descriptors and generated ANNs the good prediction of chromatographic lipophilicity of the studied steroid derivatives can be obtained. This article is based upon work from COST Actions (CM1306 and CA15222), supported by COST (European Cooperation and Science and Technology).

Keywords: artificial neural networks, chemometrics, global sensitivity analysis, liquid chromatography, steroids

Procedia PDF Downloads 310
2748 Molecular Engineering of High-Performance Nanofiltration Membranes from Intrinsically Microporous Poly (Ether-Ether-Ketone)

Authors: Mahmoud A. Abdulhamid

Abstract:

Poly(ether-ether-ketone) (PEEK) has received increased attention due to its outstanding performance in different membrane applications including gas and liquid separation. However, it suffers from a semi-crystalline morphology, bad solubility and low porosity. To fabricate membranes from PEEK, the usage of harsh acid such as sulfuric acid is essential, regardless its hazardous properties. In this work, we report the molecular design of poly(ether-ether-ketones) (iPEEKs) with intrinsic porosity character, by incorporating kinked units into PEEK backbone such as spirobisindane, Tröger's base, and triptycene. The porous polymers were used to fabricate stable membranes for organic solvent nanofiltration application. To better understand the mechanism, we conducted molecular dynamics simulations to evaluate the possible interactions between the polymers and the solvents. Notable enhancement in separation performance was observed confirming the importance of molecular engineering of high-performance polymers. The iPEEKs demonstrated good solubility in polar aprotic solvents, a high surface area of 205–250 m² g⁻¹, and excellent thermal stability. Mechanically flexible nanofiltration membranes were prepared from N-methyl-2-pyrrolidone dope solution at iPEEK concentrations of 19–35 wt%. The molecular weight cutoff of the membranes was fine-tuned in the range of 450–845 g mol⁻¹ displaying 2–6 fold higher permeance (3.57–11.09 L m⁻² h⁻¹ bar⁻¹) than previous reports. The long-term stabilities were demonstrated by a 7 day continuous cross-flow filtration.

Keywords: molecular engineering, polymer synthesis, membrane fabrication, liquid separation

Procedia PDF Downloads 60
2747 Characteristics of Interaction Forces Acting on a Newly-Design Rotary Blade for Thai Walking Tractor

Authors: Sirisak Choedkiatphon, Tanya Niyamapa

Abstract:

This research aimed to indeed understand the soil-rotary blade interaction of the newly-design rotary blade for Thai walking tractor. Therefore, this study was carried out to clarify the characteristics of the horizontal and the vertical forces and the moment around a rotary shaft of prototype rotary blade 15 lengthwise slice angle. It was set up and tested in laboratory soil bin at Kasetsart University under sandy loam and clay soil at soil dry bulk density and soil specific weight of 9.81 kN/m3 and 11.3% (d.b.), respectively. The tests were conducted at travel speeds of 0.069 and 0.142 m/s and rotational speeds of 150, 250 and 350 rpm. The characteristic of pushing-forward and lifting-up forces and moment around a rotor shaft were obtained by using the EOR transducer. Also, the acting point of resultant force of these soil-blade reaction forces was determined. The pushing-forward and lifting-up forces, moment around a rotor shaft and resultant force increased at higher travel speed and higher soil moisture content. In tilling stage, the acting points of resultant force located inside the circumstance of the blade locus. The results showed that the variation of magnitude and direction of pushing-forward, lifting-up and resultant forces corresponded to soil-blade interaction of the newly-design in tilling stage.

Keywords: rotary blde, soil-blade interaction, walking tractor, clay, sandy loam

Procedia PDF Downloads 181
2746 Probability-Based Damage Detection of Structures Using Model Updating with Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Model updating method has received increasing attention in damage detection structures based on measured modal parameters. Therefore, a probability-based damage detection (PBDD) procedure based on a model updating procedure is presented in this paper, in which a one-stage model-based damage identification technique based on the dynamic features of a structure is investigated. The presented framework uses a finite element updating method with a Monte Carlo simulation that considers the uncertainty caused by measurement noise. Enhanced ideal gas molecular movement (EIGMM) is used as the main algorithm for model updating. Ideal gas molecular movement (IGMM) is a multiagent algorithm based on the ideal gas molecular movement. Ideal gas molecules disperse rapidly in different directions and cover all the space inside. This is embedded in the high speed of molecules, collisions between them and with the surrounding barriers. In IGMM algorithm to accomplish the optimal solutions, the initial population of gas molecules is randomly generated and the governing equations related to the velocity of gas molecules and collisions between those are utilized. In this paper, an enhanced version of IGMM, which removes unchanged variables after specified iterations, is developed. The proposed method is implemented on two numerical examples in the field of structural damage detection. The results show that the proposed method can perform well and competitive in PBDD of structures.

