Search results for: modal fleet size
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5936

Search results for: modal fleet size

5726 Size Distribution Effect of InAs/InP Self–Organized Quantum Dots on Optical Properties

Authors: Abdelkader Nouri, M’hamed Bouslama, Faouzi Saidi, Hassan Maaref, Michel Gendry

Abstract:

Self-organized InAs quantum dots (QDs) have been grown on 3,1% InP (110) lattice mismatched substrate by Solid Source Molecular Beam Epitaxy (SSMBE). Stranski-Krastanov mode growth has been used to create self-assembled 3D islands on InAs wetting layer (WL). The optical quality depending on the temperature and power is evaluated. In addition, Atomic Force Microscopy (AFM) images shows inhomogeneous island dots size distribution due to temperature coalescence. The quantum size effect was clearly observed through the spectra photoluminescence (PL) shape.

Keywords: AFM, InAs QDs, PL, SSMBE

Procedia PDF Downloads 651
5725 Sintering of Functionally Graded WC-TiC-Co Cemented Carbides

Authors: Stella Sten, Peter Hedström, Joakim Odqvist, Susanne Norgren

Abstract:

Two functionally graded cemented carbide samples have been produced by local addition of Titanium carbide (TiC) to a pressed Tungsten carbide and Cobalt, WC-10 wt% Co, green body prior to sintering, with the aim of creating a gradient in both composition and grain size in the as-sintered component. The two samples differ only by the in-going WC particle size, where one sub-micron and one coarse WC particle size have been chosen for comparison. The produced sintered samples had a gradient, thus a non-homogenous structure. The Titanium (Ti), Cobalt (Co), and Carbon (C) concentration profiles have been investigated using SEM-EDS and WDS; in addition, the Vickers hardness profile has been measured. Moreover, the Ti concentration profile has been simulated using DICTRA software and compared with experimental results. The concentration and hardness profiles show a similar trend for both samples. Ti and C levels decrease, as expected from the area of TiC application, whereas Co increases towards the edge of the samples. The non-homogenous composition affects the number of stable phases and WC grain size evolution. The sample with finer in-going WC grain size shows a shorter gamma (γ) phase zone and a larger difference in WC grain size compared to the coarse-grained sample. Both samples show, independent of the composition, the presence of abnormally large grains.

Keywords: cemented carbide, functional gradient material, grain growth, sintering

Procedia PDF Downloads 58
5724 Preparation and Characterization of Nano-Metronidazole by Planetary Ball-Milling

Authors: Shahriar Ghammamy, Maryam Gholipoor

Abstract:

Metronidazole nano -powders with the average mean particle size around 90 nm were synthesized by high-energy milling using a planetary ball mill is provided. The Scattering factors, milling of time,the ball size and ball to powder ratio on the material properties powder by the Ray diffraction (XRD) study, scanning electron microscopy (SEM), IR. It has been observed that the density of nano-sized grinding balls as ball to powder ratio depends. Using the dispersion factor, the density Can be reduced below the initial particle size was achieved.

Keywords: metronidazole, ball-milling, nanoparticles, characterization, XRD diffraction

Procedia PDF Downloads 365
5723 Risk Based Maintenance Planning for Loading Equipment in Underground Hard Rock Mine: Case Study

Authors: Sidharth Talan, Devendra Kumar Yadav, Yuvraj Singh Rajput, Subhajit Bhattacharjee

Abstract:

Mining industry is known for its appetite to spend sizeable capital on mine equipment. However, in the current scenario, the mining industry is challenged by daunting factors of non-uniform geological conditions, uneven ore grade, uncontrollable and volatile mineral commodity prices and the ever increasing quest to optimize the capital and operational costs. Thus, the role of equipment reliability and maintenance planning inherits a significant role in augmenting the equipment availability for the operation and in turn boosting the mine productivity. This paper presents the Risk Based Maintenance (RBM) planning conducted on mine loading equipment namely Load Haul Dumpers (LHDs) at Vedanta Resources Ltd subsidiary Hindustan Zinc Limited operated Sindesar Khurd Mines, an underground zinc and lead mine situated in Dariba, Rajasthan, India. The mining equipment at the location is maintained by the Original Equipment Manufacturers (OEMs) namely Sandvik and Atlas Copco, who carry out the maintenance and inspection operations for the equipment. Based on the downtime data extracted for the equipment fleet over the period of 6 months spanning from 1st January 2017 until 30th June 2017, it was revealed that significant contribution of three downtime issues related to namely Engine, Hydraulics, and Transmission to be common among all the loading equipment fleet and substantiated by Pareto Analysis. Further scrutiny through Bubble Matrix Analysis of the given factors revealed the major influence of selective factors namely Overheating, No Load Taken (NTL) issues, Gear Changing issues and Hose Puncture and leakage issues. Utilizing the equipment wise analysis of all the downtime factors obtained, spares consumed, and the alarm logs extracted from the machines, technical design changes in the equipment and pre shift critical alarms checklist were proposed for the equipment maintenance. The given analysis is beneficial to allow OEMs or mine management to focus on the critical issues hampering the reliability of mine equipment and design necessary maintenance strategies to mitigate them.

