Search results for: microbial population
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6472

Search results for: microbial population

6202 Insights into Archaeological Human Sample Microbiome Using 16S rRNA Gene Sequencing

Authors: Alisa Kazarina, Guntis Gerhards, Elina Petersone-Gordina, Ilva Pole, Viktorija Igumnova, Janis Kimsis, Valentina Capligina, Renate Ranka

Abstract:

Human body is inhabited by a vast number of microorganisms, collectively known as the human microbiome, and there is a tremendous interest in evolutionary changes in human microbial ecology, diversity and function. The field of paleomicrobiology, study of ancient human microbiome, is powered by modern techniques of Next Generation Sequencing (NGS), which allows extracting microbial genomic data directly from archaeological sample of interest. One of the major techniques is 16S rRNA gene sequencing, by which certain 16S rRNA gene hypervariable regions are being amplified and sequenced. However, some limitations of this method exist including the taxonomic precision and efficacy of different regions used. The aim of this study was to evaluate the phylogenetic sensitivity of different 16S rRNA gene hypervariable regions for microbiome studies in the archaeological samples. Towards this aim, archaeological bone samples and corresponding soil samples from each burial environment were collected in Medieval cemeteries in Latvia. The Ion 16S™ Metagenomics Kit targeting different 16S rRNA gene hypervariable regions was used for library construction (Ion Torrent technologies). Sequenced data were analysed by using appropriate bioinformatic techniques; alignment and taxonomic representation was done using Mothur program. Sequences of most abundant genus were further aligned to E. coli 16S rRNA gene reference sequence using MEGA7 in order to identify the hypervariable region of the segment of interest. Our results showed that different hypervariable regions had different discriminatory power depending on the groups of microbes, as well as the nature of samples. On the basis of our results, we suggest that wider range of primers used can provide more accurate recapitulation of microbial communities in archaeological samples. Acknowledgements. This work was supported by the ERAF grant Nr. 1.1.1.1/16/A/101.

Keywords: 16S rRNA gene, ancient human microbiome, archaeology, bioinformatics, genomics, microbiome, molecular biology, next-generation sequencing

Procedia PDF Downloads 163
6201 Combining Bio-Molecular and Isotopic Tools to Determine the Fate of Halogenated Compounds in Polluted Groundwater

Authors: N. Balaban, A. Buernstein, F. Gelman, Z. Ronen

Abstract:

Brominated flame retardants are widespread pollutants, and are known to be toxic, carcinogenic, endocrinic disrupting as well as recalcitrant. The industrial complex Neot Hovav, in the Northern Negev, Israel, is situated above a fractured chalk aquitard, which is polluted by a wide variety of halogenated organic compounds. Two of the abundant pollutants found in the site are Dibromoneopentyl-glycol (DBNPG) and tribromoneopentyl-alcohol (TBNPA). Due to the elusive nature of the groundwater flow, it is difficult to connect between the spatial changes in contaminant concentrations to degradation. In this study, we attempt to determine whether these compounds are biodegraded in the groundwater, and to gain a better understanding concerning the bacterial community in the groundwater. This was achieved through the application of compound-specific isotope analysis (CSIA) of carbon (13^C/12^C) and bromine (81^Br/79^Br), and new-generation MiSeq pyrosequencing. The sampled boreholes were distributed among three main areas of the industrial complex: around the production plant of TBNPA and DBNPG; along the Hovav Wadi (small ephemeral stream) which crosses and drains the industrial complex; and downstream to the industrial area. TBNPA and DBNPG are found in all three areas, with no clear connection to the proximity of the borehole to the production plant. Initial isotopic data of TBNPA from boreholes in the area surrounding the production plant, reveal no changes in the carbon and bromine isotopic values. When observing the microbial groundwater community, the dominant phylum is Proteobacteria. Known anaerobic dehalogenating bacteria such as Dehalococcoides from the Chloroflexi phylum have also been detected. A statistical comparison of the groundwater microbial diversity using a multi-variant ordination of non-metric multidimensional scaling (NMDS) reveals three main clusters in accordance to spatial location in the industrial complex: all the boreholes sampled adjacent to the production plant cluster together and separately from the Wadi Hovav boreholes cluster and the downstream to the industrial area borehole cluster. This work provides the basis for the development and implication of an isotopic fractionation based tool for assessing the biodegradation of brominated organic compounds in contaminated environments, and a novel attempt to characterize the spatial microbial diversity in the contaminated site.