Keywords: enhanced ideal gas molecular movement (EIGMM), ideal gas molecular movement (IGMM), model updating method, probability-based damage detection (PBDD), uncertainty quantification

Procedia PDF Downloads 244
2745 Inhibition of 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase from Mycobacterium Tuberculosis Using High Throughput Virtual Screening and Molecular Dynamics Studies

Authors: Christy Rosaline, Rathankar Roa, Waheeta Hopper

Abstract:

Persistence of tuberculosis, emergence of multidrug-resistance and extensively drug-resistant forms of the disease, has increased the interest in developing new antitubercular drugs. Developing inhibitors for 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Mycobacterium tuberculosis (MtbDAH7Ps), an enzyme involved in shikimate pathway, gives a selective target for antitubercular agents. MtbDAH7Ps was screened against ZINC database, and shortlisted compounds were subjected to induce fit docking. Prime/Molecular Mechanics Generalized Born Surface Area calculation was used to validate the binding energy of ligand-protein complex. Molecular Dynamics analysis for of the lead compounds–MtbDAH7Ps complexes showed that the backbone of MtbDAH7Ps in their complexes were stable. These results suggest that the shortlisted lead compounds ZINC04097114, ZINC15163225, ZINC16857013, ZINC06275603, and ZINC05331260 could be developed into novel drug leads to inhibit DAH7Ps in Mycobacterium tuberculosis.

Keywords: MtbDAH7Ps, Mycobacterium tuberculosis, HTVS, molecular dynamics

Procedia PDF Downloads 147
2744 Sesame (Sesamum Indicum L.): Molecular Breeding and Transformation

Authors: Micheale Yifter Weldemichael, Stefaan Werbrouck, Hailay Mehari Gebremedhn

Abstract:

Sesame (Sesamum indicum L.) is among the most important oilseed crops for its high edible oil quality and quantity. Sesame is grown for food, medicinal, pharmaceutical, and industrial uses. Sesame is also cultivated as a main cash crop in Asia and Africa by smallholder farmers. Despite the global exponential increase in sesame cultivation area, its production and productivity remain low, mainly due to biotic and abiotic constraints. Notwithstanding the efforts to solve these problems, a low level of genetic variation and inadequate genomic resources hinder the progress of sesame improvement. The objective of this paper is, therefore, to review recent advances in the area of molecular breeding and transformation to overcome major production constraints and could result in enhanced and sustained sesame production. This paper reviews various researches conducted to date on molecular breeding and genetic transformation in sesame focusing on molecular markers used in assessing the available online database resources, genes responsible for key agronomic traits as well as transgenic technology and genome editing. The review concentrates on quantitative and semi-quantitative studies on molecular breeding for key agronomic traits such as improvement of yield components, oil and oil-related traits, disease and insect/pest resistance, and drought, waterlogging and salt tolerance, as well as sesame genetic transformation and genome editing techniques. Pitfalls and limitations of existing studies and methodologies used so far are identified and some priorities for future research directions in sesame genetic improvement are identified in this review.

Keywords: molecular breeding, oil, sesame, shattering

Procedia PDF Downloads 40
2743 Amyloid-β Fibrils Remodeling by an Organic Molecule: Insight from All-Atomic Molecular Dynamics Simulations

Authors: Nikhil Agrawal, Adam A. Skelton

Abstract:

Alzheimer’s disease (AD) is one of the most common forms of dementia, which is caused by misfolding and aggregation of amyloid beta (Aβ) peptides into amyloid-β fibrils (Aβ fibrils). To disrupt the remodeling of Aβ fibrils, a number of candidate molecules have been proposed. To study the molecular mechanisms of Aβ fibrils remodeling we performed a series of all-atom molecular dynamics simulations, a total time of 3µs, in explicit solvent. Several previously undiscovered candidate molecule-Aβ fibrils binding modes are unraveled; one of which shows the direct conformational change of the Aβ fibril by understanding the physicochemical factors responsible for binding and subsequent remodeling of Aβ fibrils by the candidate molecule, open avenues into structure-based drug design for AD can be opened.