Keywords: bubble matrix analysis, LHDs, OEMs, Pareto chart analysis, spares consumption matrix, critical alarms checklist

Procedia PDF Downloads 122
5722 A New Method to Reduce 5G Application Layer Payload Size

Authors: Gui Yang Wu, Bo Wang, Xin Wang

Abstract:

Nowadays, 5G service-based interface architecture uses text-based payload like JSON to transfer business data between network functions, which has obvious advantages as internet services but causes unnecessarily larger traffic. In this paper, a new 5G application payload size reduction method is presented to provides the mechanism to negotiate about new capability between network functions when network communication starts up and how 5G application data are reduced according to negotiated information with peer network function. Without losing the advantages of 5G text-based payload, this method demonstrates an excellent result on application payload size reduction and does not increase the usage quota of computing resource. Implementation of this method does not impact any standards or specifications and not change any encoding or decoding functionality too. In a real 5G network, this method will contribute to network efficiency and eventually save considerable computing resources.

Keywords: 5G, JSON, payload size, service-based interface

Procedia PDF Downloads 142
5721 Effect of Tube Backward Extrusion (TBE) Process on the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy

Authors: H. Abdolvand, M. Riazat, H. Sohrabi, G. Faraji

Abstract:

An experimental investigation into the Tube Backward Extrusion (TBE) process on AZ31 magnesium alloy is studied. Microstructures and grain size distribution of the specimens before and after TBE process are investigated by optical microscopy. Tensile and Vickers microhardness tests along extrusion direction were performed at room temperature. It is found that the average grain size is refined remarkably from the initial 33 µm down to 3.5 µm after TBE process. Also, the microhardness increased significantly to 58 HV after the process from an initial value of 36 HV.

Keywords: tube backward extrusion, AZ31, grain size distribution, grain refinement

Procedia PDF Downloads 467
5720 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring

Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti

Abstract:

Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by density-based time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., mean value, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one class classifier (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, a new anomaly detector strategy is proposed, namely one class classifier neural network two (OCCNN2), which exploit the classification capability of standard classifiers in an anomaly detection problem, finding the standard class (the boundary of the features space in normal operating conditions) through a two-step approach: coarse and fine boundary estimation. The coarse estimation uses classics OCC techniques, while the fine estimation is performed through a feedforward neural network (NN) trained that exploits the boundaries estimated in the coarse step. The detection algorithms vare then compared with known methods based on principal component analysis (PCA), kernel principal component analysis (KPCA), and auto-associative neural network (ANN). In many cases, the proposed solution increases the performance with respect to the standard OCC algorithms in terms of F1 score and accuracy. In particular, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 96% with the proposed method.

Keywords: anomaly detection, frequencies selection, modal analysis, neural network, sensor network, structural health monitoring, vibration measurement

Procedia PDF Downloads 90
5719 Efficient Study of Substrate Integrated Waveguide Devices

Authors: J. Hajri, H. Hrizi, N. Sboui, H. Baudrand

Abstract:

This paper presents a study of SIW circuits (Substrate Integrated Waveguide) with a rigorous and fast original approach based on Iterative process (WCIP). The theoretical suggested study is validated by the simulation of two different examples of SIW circuits. The obtained results are in good agreement with those of measurement and with software HFSS.