Keywords: biodegradation, brominated flame retardants, groundwater, isotopic fractionation, microbial diversity

Procedia PDF Downloads 212
6200 Microbial Removal of Polycyclic Aromatic Hydrocarbons from Petroleum Refinery Sludge: A Consortial Approach

Authors: Dheepshika Kodieswaran

Abstract:

The persisting problem in the world that continuously impose our planet at risk is the increasing amounts of recalcitrant. One such issue is the disposal of the Petroleum Refinery Sludge (PRS) which constitutes hydrocarbons that are hazardous to terrestrial and aquatic life. The comparatively safe approach to handling these wastes is by microbial degradation, while the other chemical and physical methods are either expensive and/or produce secondary pollutants. The bacterial and algal systems have different pathways for the degradation of hydrocarbons, and their growth rates vary. This study shows how different bacterial and microalgal strains degrade the polyaromatic hydrocarbon PAHs individually and their symbiotic influence on degradation as well. In this system, the metabolites and gaseous exchange help each other in growth. This method using also aids in the accumulation of lipids in microalgal cells and from which bio-oils can also be extracted. The bacterial strains used in this experiment are reported to be indigenous strains isolated from PRS. The target PAH studied were anthracene and pyrene for a period of 28 days. The PAH degradation kinetics best fitted the Gompertz model, and the order of the kinetics, rate constants, and half-life was determined.

Keywords: petroleum refinery sludge, co-culturing, polycyclic hydrocarbons, microalgal-bacterial consortia

Procedia PDF Downloads 74
6199 Plant Microbiota of Coastal Halophyte Salicornia Ramossisima

Authors: Isabel N. Sierra-Garcia, Maria J. Ferreira, Sandro Figuereido, Newton Gomes, Helena Silva, Angela Cunha

Abstract:

Plant-associated microbial communities are considered crucial in the adaptation of halophytes to coastal environments. The plant microbiota can be horizontally acquired from the environment or vertically transmitted from generation to generation via seeds. Recruiting of the microbial communities by the plant is affected by geographical location, soil source, host genotype, and cultivation practice. There is limited knowledge reported on the microbial communities in halophytes the influence of biotic and abiotic factors. In this work, the microbiota associated with the halophyte Salicornia ramosissima was investigated to determine whether the structure of bacterial communities is influenced by host genotype or soil source. For this purpose, two contrasting sites where S. ramosissima is established in the estuarine system of the Ria de Aveiro were investigated. One site corresponds to a natural salt marsh where S. ramosissima plants are present (wild plants), and the other site is a former salt pan that nowadays are subjected to intensive crop production of S. ramosissima (crop plants). Bacterial communities from the rhizosphere, seeds and root endosphere of S. ramossisima from both sites were investigated by sequencing bacterial 16S rRNA gene using the Illumina MiSeq platform. The analysis of the sequences showed that the three plant-associated compartments, rhizosphere, root endosphere, and seed endosphere, harbor distinct microbiomes. However, bacterial richness and diversity were higher in seeds of wild plants, followed by rhizosphere in both sites, while seeds in the crop site had the lowest diversity. Beta diversity measures indicated that bacterial communities in root endosphere and seeds were more similar in both wild and crop plants in contrast to rhizospheres that differed by local, indicating that the recruitment of the similar bacterial communities by the plant genotype is active in regard to the site. Moreover, bacterial communities from the root endosphere and rhizosphere were phylogenetically more similar in both sites, but the phylogenetic composition of seeds in wild and crop sites was distinct. These results indicate that cultivation practices affect the seed microbiome. However, minimal vertical transmission of bacteria from seeds to adult plants is expected. Seeds from the crop site showed higher abundances of Kushneria and Zunongwangia genera. Bacterial members of the classes Alphaprotebacteria and Bacteroidia were the most ubiquitous across sites and compartments and might encompass members of the core microbiome. These findings indicate that bacterial communities associated with S. ramosissima are more influenced by host genotype rather than local abiotic factors or cultivation practices. This study provides a better understanding of the composition of the plant microbiota in S. ramosissima , which is essential to predict the interactions between plant and associated microbial communities and their effects on plant health. This knowledge is useful to the manipulations of these microbial communities to enhance the health and productivity of this commercially important plant.

Keywords: halophytes, plant microbiome, Salicornia ramosissima, agriculture

Procedia PDF Downloads 129
6198 Demographic Characteristics of the Atlas Barbary Sheep in Amassine Nature Reserve, Atlas Range, Morocco: Implications For Conservation and Management

Authors: Hakim Bachiri, Mohammed Znari, Moulay Abdeljalil Ait Baamranne

Abstract:

Population characteristics of Atlas Barbary sheep (Ammotragus lervia lervia) were investigated 20 years following the 1999 introduction of 10 individuals into the fenced nature reserve of Amassine, High Atlas range, Morocco, for promoting wildlife watching and tourism. Population age-sex structure and density were determined in late winter-early spring during four consecutive years (2016-2019) by direct observation before the dispersal of the herd. In this latter case, the line transect distance sampling was successfully applied. Population size increased from 37 to 62 animals during the four-year study period; the maximal population size being 82 individuals recorded in 2006. An estimated population density ranged from 0.25 to 0.41 Barbary sheep/ha during the study period. The adult sex ratio varied from 91 to 67 per 100 females. The apparent birth rate was 14 to 73/100 females. Juveniles and subadults comprised 27-43% of the population, adult males 26-31% and adult females 29-45%. The survival rate from birth to 1 year of age approximated 35%, for adult males was estimated to average 69%/year. The obtained results would be helpful for developing sustainable population management and habitat restoration plan and assessing the feasibility of potential reintroduction/restocking in other areas of the Atlas range.