Keywords: alzheimer’s disease, amyloid, MD simulations, misfolded protein

Procedia PDF Downloads 311
2742 Effects of Umbilical Cord Clamping on Puppies Neonatal Vitality

Authors: Maria L. G. Lourenço, Keylla H. N. P. Pereira, Viviane Y. Hibaru, Fabiana F. Souza, Joao C. P. Ferreira, Simone B. Chiacchio, Luiz H. A. Machado

Abstract:

In veterinary medicine, the standard procedure during a caesarian section is clamping the umbilical cord immediately after birth. In human neonates, when the umbilical cord is kept intact after birth, blood continues to flow from the cord to the newborn, but this procedure may prove to be difficult in dogs due to the shorter umbilical cord and the number of newborns in the litter. However, a possible detachment of the placenta while keeping the umbilical cord intact may make the residual blood to flow to the neonate. This study compared the effects on neonatal vitality between clamping and no clamping the umbilical cord of dogs born through cesarean section, assessing them through Apgar and reflex scores. Fifty puppies delivered from 16 bitches were randomly allocated to receive clamping of the umbilical cord immediately (n=25) or to not receive the clamping until breathing (n=25). The neonates were assessed during the first five min of life and once again 10 min after the first assessment. The differences observed between the two moments were significant (p < 0.01) for both the Apgar and reflex scores. The differences observed between the groups (clamped vs. not clamped) were not significant for the Apgar score in the 1st moment (p=0.1), but the 2nd moment was significantly (p < 0.01) in the group not clamped, as well as significant (p < 0.05) for the reflex score in the 1st moment and 2nd moment (p < 0.05), revealing higher neonatal vitality in the not clamped group. The differences observed between the moments (1st vs. 2nd) of each group as significant (p < 0.01), revealing higher neonatal vitality in the 2nd moments. In the no clamping group, after removing the neonates together with the umbilical cord and the placenta, we observed that the umbilical cords were full of blood at the time of birth and later became whitish and collapsed, demonstrating the blood transfer. The results suggest that keeping the umbilical cord intact for at least three minutes after the onset breathing is not detrimental and may contribute to increase neonate vitality in puppies delivered by cesarean section.

Keywords: puppy vitality, newborn dog, cesarean section, Apgar score

Procedia PDF Downloads 118
2741 Evaluation of Newly Synthesized Steroid Derivatives Using In silico Molecular Descriptors and Chemometric Techniques

Authors: Milica Ž. Karadžić, Lidija R. Jevrić, Sanja Podunavac-Kuzmanović, Strahinja Z. Kovačević, Anamarija I. Mandić, Katarina Penov-Gaši, Andrea R. Nikolić, Aleksandar M. Oklješa

Abstract:

This study considered selection of the in silico molecular descriptors and the models for newly synthesized steroid derivatives description and their characterization using chemometric techniques. Multiple linear regression (MLR) models were established and gave the best molecular descriptors for quantitative structure-retention relationship (QSRR) modeling of the retention of the investigated molecules. MLR models were without multicollinearity among the selected molecular descriptors according to the variance inflation factor (VIF) values. Used molecular descriptors were ranked using generalized pair correlation method (GPCM). In this method, the significant difference between independent variables can be noticed regardless almost equal correlation between dependent variable. Generated MLR models were statistically and cross-validated and the best models were kept. Models were ranked using sum of ranking differences (SRD) method. According to this method, the most consistent QSRR model can be found and similarity or dissimilarity between the models could be noticed. In this study, SRD was performed using average values of experimentally observed data as a golden standard. Chemometric analysis was conducted in order to characterize newly synthesized steroid derivatives for further investigation regarding their potential biological activity and further synthesis. This article is based upon work from COST Action (CM1105), supported by COST (European Cooperation in Science and Technology).

Keywords: generalized pair correlation method, molecular descriptors, regression analysis, steroids, sum of ranking differences

Procedia PDF Downloads 310
2740 Investigation of Acidizing Corrosion Inhibitors for Mild Steel in Hydrochloric Acid: Theoretical and Experimental Approaches

Authors: Ambrish Singh

Abstract:

The corrosion inhibition performance of pyran derivatives (AP) on mild steel in 15% HCl was investigated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, weight loss, contact angle, and scanning electron microscopy (SEM) measurements, DFT and molecular dynamic simulation. The adsorption of APs on the surface of mild steel obeyed Langmuir isotherm. The potentiodynamic polarization study confirmed that inhibitors are mixed type with cathodic predominance. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface. The theoretical data obtained are, in most cases, in agreement with experimental results.