Keywords: convergence study, HFSS, modal decomposition, SIW circuits, WCIP method

Procedia PDF Downloads 467
5718 Production of Low-Density Nanocellular Foam Based on PMMA/PEBAX Blends

Authors: Nigus Maregu Demewoz, Shu-Kai Yeh

Abstract:

Low-density nanocellular foam is a fascinating new-generation advanced material due to its mechanical strength and thermal insulation properties. In nanocellular foam, reducing the density increases the insulation ability. However, producing a nanocellular foam of densities less than 0.3 with a cell size of less than 100 nm is very challenging. In this study, poly (methyl methacrylate) (PMMA) was blended with Polyether block amide (PEBAX) to study the effects of PEBAX on the nanocellular foam structure of the PMMA matrix. We added 2 wt% of PEBAX in the PMMA matrix, and the PEBAX nanostructured domain size of 45 nm was well dispersed in the PMMA matrix. The foaming result produced a new generation special bouquet-like nanocellular foam of cell size less than 50 nm with a relative density of 0.24. Also, we were able to produce a nanocellular foam of a relative density of about 0.17. In addition to thermal insulation applications, bouquet-like nanocellular foam may be expected for filtration applications.

Keywords: nanocellular foam, low-density, cell size, relative density, PMMA/PEBAX

Procedia PDF Downloads 49
5717 Count Regression Modelling on Number of Migrants in Households

Authors: Tsedeke Lambore Gemecho, Ayele Taye Goshu

Abstract:

The main objective of this study is to identify the determinants of the number of international migrants in a household and to compare regression models for count response. This study is done by collecting data from total of 2288 household heads of 16 randomly sampled districts in Hadiya and Kembata-Tembaro zones of Southern Ethiopia. The Poisson mixed models, as special cases of the generalized linear mixed model, is explored to determine effects of the predictors: age of household head, farm land size, and household size. Two ethnicities Hadiya and Kembata are included in the final model as dummy variables. Stepwise variable selection has indentified four predictors: age of head, farm land size, family size and dummy variable ethnic2 (0=other, 1=Kembata). These predictors are significant at 5% significance level with count response number of migrant. The Poisson mixed model consisting of the four predictors with random effects districts. Area specific random effects are significant with the variance of about 0.5105 and standard deviation of 0.7145. The results show that the number of migrant increases with heads age, family size, and farm land size. In conclusion, there is a significantly high number of international migration per household in the area. Age of household head, family size, and farm land size are determinants that increase the number of international migrant in households. Community-based intervention is needed so as to monitor and regulate the international migration for the benefits of the society.

Keywords: Poisson regression, GLM, number of migrant, Hadiya and Kembata Tembaro zones

Procedia PDF Downloads 261
5716 Predictive Maintenance Based on Oil Analysis Applicable to Transportation Fleets

Authors: Israel Ibarra Solis, Juan Carlos Rodriguez Sierra, Ma. del Carmen Salazar Hernandez, Isis Rodriguez Sanchez, David Perez Guerrero

Abstract:

At the present paper we try to explain the analysis techniques use for the lubricating oil in a maintenance period of a city bus (Mercedes Benz Boxer 40), which is call ‘R-24 route’, line Coecillo Centro SA de CV in Leon Guanajuato, to estimate the optimal time for the oil change. Using devices such as the rotational viscometer and the atomic absorption spectrometer, they can detect the incipient form when the oil loses its lubricating properties and, therefore, cannot protect the mechanical components of diesel engines such these trucks. Timely detection of lost property in the oil, it allows us taking preventive plan maintenance for the fleet.

Keywords: atomic absorption spectrometry, maintenance, predictive velocity rate, lubricating oils

Procedia PDF Downloads 533
5715 Production of Low-Density Nanocellular Foam Based on PMMA/PEBAX Blends

Authors: Nigus Maregu Demewoz, Shu-Kai Yeh

Abstract:

Low-density nanocellular foam is a fascinating new-generation advanced material due to its mechanical strength and thermal insulation properties. In nanocellular foam, reducing the density increases the insulation ability. However, producing a nanocellular foam of densities less than 0.3 with a cell size of less than 100 nm is very challenging. In this study, poly (methyl methacrylate) (PMMA) was blended with Polyether block amide (PEBAX) to study the effects of PEBAX on the nanocellular foam structure of the PMMA matrix. We added 2 wt% of PEBAX in the PMMA matrix, and the PEBAX nanostructured domain size of 45 nm was well dispersed in the PMMA matrix. The foaming result produced a new generation special bouquet-like nanocellular foam of cell size less than 50 nm with a relative density of 0.24. Also, we were able to produce a nanocellular foam of a relative density of about 0.17. In addition to thermal insulation applications, bouquet-like nanocellular foam may be expected for filtration applications.