Keywords: atlas mountains, barbary sheep, demography, management

Procedia PDF Downloads 436
6197 Sensitizing Bamboo Fabric with Antimicrobial Turmeric Dye

Authors: Varinder Kaur, Amanjit Kaur, Simran Kaur, Samriti Vaid

Abstract:

Coating of fabrics with anti-microbial dyes is an adaptable technique of protection from various diseases. Natural dyes, which are known to possess antibacterial properties, can be used for antibacterial finishing of fibers like cotton, wool, bamboo and so many. Dyeing of fabrics with natural dyes normally requires the use of mordants so that dyes can stay on the fabric as well as into interstices of the fabric during multiple washings. In this study, the mordants used are alum and chitosan for ensuring a reasonable color fastness to light and washing. Chitosan is a natural polysaccharide having significant biological and chemical properties such as biodegradability, biocompatibility, bioactivity, microbial activity and polycationicity. The metal ion of alum mordant can act as electron acceptor for electron donor to form coordination bond with the dye molecule, making them insoluble in water. The dyeing of bamboo fabric using a natural dye extracted from turmeric has been studied using conventional dyeing method. Natural dye was extracted using water as solvent by Soxhlet extraction method. The extracted color was characterized by spectroscopic studies like UV/visible and further tested for antimicrobial activity. The effect of mordants on the dyeing outcome in terms of colour depth as well as fastness properties of the dyeing was investigated. It has been found that employing the conventional dyeing technique at 100 oC, the mordanted samples were deeper in depth than their unmordanted counterparts. The results of fastness properties of the dyed fabrics were fair to good. Turmeric extract was found to enhance microbial resistance of bamboo as well as was itself as a good cause of coloration. These textiles dyed with the turmeric as natural dye can be very useful in developing clothing for infants, elderly and infirm people to protect them against common infections. The outcome of this study will provide a new feature to the interface of dyeing and pharmaceutical industry.

Keywords: antimicrobial activity, bamboo fabric, natural dye, turmeric

Procedia PDF Downloads 137
6196 Anthropometric Data Variation within Gari-Frying Population

Authors: T. M. Samuel, O. O. Aremu, I. O. Ismaila, L. I. Onu, B. O. Adetifa, S. E. Adegbite, O. O. Olokoshe

Abstract:

The imperative of anthropometry in designing to fit cannot be overemphasized. Of essence is the variability of measurements among population for which data is collected. In this paper anthropometric data were collected for the design of gari-frying facility such that work system would be designed to fit the gari-frying population in the Southwestern states of Nigeria comprising Lagos, Ogun, Oyo, Osun, Ondo, and Ekiti. Twenty-seven body dimensions were measured among 120 gari-frying processors. Statistical analysis was performed using SPSS package to determine the mean, standard deviation, minimum value, maximum value and percentiles (2nd, 5th, 25th, 50th, 75th, 95th, and 98th) of the different anthropometric parameters. One sample t-test was conducted to determine the variation within the population. The 50th percentiles of some of the anthropometric parameters were compared with those from other populations in literature. The correlation between the worker’s age and the body anthropometry was also investigated.The mean weight, height, shoulder height (sitting), eye height (standing) and eye height (sitting) are 63.37 kg, 1.57 m, 0.55 m, 1.45 m, and 0.67 m respectively.Result also shows a high correlation with other populations and a statistically significant difference in variability of data within the population in all the body dimensions measured. With a mean age of 42.36 years, results shows that age will be a wrong indicator for estimating the anthropometry for the population.

Keywords: anthropometry, cassava processing, design to fit, gari-frying, workstation design

Procedia PDF Downloads 227
6195 The Response of Soil Biodiversity to Agriculture Practice in Rhizosphere

Authors: Yan Wang, Guowei Chen, Gang Wang

Abstract:

Soil microbial diversity is one of the important parameters to assess the soil fertility and soil health, even stability of the ecosystem. In this paper, we aim to reveal the soil microbial difference in rhizosphere and root zone, even to pick the special biomarkers influenced by the long term tillage practices, which included four treatments of no-tillage, ridge tillage, continuous cropping with corn and crop rotation with corn and soybean. Here, high-throughput sequencing was performed to investigate the difference of bacteria in rhizosphere and root zone. The results showed a very significant difference of species richness between rhizosphere and root zone soil at the same crop rotation system (p < 0.01), and also significant difference of species richness was found between continuous cropping with corn and corn-soybean rotation treatment in the rhizosphere statement, no-tillage and ridge tillage in root zone soils. Implied by further beta diversity analysis, both tillage methods and crop rotation systems influence the soil microbial diversity and community structure in varying degree. The composition and community structure of microbes in rhizosphere and root zone soils were clustered distinctly by the beta diversity (p < 0.05). Linear discriminant analysis coupled with effect size (LEfSe) analysis of total taxa in rhizosphere picked more than 100 bacterial taxa, which were significantly more abundant than that in root zone soils, whereas the number of biomarkers was lower between the continuous cropping with corn and crop rotation treatment, the same pattern was found at no-tillage and ridge tillage treatment. Bacterial communities were greatly influenced by main environmental factors in large scale, which is the result of biological adaptation and acclimation, hence it is beneficial for optimizing agricultural practices.

Keywords: tillage methods, biomarker, biodiversity, rhizosphere

Procedia PDF Downloads 135
6194 Impact of Fermentation Time and Microbial Source on Physicochemical Properties, Total Phenols and Antioxidant Activity of Finger Millet Malt Beverage

Authors: Henry O. Udeha, Kwaku G. Duodub, Afam I. O. Jideanic

Abstract:

Finger millet (FM) [Eleusine coracana] is considered as a potential ‘‘super grain’’ by the United States National Academies as one of the most nutritious among all the major cereals. The regular consumption of FM-based diets has been associated with reduced risk of diabetes, cataract and gastrointestinal tract disorder. Hyperglycaemic, hypocholesterolaemic and anticataractogenic, and other health improvement properties have been reported. This study examined the effect of fermentation time and microbial source on physicochemical properties, phenolic compounds and antioxidant activity of two finger millet (FM) malt flours. Sorghum was used as an external reference. The grains were malted, mashed and fermented using the grain microflora and Lactobacillus fermentum. The phenolic compounds of the resulting beverage were identified and quantified using ultra-performance liquid chromatography (UPLC) and mass spectrometer system (MS). A fermentation-time dependent decrease in pH and viscosities of the beverages, with a corresponding increase in sugar content were noted. The phenolic compounds found in the FM beverages were protocatechuic acid, catechin and epicatechin. Decrease in total phenolics of the beverages was observed with increased fermentation time. The beverages exhibited 2, 2-diphenyl-1-picrylhydrazyl, 2, 2՛-azinobis-3-ethylbenzthiazoline-6-sulfonic acid radical scavenging action and iron reducing activities, which were significantly (p < 0.05) reduced at 96 h fermentation for both microbial sources. The 24 h fermented beverages retained a higher amount of total phenolics and had higher antioxidant activity compared to other fermentation periods. The study demonstrates that FM could be utilised as a functional grain in the production of non-alcoholic beverage with important phenolic compounds for health promotion and wellness.

Keywords: antioxidant activity, eleusine coracana, fermentation, phenolic compounds

Procedia PDF Downloads 87
6193 Preparation of Novel Antimicrobial Meat Packaging Using Chitosan-Arginine

Authors: R. A. Lahmer, A. P. Williams, S. Townsend, S. Baker, D. L. Jones

Abstract:

Chitosan-arginine (Ch-arg) has been proposed as an anti-microbial agent to reduce the proliferation of spoilage and pathogenic bacteria within meat products destined for human consumption. In the current experiment its use as an antimicrobial packaging material was examined. Two different concentrations of chitosan-arginine (0.05 and 0.15 % w/w) were blended into a cellulose film (Ch-arg film). When placed in contact with chicken and beef juice inoculated with a lux-marked strain of E. coli O157, the film incorporating the highest Ch-arg concentration resulted in a small reduction of E. coli O157 in chicken juice; however, there was no effect of the Ch-arg film on E. coli O157 in beef juice. The lack of observed effect in the beef juice experiment we ascribe to insufficient surface-to-surface contact between the film and the bacteria in the beef juice and the greater presence of other Ch-arg reactive components in the juice (e.g. fats, blood cells). Results suggest that, in combination with other anti microbials, Ch-arg packaging may offers some potential for limiting the growth of pathogenic bacteria in foodstuffs; however, further research is needed to enhance their anti-microbial performance.