Keywords: acidizing inhibitor, pyran derivatives, DFT, molecular simulation, mild steel, EIS

Procedia PDF Downloads 161
2739 Preventing Neurodegenerative Diseases by Stabilization of Superoxide Dismutase by Natural Polyphenolic Compounds

Authors: Danish Idrees, Vijay Kumar, Samudrala Gourinath

Abstract:

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by misfolding and aggregation of Cu, Zn superoxide dismutase (SOD1). The use of small molecules has been shown to stabilize the SOD1 dimer and preventing its dissociation and aggregation. In this study, we employed molecular docking, molecular dynamics simulation and surface plasmon resonance (SPR) to study the interactions between SOD1 and natural polyphenolic compounds. In order to explore the noncovalent interaction between SOD1 and natural polyphenolic compounds, molecular docking and molecular dynamic (MD) simulations were employed to gain insights into the binding modes and free energies of SOD1-polyphenolic compounds. MM/PBSA methods were used to calculate free energies from obtained MD trajectories. The compounds, Hesperidin, Ergosterol, and Rutin showed the excellent binding affinity in micromolar range with SOD1. Ergosterol and Hesperidin have the strongest binding affinity to SOD1 and was subjected to further characterization. Biophysical experiments using Circular Dichroism and Thioflavin T fluorescence spectroscopy results show that the binding of these two compounds can stabilize SOD1 dimer and inhibit the aggregation of SOD1. Molecular simulation results also suggest that these compounds reduce the dissociation of SOD1 dimers through direct interaction with the dimer interface. This study will be helpful to develop other drug-like molecules which may have the effect to reduce the aggregation of SOD1.

Keywords: amyotrophic lateral sclerosis, molecular dynamics simulation, surface plasmon resonance, superoxide dismutase

Procedia PDF Downloads 108
2738 Microarrays: Wide Clinical Utilities and Advances in Healthcare

Authors: Salma M. Wakil

Abstract:

Advances in the field of genetics overwhelmed detecting large number of inherited disorders at the molecular level and directed to the development of innovative technologies. These innovations have led to gene sequencing, prenatal mutation detection, pre-implantation genetic diagnosis; population based carrier screening and genome wide analyses using microarrays. Microarrays are widely used in establishing clinical and diagnostic setup for genetic anomalies at a massive level, with the advent of cytoscan molecular karyotyping as a clinical utility card for detecting chromosomal aberrations with high coverage across the entire human genome. Unlike a regular karyotype that relies on the microscopic inspection of chromosomes, molecular karyotyping with cytoscan constructs virtual chromosomes based on the copy number analysis of DNA which improves its resolution by 100-fold. We have been investigating a large number of patients with Developmental Delay and Intellectual disability with this platform for establishing micro syndrome deletions and have detected number of novel CNV’s in the Arabian population with the clinical relevance.

Keywords: microarrays, molecular karyotyping, developmental delay, genetics

Procedia PDF Downloads 424
2737 Molecular Dynamics Analysis onI mpact Behaviour of Carbon Nanotubes and Graphene Sheets

Authors: Sajjad Seifoori

Abstract:

Impact behavior of striker on graphene sheet and carbon nanotube is investigated based on molecular dynamics (MD) simulations. A MD simulation is conducted to obtain the maximum dynamic deflections of a square and rectangular single-layered graphene sheets (SLGSs) with various values of side-length and striker parameter. Effect of (i) chirality, (ii) graphene side-length and nanotube length, (iii) striker mass on the maximum dynamic deflections of graphene and nanotube are investigated. The effect of different types of boundary condition on the maximum dynamic deflections is studied for zigzag and armchair SWCNTs with various aspect ratios (Length/Diameter).

Keywords: impact, molecular dynamic, graphene, spring mass

Procedia PDF Downloads 297
2736 Contrasted Mean and Median Models in Egyptian Stock Markets

Authors: Mai A. Ibrahim, Mohammed El-Beltagy, Motaz Khorshid

Abstract:

Emerging Markets return distributions have shown significance departure from normality were they are characterized by fatter tails relative to the normal distribution and exhibit levels of skewness and kurtosis that constitute a significant departure from normality. Therefore, the classical Markowitz Mean-Variance is not applicable for emerging markets since it assumes normally-distributed returns (with zero skewness and kurtosis) and a quadratic utility function. Moreover, the Markowitz mean-variance analysis can be used in cases of moderate non-normality and it still provides a good approximation of the expected utility, but it may be ineffective under large departure from normality. Higher moments models and median models have been suggested in the literature for asset allocation in this case. Higher moments models have been introduced to account for the insufficiency of the description of a portfolio by only its first two moments while the median model has been introduced as a robust statistic which is less affected by outliers than the mean. Tail risk measures such as Value-at Risk (VaR) and Conditional Value-at-Risk (CVaR) have been introduced instead of Variance to capture the effect of risk. In this research, higher moment models including the Mean-Variance-Skewness (MVS) and Mean-Variance-Skewness-Kurtosis (MVSK) are formulated as single-objective non-linear programming problems (NLP) and median models including the Median-Value at Risk (MedVaR) and Median-Mean Absolute Deviation (MedMAD) are formulated as a single-objective mixed-integer linear programming (MILP) problems. The higher moment models and median models are compared to some benchmark portfolios and tested on real financial data in the Egyptian main Index EGX30. The results show that all the median models outperform the higher moment models were they provide higher final wealth for the investor over the entire period of study. In addition, the results have confirmed the inapplicability of the classical Markowitz Mean-Variance to the Egyptian stock market as it resulted in very low realized profits.