Keywords: nanocellular foam, low-density, cell size, relative density, PMMA/PEBAX blend

Procedia PDF Downloads 51
5714 Comparative Study of Free Vibrational Analysis and Modes Shapes of FSAE Car Frame Using Different FEM Modules

Authors: Rajat Jain, Himanshu Pandey, Somesh Mehta, Pravin P. Patil

Abstract:

Formula SAE cars are the student designed and fabricated formula prototype cars, designed according to SAE INTERNATIONAL design rules which compete in the various national and international events. This paper shows a FEM based comparative study of free vibration analysis of different mode shapes of a formula prototype car chassis frame. Tubing sections of different diameters as per the design rules are designed in such a manner that the desired strength can be achieved. Natural frequency of first five mode was determined using finite element analysis method. SOLIDWORKS is used for designing the frame structure and SOLIDWORKS SIMULATION and ANSYS WORKBENCH 16.2 are used for the modal analysis. Mode shape results of ANSYS and SOLIDWORKS were compared. Fixed –fixed boundary conditions are used for fixing the A-arm wishbones. The simulation results were compared for the validation of the study. First five modes were compared and results were found within the permissible limits. The AISI4130 (CROMOLY- chromium molybdenum steel) material is used and the chassis frame is discretized with fine quality QUAD mesh followed by Fixed-fixed boundary conditions. The natural frequency of the chassis frame is 53.92-125.5 Hz as per the results of ANSYS which is found within the permissible limits. The study is concluded with the light weight and compact chassis frame without compensation with strength. This design allows to fabricate an extremely safe driver ergonomics, compact, dynamically stable, simple and light weight tubular chassis frame with higher strength.

Keywords: FEM, modal analysis, formula SAE cars, chassis frame, Ansys

Procedia PDF Downloads 308
5713 Pharmaceutical Scale up for Solid Dosage Forms

Authors: A. Shashank Tiwari, S. P. Mahapatra

Abstract:

Scale-up is defined as the process of increasing batch size. Scale-up of a process viewed as a procedure for applying the same process to different output volumes. There is a subtle difference between these two definitions: batch size enlargement does not always translate into a size increase of the processing volume. In mixing applications, scale-up is indeed concerned with increasing the linear dimensions from the laboratory to the plant size. On the other hand, processes exist (e.g., tableting) where the term ‘scale-up’ simply means enlarging the output by increasing the speed. To complete the picture, one should point out special procedures where an increase of the scale is counterproductive and ‘scale-down’ is required to improve the quality of the product. In moving from Research and Development (R&D) to production scale, it is sometimes essential to have an intermediate batch scale. This is achieved at the so-called pilot scale, which is defined as the manufacturing of drug product by a procedure fully representative of and simulating that used for full manufacturing scale. This scale also makes it possible to produce enough products for clinical testing and to manufacture samples for marketing. However, inserting an intermediate step between R&D and production scales does not, in itself, guarantee a smooth transition. A well-defined process may generate a perfect product both in the laboratory and the pilot plant and then fail quality assurance tests in production.

Keywords: scale up, research, size, batch

Procedia PDF Downloads 375
5712 Preparation and Characterization of Diclofenac Sodium Loaded Solid Lipid Nanoparticle

Authors: Oktavia Eka Puspita

Abstract:

The possibility of using Solid Lipid Nanoparticles (SLN) for topical use is an interesting feature concerning this system has occlusive properties on the skin surface therefore enhance the penetration of drugs through the stratum corneum by increased hydration. This advantage can be used to enhance the drug penetration of topical delivery such as Diclofenac sodium for the relief of signs and symptoms of osteoarthritis, rheumatoid arthritis and ankylosing spondylitis. The purpose of this study was focused on the preparation and physical characterization of Diclofenac sodium loaded SLN (D-SLN). D loaded SLN were prepared by hot homogenization followed by ultrasonication technique. Since the occlusion factor of SLN is related to its particle size the formulation of D-SLN in present study two formulations different in its surfactant contents were prepared to investigate the difference of the particle size resulted. Surfactants selected for preparation of formulation A (FA) were lecithin soya and Tween 80 whereas formulation B (FB) were lecithin soya, Tween 80, and Sodium Lauryl Sulphate. D-SLN were characterized for particle size and distribution, polydispersity index (PI), zeta potential using Beckman-Coulter Delsa™ Nano. Overall, the particle size obtained from FA was larger than FB. FA has 90% of the particles were above 1000 nm, while FB has 90% were below 100 nm.