Keywords: cross-contamination, foodborne pathogen, polymer film, shelf life

Procedia PDF Downloads 381
6192 Validation of Escherichia coli O157:H7 Inactivation on Apple-Carrot Juice Treated with Manothermosonication by Kinetic Models

Authors: Ozan Kahraman, Hao Feng

Abstract:

Several models such as Weibull, Modified Gompertz, Biphasic linear, and Log-logistic models have been proposed in order to describe non-linear inactivation kinetics and used to fit non-linear inactivation data of several microorganisms for inactivation by heat, high pressure processing or pulsed electric field. First-order kinetic parameters (D-values and z-values) have often been used in order to identify microbial inactivation by non-thermal processing methods such as ultrasound. Most ultrasonic inactivation studies employed first-order kinetic parameters (D-values and z-values) in order to describe the reduction on microbial survival count. This study was conducted to analyze the E. coli O157:H7 inactivation data by using five microbial survival models (First-order, Weibull, Modified Gompertz, Biphasic linear and Log-logistic). First-order, Weibull, Modified Gompertz, Biphasic linear and Log-logistic kinetic models were used for fitting inactivation curves of Escherichia coli O157:H7. The residual sum of squares and the total sum of squares criteria were used to evaluate the models. The statistical indices of the kinetic models were used to fit inactivation data for E. coli O157:H7 by MTS at three temperatures (40, 50, and 60 0C) and three pressures (100, 200, and 300 kPa). Based on the statistical indices and visual observations, the Weibull and Biphasic models were best fitting of the data for MTS treatment as shown by high R2 values. The non-linear kinetic models, including the Modified Gompertz, First-order, and Log-logistic models did not provide any better fit to data from MTS compared the Weibull and Biphasic models. It was observed that the data found in this study did not follow the first-order kinetics. It is possibly because of the cells which are sensitive to ultrasound treatment were inactivated first, resulting in a fast inactivation period, while those resistant to ultrasound were killed slowly. The Weibull and biphasic models were found as more flexible in order to determine the survival curves of E. coli O157:H7 treated by MTS on apple-carrot juice.

Keywords: Weibull, Biphasic, MTS, kinetic models, E.coli O157:H7

Procedia PDF Downloads 340
6191 Mining Multicity Urban Data for Sustainable Population Relocation

Authors: Xu Du, Aparna S. Varde

Abstract:

In this research, we propose to conduct diagnostic and predictive analysis about the key factors and consequences of urban population relocation. To achieve this goal, urban simulation models extract the urban development trends as land use change patterns from a variety of data sources. The results are treated as part of urban big data with other information such as population change and economic conditions. Multiple data mining methods are deployed on this data to analyze nonlinear relationships between parameters. The result determines the driving force of population relocation with respect to urban sprawl and urban sustainability and their related parameters. Experiments so far reveal that data mining methods discover useful knowledge from the multicity urban data. This work sets the stage for developing a comprehensive urban simulation model for catering to specific questions by targeted users. It contributes towards achieving sustainability as a whole.

Keywords: data mining, environmental modeling, sustainability, urban planning

Procedia PDF Downloads 266
6190 Evaluation of Microbial Accumulation of Household Wastewater Purified by Advanced Oxidation Process

Authors: Nazlı Çetindağ, Pelin Yılmaz Çetiner, Metin Mert İlgün, Emine Birci, Gizemnur Yıldız Uysal, Özcan Hatipoğlu, Ehsan Tuzcuoğlu, Gökhan Sır

Abstract:

Water scarcity is an unavoidable issue impacting an increasing number of individuals daily, representing a global crisis stemming from swift population growth, urbanization, and excessive resource exploitation. Consequently, solutions that involve the reclamation of wastewater are considered essential. In this context, household wastewater, categorized as greywater, plays a significant role in freshwater used for residential purposes and is attributed to washing. This type of wastewater comprises diverse elements, including organic substances, soaps, detergents, solvents, biological components, and inorganic elements such as certain metal ions and particles. The physical characteristics of wastewater vary depending on its source, whether commercial, domestic, or from a hospital setting. Consequently, the treatment strategy for this wastewater type necessitates comprehensive investigation and appropriate handling. The advanced oxidation process (AOP) emerges as a promising technique associated with the generation of reactive hydroxyl radicals highly effective in oxidizing organic pollutants. This method takes precedence over others like coagulation, flocculation, sedimentation, and filtration due to its avoidance of undesirable by-products. In the current study, the focus was on exploring the feasibility of the AOP for treating actual household wastewater. To achieve this, a laboratory-scale device was designed to effectively target the formed radicals toward organic pollutants, resulting in lower organic compounds in wastewater. Then, the number of microorganisms present in treated wastewater, in addition to the chemical content of the water, was analyzed to determine whether the lab-scale device eliminates microbial accumulation with AOP. This was also an important parameter since microbes can indirectly affect human health and machine hygiene. To do this, water samples were taken from treated and untreated conditions and then inoculated on general purpose agar to track down the total plate count. Analysis showed that AOP might be an option to treat household wastewater and lower microorganism growth.