Keywords: Egyptian stock exchange, emerging markets, higher moment models, median models, mixed-integer linear programming, non-linear programming

Procedia PDF Downloads 283
2735 In-Vitro Dextran Synthesis and Characterization of an Intracellular Glucosyltransferase from Leuconostoc Mesenteroides AA1

Authors: Afsheen Aman, Shah Ali Ul Qader

Abstract:

Dextransucrase [EC 2.4.1.5] is a glucosyltransferase that catalysis the biosynthesis of a natural biopolymer called dextran. It can catalyze the transfer of D-glucopyranosyl residues from sucrose to the main chain of dextran. This unique biopolymer has multiple applications in several industries and the key utilization of dextran lies on its molecular weight and the type of branching. Extracellular dextransucrase from Leuconostoc mesenteroides is most extensively studied and characterized. Limited data is available regarding cell-bound or intracellular dextransucrase and on the characterization of dextran produced by in-vitro reaction of intracellular dextransucrase. L. mesenteroides AA1 is reported to produce extracellular dextransucrase that catalyzes biosynthesis of a high molecular weight dextran with only α-(1→6) linkage. Current study deals with the characterization of an intracellular dextransucrase and in vitro biosynthesis of low molecular weight dextran from L. mesenteroides AA1. Intracellular dextransucrase was extracted from cytoplasm and purified to homogeneity for characterization. Kinetic constants, molecular weight and N-terminal sequence analysis of intracellular dextransucrase reveal unique variation with previously reported extracellular dextransucrase from the same strain. In vitro synthesized biopolymer was characterized using NMR spectroscopic techniques. Intracellular dextransucrase exhibited Vmax and Km values of 130.8 DSU ml-1 hr-1 and 221.3 mM, respectively. Optimum catalytic activity was detected at 35°C in 0.15 M citrate phosphate buffer (pH-5.5) in 05 minutes. Molecular mass of purified intracellular dextransucrase is approximately 220.0 kDa on SDS-PAGE. N-terminal sequence of the intracellular enzyme is: GLPGYFGVN that showed no homology with previously reported sequence for the extracellular dextransucrase. This intracellular dextransucrase is capable of in vitro synthesis of dextran under specific conditions. This intracellular dextransucrase is capable of in vitro synthesis of dextran under specific conditions and this biopolymer can be hydrolyzed into different molecular weight fractions for various applications.

Keywords: characterization, dextran, dextransucrase, leuconostoc mesenteroides

Procedia PDF Downloads 363
2734 Coding Considerations for Standalone Molecular Dynamics Simulations of Atomistic Structures

Authors: R. O. Ocaya, J. J. Terblans

Abstract:

The laws of Newtonian mechanics allow ab-initio molecular dynamics to model and simulate particle trajectories in material science by defining a differentiable potential function. This paper discusses some considerations for the coding of ab-initio programs for simulation on a standalone computer and illustrates the approach by C language codes in the context of embedded metallic atoms in the face-centred cubic structure. The algorithms use velocity-time integration to determine particle parameter evolution for up to several thousands of particles in a thermodynamical ensemble. Such functions are reusable and can be placed in a redistributable header library file. While there are both commercial and free packages available, their heuristic nature prevents dissection. In addition, developing own codes has the obvious advantage of teaching techniques applicable to new problems.

Keywords: C language, molecular dynamics, simulation, embedded atom method

Procedia PDF Downloads 271
2733 Heat Capacity of a Soluble in Water Protein: Equilibrium Molecular Dynamics Simulation

Authors: A. Rajabpour, A. Hadizadeh Kheirkhah

Abstract:

Heat transfer is of great importance to biological systems in order to function properly. In the present study, specific heat capacity as one of the most important heat transfer properties is calculated for a soluble in water Lysozyme protein. Using equilibrium molecular dynamics (MD) simulation, specific heat capacities of pure water, dry lysozyme, and lysozyme-water solution are calculated at 300K for different weight fractions. It is found that MD results are in good agreement with ideal binary mixing rule at small weight fractions. Results of all simulations have been validated with experimental data.