Keywords: solid lipid nanoparticles, hot homogenization technique, particle size analysis, topical administration

Procedia PDF Downloads 468
5711 Ag-Cu and Bi-Cd Eutectics Ribbons under Superplastic Tensile Test Regime

Authors: Edgar Ochoa, G. Torres-Villasenor

Abstract:

Superplastic deformation is shown by materials with a fine grain size, usually less than 10 μm, when they are deformed within the strain rate range 10-5 10-1 s-1 at temperatures greater than 0.5Tm, where Tm is the melting point in Kelvin. According to the constitutive equation for superplastic flow, refinement of the grain size would be expected to increase the optimum strain rate and decrease the temperature required for superplastic flow. Ribbons of eutectic Ag-Cu and Bi-Cd alloys were manufactured by using a single roller melt-spinning technique to obtain a fine grain structure for later test in superplastic regime. The eutectics ribbons were examined by scanning electron microscopy and X-Ray diffraction, and the grain size was determined using the image analysis software ImageJ. The average grain size was less than 1 μm. Tensile tests were carried out from 10-4 to 10-1 s-1, at room temperature, to evaluate the superplastic behavior. The largest deformation was shown by the Bi-Cd eutectic ribbons, Ɛ=140 %, despite that these ribbons have a hexagonal unit cell. On the other hand, Ag-Cu eutectic ribbons have a minor grain size and cube unit cell, however they showed a lower deformation in tensile test under the same conditions than Bi-Cd ribbons. This is because the Ag-Cu grew in a strong cube-cube orientation relationship.

Keywords: eutectic ribbon, fine grain, superplastic deformation, cube-cube orientation

Procedia PDF Downloads 138
5710 Government Size and Economic Growth: Testing the Non-Linear Hypothesis for Nigeria

Authors: R. Santos Alimi

Abstract:

Using time-series techniques, this study empirically tested the validity of existing theory which stipulates there is a nonlinear relationship between government size and economic growth; such that government spending is growth-enhancing at low levels but growth-retarding at high levels, with the optimal size occurring somewhere in between. This study employed three estimation equations. First, for the size of government, two measures are considered as follows: (i) share of total expenditures to gross domestic product, (ii) share of recurrent expenditures to gross domestic product. Second, the study adopted real GDP (without government expenditure component), as a variant measure of economic growth other than the real total GDP, in estimating the optimal level of government expenditure. The study is based on annual Nigeria country-level data for the period 1970 to 2012. Estimation results show that the inverted U-shaped curve exists for the two measures of government size and the estimated optimum shares are 19.81% and 10.98%, respectively. Finally, with the adoption of real GDP (without government expenditure component), the optimum government size was found to be 12.58% of GDP. Our analysis shows that the actual share of government spending on average (2000 - 2012) is about 13.4%.This study adds to the literature confirming that the optimal government size exists not only for developed economies but also for developing economy like Nigeria. Thus, a public intervention threshold level that fosters economic growth is a reality; beyond this point economic growth should be left in the hands of the private sector. This finding has a significant implication for the appraisal of government spending and budgetary policy design.

Keywords: public expenditure, economic growth, optimum level, fully modified OLS

Procedia PDF Downloads 386
5709 Corporate Governance and Bank Performance: A Study of Selected Deposit Money Banks in Nigeria

Authors: Ayodele Ajayi, John Ajayi

Abstract:

This paper investigates the effect of corporate governance with a view to determining the relationship between board size and bank performance. Data for the study were obtained from the audited financial statements of five sampled banks listed on the Nigerian Stock Exchange. Panel data technique was adopted and analysis was carried out with the use of multiple regression and pooled ordinary least square. Results from the study show that the larger the board size, the greater the profit implying that corporate governance is positively correlated with bank performance.