Keywords: usage of household water, advanced oxidation process, water reuse, modelling

Procedia PDF Downloads 25
6189 Microbial Quality Assessment of Indian White Shrimp, Penaeus Indicus from Southwest Bangladesh

Authors: Saima Sharif Nilla, Mahmudur Rahman Khan, Anisur Rahman Khan, Ghulam Mustafa1

Abstract:

The microbial quality of Indian white shrimp (Peneaus indicus) from Bagerhat, Khulna and Satkhira of southwest Bangladesh was assessed where the parameters varied with different sources and the quality was found to be poor for Satkhira shrimp samples. Shrimp samples in fresh condition were collected to perform the microbial assessment and 10 pathogenic isolates for antibiotic sensitivity test to 12 antibiotics. The results show that total bacterial count of all the samples were beyond the acceptable limit 105 cfu/g. In case of total coliform and E. coli density, no substantial difference (p<0.5) was found between the different shrimp samples from different districts and also high quantity of TC exceeding the limit (>102 cfu/g) proves the poor quality of shrimp. The FC abundance found in shrimps of Bagerhat and Satkhira was similar and significantly higher (p<0.5) than that of Khulna samples. No significant difference (p<0.5) was found among the high density of Salmonella-Shigella, Vibrio spp., and Staphylococcus spp. of the shrimp samples from the source places. In case of antibiotic sensitivity patterns, all of them were resistant to ampicillin, Penicillin and sensitive to kanamycin. Most of the isolates were frequently sensitive to ciprofloxacin and streptomycin in the sensitivity test. In case of nutritional composition, no significant difference (t-test, p<0.05) was found among protein, lipid, moisture and ash contents of shrimp samples. The findings prove that shrimp under this study was more or less contaminated and samples from Satkhira were highly privileged with food borne pathogens which confirmed the unhygienic condition of the shrimp farms as well as the presence of antibiotic resistance bacteria in shrimp fish supposed to threat food safety and deteriorate the export quality.

Keywords: food borne pathogens, satkhira, penaeus indicus, antibiotic sensitivity, southwest Bangladesh, food safety

Procedia PDF Downloads 679
6188 Profiling of Bacterial Communities Present in Feces, Milk, and Blood of Lactating Cows Using 16S rRNA Metagenomic Sequencing

Authors: Khethiwe Mtshali, Zamantungwa T. H. Khumalo, Stanford Kwenda, Ismail Arshad, Oriel M. M. Thekisoe

Abstract:

Ecologically, the gut, mammary glands and bloodstream consist of distinct microbial communities of commensals, mutualists and pathogens, forming a complex ecosystem of niches. The by-products derived from these body sites i.e. faeces, milk and blood, respectively, have many uses in rural communities where they aid in the facilitation of day-to-day household activities and occasional rituals. Thus, although livestock rearing plays a vital role in the sustenance of the livelihoods of rural communities, it may serve as a potent reservoir of different pathogenic organisms that could have devastating health and economic implications. This study aimed to simultaneously explore the microbial profiles of corresponding faecal, milk and blood samples from lactating cows using 16S rRNA metagenomic sequencing. Bacterial communities were inferred through the Divisive Amplicon Denoising Algorithm 2 (DADA2) pipeline coupled with SILVA database v138. All downstream analyses were performed in R v3.6.1. Alpha-diversity metrics showed significant differences between faeces and blood, faeces and milk, but did not vary significantly between blood and milk (Kruskal-Wallis, P < 0.05). Beta-diversity metrics on Principal Coordinate Analysis (PCoA) and Non-Metric Dimensional Scaling (NMDS) clustered samples by type, suggesting that microbial communities of the studied niches are significantly different (PERMANOVA, P < 0.05). A number of taxa were significantly differentially abundant (DA) between groups based on the Wald test implemented in the DESeq2 package (Padj < 0.01). The majority of the DA taxa were significantly enriched in faeces than in milk and blood, except for the genus Anaplasma, which was significantly enriched in blood and was, in turn, the most abundant taxon overall. A total of 30 phyla, 74 classes, 156 orders, 243 families and 408 genera were obtained from the overall analysis. The most abundant phyla obtained between the three body sites were Firmicutes, Bacteroidota, and Proteobacteria. A total of 58 genus-level taxa were simultaneously detected between the sample groups, while bacterial signatures of at least 8 of these occurred concurrently in corresponding faeces, milk and blood samples from the same group of animals constituting a pool. The important taxa identified in this study could be categorized into four potentially pathogenic clusters: i) arthropod-borne; ii) food-borne and zoonotic; iii) mastitogenic and; iv) metritic and abortigenic. This study provides insight into the microbial composition of bovine faeces, milk, and blood and its extent of overlapping. It further highlights the potential risk of disease occurrence and transmission between the animals and the inhabitants of the sampled rural community, pertaining to their unsanitary practices associated with the use of cattle by-products.