Keywords: specific heat capacity, molecular dynamics simulation, lysozyme protein, equilibrium

Procedia PDF Downloads 275
2732 Applications Of Mathematical Morphology Operators In Civil Infrastructures

Authors: Abrudan Dumitru

Abstract:

Civil infrastructures require permanent attention from the moment of taking over to the moment of demolition. One important aspect that is mandatory to be taken into consideration is crack detection. This operation, to detect cracks that can appear during the lifetime of the civil infrastructure, requires specialized personnel and, depending on the civil infrastructure, can require specialized skills (such as climbing). To overcome this issue with regard to specialized manpower, image processing is used. In our days images can be easily acquired using an unmanned aircraft vehicle system known also as a drone. The main advantages of a drone for civil infrastructure image acquisition are it can be operated at different heights, weather conditions are not an issue, being suitable to be used on rainy, windy, sunny days and so on. In this paper, we used a dataset that contains three types of images: with cracks, without cracks and with noise. To remove the noise presented in images, mathematical morphology operators (MMO) are used.

Keywords: VGG16, VGG19, image processing, mathematical morphology

Procedia PDF Downloads 18
2731 Organic Permeation Properties of Hydrophobic Silica Membranes with Different Functional Groups

Authors: Sadao Araki, Daisuke Gondo, Satoshi Imasaka, Hideki Yamamoto

Abstract:

The separation of organic compounds from aqueous solutions is a key technology for recycling valuable organic compounds and for the treatment of wastewater. The wastewater from chemical plants often contains organic compounds such as ethyl acetate (EA), methylethyl ketone (MEK) and isopropyl alcohol (IPA). In this study, we prepared hydrophobic silica membranes by a sol-gel method. We used phenyltrimethoxysilane (PhTMS), ethyltrimethoxysilan (ETMS), Propyltrimethoxysilane (PrTMS), N-butyltrimethoxysilane (BTMS), N-Hexyltrimethoxysilane (HTMS) as silica sources to introduce each functional groups on the membrane surface. Cetyltrimethyl ammonium bromide (CTAB) was used as a molecular template to create suitable pore that enable the permeation of organic compounds. These membranes with five different functional groups were characterized by SEM, FT-IR, and permporometry. Thicknesses and pore diameters of silica layer for all membrane were about 1.0 μm and about 1 nm, respectively. In other words, functional groups had an insignificant effect on the membrane thicknesses and the formation of the pore by CTAB. We confirmed the effect of functional groups on the flux and separation factor for ethyl acetate (EA), methyl ethyl ketone, acetone and 1-butanol (1-BtOH) /water mixtures. All membranes showed a high flux for ethyl acetate compared with other compounds. In particular, the hydrophobic silica membrane prepared by using BTMS showed 0.75 kg m-2 h-1 of flux for EA. For all membranes, the fluxes of organic compounds showed the large values in the order corresponding to EA > MEK > acetone > 1-BtOH. On the other hand, carbon chain length of functional groups among ETMS, PrTMS, BTMS, PrTMS and HTMS did not have a major effect on the organic flux. Although we confirmed the relationship between organic fluxes and organic molecular diameters or fugacity of organic compounds, these factors had a low correlation with organic fluxes. It is considered that these factors affect the diffusivity. Generally, permeation through membranes is based on the diffusivity and solubility. Therefore, it is deemed that organic fluxes through these hydrophobic membranes are strongly influenced by solubility. We tried to estimate the organic fluxes by Hansen solubility parameter (HSP). HSP, which is based on the cohesion energy per molar volume and is composed of dispersion forces (δd), intermolecular dipole interactions (δp), and hydrogen-bonding interactions (δh), has recently attracted attention as a means for evaluating the resolution and aggregation behavior. Evaluation of solubility for two substances can be represented by using the Ra [(MPa)1/2] value, meaning the distance of HSPs for both of substances. A smaller Ra value means a higher solubility for each substance. On the other hand, it can be estimated that the substances with large Ra value show low solubility. We established the correlation equation, which was based on Ra, of organic flux at low concentrations of organic compounds and at 295-325 K.