Keywords: corporate governance, banks performance, board size, pooled data

Procedia PDF Downloads 314
5708 Effect of Filler Size and Shape on Positive Temperature Coefficient Effect

Authors: Eric Asare, Jamie Evans, Mark Newton, Emiliano Bilotti

Abstract:

Two types of filler shapes (sphere and flakes) and three different sizes are employed to study the size effect on PTC. The composite is prepared using a mini-extruder with high-density polyethylene (HDPE) as the matrix. A computer modelling is used to fit the experimental results. The percolation threshold decreases with decreasing filler size and this was observed for both the spherical particles as well as the flakes. This was caused by the decrease in interparticle distance with decreasing filler size. The 100 µm particles showed a larger PTC intensity compared to the 5 µm particles for the metal coated glass sphere and flake. The small particles have a large surface area and agglomeration and this makes it difficult for the conductive network to e disturbed. Increasing the filler content decreased the PTC intensity and this is due to an increase in the conductive network within the polymer matrix hence more energy is needed to disrupt the network.

Keywords: positive temperature coefficient (PTC) effect, conductive polymer composite (CPC), electrical conductivity

Procedia PDF Downloads 398
5707 Experimental Modal Analysis of a Suspended Composite Beam

Authors: First A. Lahmar Lahbib, Second B. Abdeldjebar Rabiâ, Third C. Moudden B, forth D. Missoum L

Abstract:

Vibration tests are used to identify the elasticity modulus in two directions. This strategy is applied to composite materials glass / polyester. Experimental results made on a specimen in free vibration showed the efficiency of this method. Obtained results were validated by a comparison to results stemming from static tests.

Keywords: beam, characterization, composite, elasticity modulus, vibration.

Procedia PDF Downloads 436
5706 Effect of Building Construction Sizes on Project Delivery Methods in Nigeria

Authors: Nuruddeen Usman, Mohammad Sani

Abstract:

The performance of project delivery methods has been an issue of concern to various stakeholders in the construction industry. The contracting system of project delivery is the traditional system used in the delivery of most public projects in Nigeria. The direct labor system is used most times as an alternative to the traditional system. There were so many complain about the performance of contracting system and the suitability of direct labor as an alternative to the delivery of public projects. Therefore, this paper is aimed at investigating the effect of project size on the project delivery methods in the completed public buildings. Questionnaires were self-administered to managerial staff in the study area and analyzed using descriptive statistics. The findings reveals that contracting system was choosing for large size building construction project delivery with higher frequency (F) of 40 (76.9%) against direct labor with 12 (23.1%). While the small size project, the result revealed a frequency (F) of 26 (50%) for contracting system and direct labor system respectively. Base on the research findings, the contracting system, was recommended for all sizes of building construction project delivery while direct labor system can only use as an alternative for small size building construction projects delivery.

Keywords: construction size, contracting system, direct labour, effect

Procedia PDF Downloads 428
5705 The Creep Analysis of a Varying Thickness on a Rotating Composite Disk with Different Particle Size by Using Sherby’s Law

Authors: Rupinder Kaur, Harjot Kaur

Abstract:

The objective of this paper is to present the study of the effect of varying thickness on rotating composite disks made from Al-SiC_P having different particle sizes. Mathematical modeling is used to calculate the effect of varying thickness with different particle sizes on rotating composite disks in radial as well as tangential directions with thermal gradients. In comparison to various particle sizes with varied thicknesses, long-term deformation occurs. The results are displayed visually, demonstrating how creep deformation decreases with changing particle size and thickness.

Keywords: creep, varying thickness, particle size, stresses and strain rates

Procedia PDF Downloads 51
5704 The Urgency of Berth Deepening at the Port of Durban

Authors: Rowen Naicker, Dhiren Allopi

Abstract:

One of the major problems the Port of Durban is experiencing is addressing shallow spots aggravated by megaships that berth. In the recent years, the vessels that call at the Port have increased in size which calls for draughts that are much deeper. For this reason, these larger vessels can only berth under high tide to avoid the risk of running aground. In addition to this, the ships cannot sail in fully laden which does not make it feasible for ship owners. Further during the berthing materials are displaced from the seabed which result in shallow spots being developed. The permitted draft (under-keel allowance) for the Durban Container Terminal (DCT) is currently 12.2 m. Transnet National Ports Authority (TNPA) are currently investing in a dredging fleet worth almost two billion rand. One of the highlights of this investment would be the building of grab hopper dredger that would be dedicated to the Port by 2017. TNPA are trying various techniques to dissolve the reduction of draughts by implementing dredging maintenance projects but is this sufficient? The ideal resolution would be the deepening and widening of the berths. Plans for this project is in place, but the implementation process is a matter of urgency. The intention of this project will be to accommodate three big vessels rather than two which in turn will improve the turnaround time in the port. The berthing will then no longer depend on high tide to avoid ships running aground. The aim of this paper is to prove the implementation of deepening and widening of the Port of Durban is a matter of urgency. If the plan to deepen and widen the berths at DCT is delayed it will mean a loss of business for the South African economy. If larger vessels cannot be accommodated in the Port of Durban, it will bypass the busiest container handling facility in the Southern hemisphere. Shipping companies are compelled to use larger ships as opposed to smaller vessels to lower port and fuel costs. A delay in the expansion of DCT could also result in an escalation of costs.

Keywords: DCT, deepening, berth, port

Procedia PDF Downloads 374
5703 Influence of Aluminium on Grain Refinement in As-Rolled Vanadium-Microalloyed Steels

Authors: Kevin Mark Banks, Dannis Rorisang Nkarapa Maubane, Carel Coetzee

Abstract:

The influence of aluminium content, reheating temperature, and sizing (final) strain on the as-rolled microstructure was systematically investigated in vanadium-microalloyed and C-Mn plate steels. Reheating, followed by hot rolling and air cooling simulations were performed on steels containing a range of aluminium and nitrogen contents. Natural air cooling profiles, corresponding to 6 and 20mm thick plates, were applied. The austenite and ferrite/pearlite microstructures were examined using light optical microscopy. Precipitate species and volume fraction were determined on selected specimens. No influence of aluminium content was found below 0.08% on the as-rolled grain size in all steels studied. A low Al-V-steel produced the coarsest initial austenite grain size due to AlN dissolution at low temperatures leading to abnormal grain growth. An Al-free V-N steel had the finest initial microstructure. Although the as-rolled grain size for 20mm plate was similar in all steels tested, the grain distribution was relatively mixed. The final grain size in 6mm plate was similar for most compositions; the exception was an as-cast V low N steel, where the size of the second phase was inversely proportional to the sizing strain. This was attributed to both segregation and a low VN volume fraction available for effective pinning of austenite grain boundaries during cooling. Increasing the sizing strain refined the microstructure significantly in all steels.

Keywords: aluminium, grain size, nitrogen, reheating, sizing strain, steel, vanadium

Procedia PDF Downloads 110
5702 Study on the Impact of Size and Position of the Shear Field in Determining the Shear Modulus of Glulam Beam Using Photogrammetry Approach

Authors: Niaz Gharavi, Hexin Zhang

Abstract:

The shear modulus of a timber beam can be determined using torsion test or shear field test method. The shear field test method is based on shear distortion measurement of the beam at the zone with the constant transverse load in the standardized four-point bending test. The current code of practice advises using two metallic arms act as an instrument to measure the diagonal displacement of the constructing square. The size and the position of the constructing square might influence the shear modulus determination. This study aimed to investigate the size and the position effect of the square in the shear field test method. A binocular stereo vision system has been employed to determine the 3D displacement of a grid of target points. Six glue laminated beams were produced and tested. Analysis of Variance (ANOVA) was performed on the acquired data to evaluate the significance of the size effect and the position effect of the square. The results have shown that the size of the square has a noticeable influence on the value of shear modulus, while, the position of the square within the area with the constant shear force does not affect the measured mean shear modulus.

Keywords: shear field test method, structural-sized test, shear modulus of Glulam beam, photogrammetry approach

Procedia PDF Downloads 267
5701 Microscopic Visualization of the Ice Slurry Ice Particles

Authors: Juan José Milón Guzmán, Herbert Jesús Del Carpio Beltrán, Sergio Leal Braga

Abstract:

Visualizations of ice particles of ice slurry are performed. The form and size of ice particles is investigated by optical microscopy. It permits to evaluate statistically the geometrical shapes of the ice crystals. The observed particle size corresponds with the different solutes (sugar, salt, propylene glycol).