Keywords: microbial profiling, 16S rRNA, NGS, feces, milk, blood, lactating cows, small-scale farmers

Procedia PDF Downloads 81
6187 Designing Function Knitted and Woven Upholstery Textile With SCOPY Film

Authors: Manar Y. Abd El-Aziz, Alyaa E. Morgham, Amira A. El-Fallal, Heba Tolla E. Abo El Naga

Abstract:

Different textile materials are usually used in upholstery. However, upholstery parts may become unhealthy when dust accrues and bacteria raise on the surface, which negatively affects the user's health. Also, leather and artificial leather were used in upholstery but, leather has a high cost and artificial leather has a potential chemical risk for users. Researchers have advanced vegie leather made from bacterial cellulose a symbiotic culture of bacteria and yeast (SCOBY). SCOBY remains a gelatinous, cellulose biofilm discovered floating at the air-liquid interface of the container. But this leather still needs some enhancement for its mechanical properties. This study aimed to prepare SCOBY, produce bamboo rib knitted fabrics with two different stitch densities, and cotton woven fabric then laminate these fabrics with the prepared SCOBY film to enhance the mechanical properties of the SCOBY leather at the same time; add anti-microbial function to the prepared fabrics. Laboratory tests were conducted on the produced samples, including tests for function properties; anti-microbial, thermal conductivity and light transparency. Physical properties; thickness and mass per unit. Mechanical properties; elongation, tensile strength, young modulus, and peel force. The results showed that the type of the fabric affected significantly SCOBY properties. According to the test results, the bamboo knitted fabric with higher stitch density laminated with SCOBY was chosen for its tensile strength and elongation as the upholstery of a bed model with antimicrobial properties and comfortability in the headrest design. Also, the single layer of SCOBY was chosen regarding light transparency and lower thermal conductivity for the creation of a lighting unit built into the bed headboard.

Keywords: anti-microbial, bamboo, rib, SCOPY, upholstery

Procedia PDF Downloads 36
6186 Production of Antimicrobial Agents against Multidrug-Resistant Staphylococcus aureus through the Biocatalysis of Vegetable Oils

Authors: Hak-Ryul Kim, Hyung-Geun Lee, Qi Long, Ching Hou

Abstract:

Structural modification of natural lipids via chemical reaction or microbial bioconversion can change their properties or even create novel functionalities. Enzymatic oxidation of lipids leading to formation of oxylipin is one of those modifications. Hydroxy fatty acids, one of those oxylipins have gained important attentions because of their structural and functional properties compared with other non-hydroxy fatty acids. Recently 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) was produced with high yield from lipid-containing oleic acid by microbial conversion, and the further study confirmed that DOD contained strong antimicrobial activities against a broad range of microorganisms. In this study, we tried to modify DOD molecules by the enzymatic or physical reaction to create new functionality or to enhance the antimicrobial activity of DOD. After modification of DOD molecules by different ways, we confirmed that the antimicrobial activity of DOD was highly enhanced and presented strong antimicrobial activities against multidrug-resistant Staphylococcus aureus, suggesting that DOD and its derivatives can be used as efficient antimicrobial agents for medical and industrial applications.

Keywords: biocatalysis, antimicrobial agent, multidrug-resistant bacteria, vegetable oil

Procedia PDF Downloads 171
6185 Sensory Evaluation and Microbiological Properties of Gouda Cheese Affected by Bunium persicum (Boiss.) Essential Oil

Authors: N. Noori, P. Taherkhani, A. Akhondzadeh Basti, H. Gandomi, M. Alimohammadi

Abstract:

Research on natural antimicrobial agents, especially of plant origin, highly noticed in recent years and evaluation of antimicrobial effects of native plants such as Bunium persicum Boiss. is especially important. In the present study, sensory characteristics and microbiological properties of Gouda cheese affected by different concentrations of Bunium persicum Boiss. essential oil were investigated. Extraction of the essential oil was performed by hydro distillation. The oil was analyzed by GC using flame ionization (FID) and GC/ MS for detection. The antimicrobial effects were determined against various microbial groups (aerobic mesophilic bacteria, enterococci, mesophilic lactobacilli, enterobacteriaceae, lactococcus and yeasts). Microbial groups were counted during ripening period using plate count on specific culture media. Organoleptic evaluation including teture, flavor, odor, color and total acceptability were determined at the end of aging. According to results, the essential oil yield was 4/1 % ( W/ W). Twenty- six compounds were identified in the oil that concluded 99.7 % of the total oil. The major components of Bunium persicum Boiss. essential oil were γ- terpinene- 7- al (26.9 %) and cuminaldehyde (23.3 %). Generally, the increase of Black Cumin essential oil concentration led to reduction in microbial counts in different groups. The maximum antimicrobial effect was seen in yeast that reduced by 2 log compared to the control group at EO concentration of 4µl/ ml at day 90.The minimum reduction was observed in enterobacteriaceae that showed only 0.75 log decreese compared to the control at the same concentration of EO. Addition of EO improved organoleptic properties of Gouda cheese especially in the case of flavor and odor characteristic. However, no significant differences were observed in texture and color between treatment and control groups. Bunium persicum Boiss. essential oil could be used as preservative material and flavoring agent in some kinds of food such as cheese and also could be provided consumers health.