Keywords: hydrophobic, membrane, Hansen solubility parameter, functional group

Procedia PDF Downloads 336
2730 Electrospray Deposition Technique of Dye Molecules in the Vacuum

Authors: Nouf Alharbi

Abstract:

The electrospray deposition technique became an important method that enables fragile, nonvolatile molecules to be deposited in situ in high vacuum environments. Furthermore, it is considered one of the ways to close the gap between basic surface science and molecular engineering, which represents a gradual change in the range of scientist research. Also, this paper talked about one of the most important techniques that have been developed and aimed for helping to further develop and characterize the electrospray by providing data collected using an image charge detection instrument. Image charge detection mass spectrometry (CDMS) is used to measure speed and charge distributions of the molecular ions. As well as, some data has been included using SIMION simulation to simulate the energies and masses of the molecular ions through the system in order to refine the mass-selection process.

Keywords: charge, deposition, electrospray, image, ions, molecules, SIMION

Procedia PDF Downloads 108
2729 Molecular Identification and Evolutionary Status of Lucilia bufonivora: An Obligate Parasite of Amphibians in Europe

Authors: Gerardo Arias, Richard Wall, Jamie Stevens

Abstract:

Lucilia bufonivora Moniez, is an obligate parasite of toads and frogs widely distributed in Europe. Its sister taxon Lucilia silvarum Meigen behaves mainly as a carrion breeder in Europe, however it has been reported as a facultative parasite of amphibians. These two closely related species are morphologically almost identical, which has led to misidentification, and in fact, it has been suggested that the amphibian myiasis cases by L. silvarum reported in Europe should be attributed to L. bufonivora. Both species remain poorly studied and their taxonomic relationships are still unclear. The identification of the larval specimens involved in amphibian myiasis with molecular tools and phylogenetic analysis of these two closely related species may resolve this problem. In this work seventeen unidentified larval specimens extracted from toad myiasis cases of the UK, the Netherlands and Switzerland were obtained, their COX1 (mtDNA) and EF1-α (Nuclear DNA) gene regions were amplified and then sequenced. The 17 larval samples were identified with both molecular markers as L. bufonivora. Phylogenetic analysis was carried out with 10 other blowfly species, including L. silvarum samples from the UK and USA. Bayesian Inference trees of COX1 and a combined-gene dataset suggested that L. silvarum and L. bufonivora are separate sister species. However, the nuclear gene EF1-α does not appear to resolve their relationships, suggesting that the rates of evolution of the mtDNA are much faster than those of the nuclear DNA. This work provides the molecular evidence for successful identification of L. bufonivora and a molecular analysis of the populations of this obligate parasite from different locations across Europe. The relationships with L. silvarum are discussed.

Keywords: calliphoridae, molecular evolution, myiasis, obligate parasitism

Procedia PDF Downloads 203
2728 Molecular Dynamics Simulation Studies of High-Intensity, Nanosecond Pulsed Electric Fields Induced Membrane Electroporation

Authors: Jiahui Song

Abstract:

The use of high-intensity, nanosecond electric pulses has been a recent development in biomedical. High-intensity (∼100 kV/cm), nanosecond duration-pulsed electric fields have been shown to induce cellular electroporation. This will lead to an increase in transmembrane conductivity and diffusive permeability. These effects will also alter the electrical potential across the membrane. The applications include electrically triggered intracellular calcium release, shrinkage of tumors, and temporary blockage of the action potential in nerves. In this research, the dynamics of pore formation with the presence of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. MD simulations show pore formation occurs for a pulse with the amplitude of 0.5V/nm at 1ns at temperature 316°K. Also increasing temperatures facilitate pore formation. When the temperature is increased to 323°K, pore forms at 0.75ns with the pulse amplitude of 0.5V/nm. For statistical significance, a total of eight MD simulations are carried out with different starting molecular velocities for each simulation. Also, actual experimental observations are compared against MD simulation results.

Keywords: molecular dynamics, high-intensity, nanosecond, electroporation

Procedia PDF Downloads 83
2727 Molecular Analysis of Somaclonal Variation in Tissue Culture Derived Bananas Using MSAP and SSR Marker

Authors: Emma K. Sales, Nilda G. Butardo

Abstract:

The project was undertaken to determine the effects of modified tissue culture protocols e.g. age of culture and hormone levels (2,4-D) in generating somaclonal variation. Moreover, the utility of molecular markers (SSR and MSAP) in sorting off types/somaclones were investigated. Results show that somaclonal variation is in effect due to prolonged subculture and high 2,4-D concentration. The resultant variation was observed to be due to high level of methylation events specifically cytosine methylation either at the internal or external cytosine and was identified by methylation sensitive amplification polymorphism (MSAP). Simple sequence repeats (SSR) on the other hand, was able to associate a marker to a trait of interest. These therefore, show that molecular markers can be an important tool in sorting out variation/mutants at an early stage.