Keywords: ice slurry, visualization, ice particles, solutes

Procedia PDF Downloads 339
5700 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures

Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad

Abstract:

This paper covers application of an elitist selfadaptive
step-size search (ESASS) to optimum design of steel
skeletal structures. In the ESASS two approaches are considered for
improving the convergence accuracy as well as the computational
efficiency of the original technique namely the so called selfadaptive
step-size search (SASS). Firstly, an additional randomness
is incorporated into the sampling step of the technique to preserve
exploration capability of the algorithm during the optimization.
Moreover, an adaptive sampling scheme is introduced to improve the
quality of final solutions. Secondly, computational efficiency of the
technique is accelerated via avoiding unnecessary analyses during the
optimization process using an upper bound strategy. The numerical
results demonstrate the usefulness of the ESASS in the sizing
optimization problems of steel truss and frame structures.

Keywords: structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames

Procedia PDF Downloads 339
5699 Synthesis, Structural and Magnetic Properties of CdFe2O4 Ferrite

Authors: Justice Zakhele Msomi

Abstract:

Nanoparticles of CdFe2O4 with particle size of about 10 nm have been synthesized by high energy ball milling and co-precipitation processes. The synthesis route appears to have some effects on the properties. The compounds have been characterized by X-ray diffraction, Fourier Transform Infrared (FTIR), transmission electron microscopy (TEM), Mössbauer and magnetization measurements. The XRD pattern of CdFe2O4 provides information about single-phase formation of spinel structure with cubic symmetry. The FTIR measurements between 400 and 4000 cm-1 indicate intrinsic cation vibration of the spinel structure. The Mössbauer spectra were recorded at 4 K and 300 K. The hyperfine fields appear to be highly sensitive on particle size. The evolution of the properties as a function of particle size is also presented.

Keywords: ferrite, nanoparticles, magnetization, Mössbauer

Procedia PDF Downloads 367
5698 Microstructural Origin of Morphotropic Phase Boundary and Magnetic Ordering in the Multiferroic BiFeO3-PbTiO3

Authors: Bastola Narayan, Rajeev Ranjan

Abstract:

The morphotropic phase boundary (MPB) in the magnetoelectric (1-x)BiFeO3-(x)PbTiO3 has remained a matter of controversy ever since its discovery in 1964. The nature of the phase stabilized (single phase tetragonal or coexistence of tetragonal and rhombohedral phases) is very sensitive to the slight changes in the synthesis conditions. It thus remained an enigma as to what is the essential physical factor which is controlled by the slight difference in the synthesis conditions that finally determines, whether the phase formed will be single phase or coexistence of phases. In this paper, we demonstrate that the nature of the phase stabilized in this system is uniquely dependent on the crystallite size. The system is shown to exhibit features of abnormal grain growth (AGG) during sintering with abrupt increase in the grain size from ~ 1 micron to ~ 10 microns. The 10 micron grains exhibit pure tetragonal phase while the 1 micron grains exhibit coexistence of rhombohedral and tetragonal ferroelectric phases. The Rietveld analysis of powder neutron diffraction shows a paramagnetic to antiferromagnetic order transition inducing with crystalline size reduction from 10 micron to 1 micron. Since tetragonal phase is known to have paramagnetic order and rhombohedral phase has antiferromagnetic order in room temperature, this further strengthens our argument of size induced structure transition.

Keywords: size driven MPB, size driven magnetic ordering, abnormal grain growth, phase formation in BF-PT system

Procedia PDF Downloads 306
5697 The Effect of Water Droplets Size in Fire Fighting Systems

Authors: Tassadit Tabouche

Abstract:

Water sprays pattern, and water droplets size (different droplets diameter) are a key factors in the success of the suppression by water spray. The effects of the two important factors are investigated in this study. However, the fire extinguishing mechanism in such devices is not well understood due to the complexity of the physical and chemical interactions between water spray and fire plume. in this study, 3D, unsteady, two phase flow CFD simulation approach is introduced to provide a quantitative analysis of the complex interactions occurring between water spray and fire plume. Lagrangian Discrete Phase Model (DPM) was used for water droplets and a global one-step reaction mechanism in combustion model was used for fire plume.

Keywords: droplets, water spray, water droplets size, 3D

Procedia PDF Downloads 494