Keywords: methylation, MSAP, somaclones, SSR, subculture, 2, 4-D

Procedia PDF Downloads 269
2726 Using Combination of Different Sets of Features of Molecules for Improved Prediction of Solubility

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Generally, absorption and bioavailability increase if solubility increases; therefore, it is crucial to predict them in drug discovery applications. Molecular descriptors and Molecular properties are traditionally used for the prediction of water solubility. There are various key descriptors that are used for this purpose, namely Drogan Descriptors, Morgan Descriptors, Maccs keys, etc., and each has different prediction capabilities with differentiating successes between different data sets. Another source for the prediction of solubility is structural features; they are commonly used for the prediction of solubility. However, there are little to no studies that combine three or more properties or descriptors for prediction to produce a more powerful prediction model. Unlike available models, we used a combination of those features in a random forest machine learning model for improved solubility prediction to better predict and, therefore, contribute to drug discovery systems.

Keywords: solubility, molecular descriptors, machine learning, random forest

Procedia PDF Downloads 16
2725 A DFT-Based QSARs Study of Kovats Retention Indices of Adamantane Derivatives

Authors: Z. Bayat

Abstract:

A quantitative structure–property relationship (QSPR) study was performed to develop models those relate the structures of 65 Kovats retention index (RI) of adamantane derivatives. Molecular descriptors derived solely from 3D structures of the molecular compounds. The usefulness of the quantum chemical descriptors, calculated at the level of the DFT theories using 6-311+G** basis set for QSAR study of adamantane derivatives was examined. The use of descriptors calculated only from molecular structure eliminates the need to experimental determination of properties for use in the correlation and allows for the estimation of RI for molecules not yet synthesized. The prediction results are in good agreement with the experimental value. A multi-parametric equation containing maximum Four descriptors at B3LYP/6-31+G** method with good statistical qualities (R2train=0.913, Ftrain=97.67, R2test=0.770, Ftest=3.21, Q2LOO=0.895, R2adj=0.904, Q2LGO=0.844) was obtained by Multiple Linear Regression using stepwise method.

Keywords: DFT, adamantane, QSAR, Kovat

Procedia PDF Downloads 338
2724 Molecular Dynamics Simulation of Free Vibration of Graphene Sheets

Authors: Seyyed Feisal Asbaghian Namin, Reza Pilafkan, Mahmood Kaffash Irzarahimi

Abstract:

TThis paper considers vibration of single-layered graphene sheets using molecular dynamics (MD) and nonlocal elasticity theory. Based on the MD simulations, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), an open source software, is used to obtain fundamental frequencies. On the other hand, governing equations are derived using nonlocal elasticity and first order shear deformation theory (FSDT) and solved using generalized differential quadrature method (GDQ). The small-scale effect is applied in governing equations of motion by nonlocal parameter. The effect of different side lengths, boundary conditions and nonlocal parameter are inspected for aforementioned methods. Results are obtained from MD simulations is compared with those of the nonlocal elasticity theory to calculate appropriate values for the nonlocal parameter. The nonlocal parameter value is suggested for graphene sheets with various boundary conditions. Furthermore, it is shown that the nonlocal elasticity approach using classical plate theory (CLPT) assumptions overestimates the natural frequencies.

Keywords: graphene sheets, molecular dynamics simulations, fundamental frequencies, nonlocal elasticity theory, nonlocal parameter

Procedia PDF Downloads 476
2723 Assessment of Drug Delivery Systems from Molecular Dynamic Perspective

Authors: M. Rahimnejad, B. Vahidi, B. Ebrahimi Hoseinzadeh, F. Yazdian, P. Motamed Fath, R. Jamjah

Abstract:

In this study, we developed and simulated nano-drug delivery systems efficacy in compare to free drug prescription. Computational models can be utilized to accelerate experimental steps and control the experiments high cost. Molecular dynamics simulation (MDS), in particular NAMD was utilized to better understand the anti-cancer drug interaction with cell membrane model. Paclitaxel (PTX) and dipalmitoylphosphatidylcholine (DPPC) were selected for the drug molecule and as a natural phospholipid nanocarrier, respectively. This work focused on two important interaction parameters between molecules in terms of center of mass (COM) and van der Waals interaction energy. Furthermore, we compared the simulation results of the PTX interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane. The molecular dynamic analysis resulted in low energy between the nanocarrier and the cell membrane as well as significant decrease of COM amount in the nanocarrier and the cell membrane system during the interaction. Thus, the drug vehicle showed notably better interaction with the cell membrane in compared to free drug interaction with the cell membrane.

Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier

Procedia PDF Downloads 304