Keywords: Bunium persicum Boiss. essential oil, Microbiological properties, sensory evaluation, gouda cheese

Procedia PDF Downloads 294
6184 The Overexpression of Horsegram MURLK Improves Regulation of Cell Death and Defense Responses to Microbial Pathogens

Authors: Shikha Masand, Sudesh Kumar Yadav

Abstract:

Certain protein kinases have been shown to be crucial for plant cell signaling pathways associated with plant immune responses. Here we identified a horsegram [Macrotyloma uniflorum (Lam.) Verdc.] malectin-like leucine rich receptor-like protein kinase (RLK) gene MuRLK. The functional MuRLK protein preferentially binds to mannose and N-acetyl glucosamine residues. MuRLK exists in the cytoplasm and also localizes to the plasma membrane of plant cells via its N-terminus. Over-expression of MuRLK in Arabidopsis enhances the basal resistance to infection with Pseudomonas syringae pv. tomato, Alternaria brassicicola and Hyaloperonospora arabidopsidis, are associated with elevated ROS bursts, MAPK activation, thus ultimately leading to hypersensitive cell death. Moreover, salicylic acid-dependent and jasmonic acid-dependent defense responses are also enhanced in the MuRLK-overexpressed plants that lead to HR-induced cell death. Together, these results suggest that MuRLK plays a key role in the regulation of plant cell death, early and late defense responses after the recognition of microbial pathogens.

Keywords: horsegram, Pseudomonas syringae pv. tomato, MuRLK, ROS burst, cell death, plant defense

Procedia PDF Downloads 223
6183 Risk of Cardiovascular Diseases: Evaluation of Serum Lipid Profiles in Urban and Rural Population of Sindh

Authors: Mohsin Ali Baloch, Saira Baloch

Abstract:

Objective: The aim of this study was to evaluate the levels of serum lipid profiles in Urban and Rural Population of Sindh, to indicate the existing risk of cardiovascular diseases. Material and Methods: Study was conducted at Liaquat University of Medical & Health Sciences, in the cities of Jamshoro and Hyderabad of Sindh. Blood samples from 300 healthy individuals were collected in fasting condition, out them 100 were from rural population, 100 were urban while 100 were used as control group. The biochemistry of these samples was obtained by the analysis of total Cholesterol, high density lipoprotein Cholesterol (HDL), low-density lipoprotein Cholesterol (LDL) and Triglycerides using kit method on Analyzer Clinical Chemistry. Results and Conclusion: Serum levels of total cholesterol, Triglycerides, and LDL cholesterol were significantly raised in the rural and urban males, whereas HDL cholesterol was decreased as compared to the Healthy controls that indicated significant risk of CVD. Urban population was with more risk of CVD and male gender in both groups was at more risk. The worst lipid profile in gender wise distribution was observed in male gender of urban population with highest Total Cholesterol/HDL Ratio while female gender also shown moderate risk of CVD with highest LDL/HDL Ratio.

Keywords: cardiovascular diseases, lipid profiles, urban and rural population, LDL/HDL Ratio

Procedia PDF Downloads 376
6182 A Microcosm Study on the Response of Phytoplankton and Bacterial Community of the Subarctic Northeast Atlantic Ocean to Oil Pollution under Projected Atmospheric CO₂ Conditions

Authors: Afiq Mohd Fahmi, Tony Gutierrez, Sebastian Hennige

Abstract:

Increasing amounts of CO₂ entering the marine environment, also known as ocean acidification, is documented as having harmful impacts on a variety of marine organisms. When considering the future risk of hydrocarbon pollution, which is generally detrimental to marine life as well, this needs to consider how OA-induced changes to microbial communities will compound this since hydrocarbon degradation is influenced by the community-level microbial response. This study aims to evaluate the effects of increased atmospheric CO₂ conditions and oil enrichment on the phytoplankton-associated bacterial communities. Faroe Shetland Channel (FSC) is a subarctic region in the northeast Atlantic where crude oil extraction has recently been expanded. In the event of a major oil spill in this region, it is vital that we understand the response of the bacterial community and its consequence on primary production within this region—some phytoplankton communities found in the ocean harbor hydrocarbon-degrading bacteria that are associated with its psychosphere. Surface water containing phytoplankton and bacteria from FSC were cultured in ambient and elevated atmospheric CO₂ conditions for 4 days of acclimation in microcosms before introducing 1% (v/v) of crude oil into the microcosms to simulate oil spill conditions at sea. It was found that elevated CO₂ conditions do not significantly affect the chl a concentration, and exposure to crude oil detrimentally affected chl a concentration up to 10 days after exposure to crude oil. The diversity and richness of the bacterial community were not significantly affected by both CO₂ treatment and oil enrichment. The increase in the relative abundance of known hydrocarbon degraders such as Oleispira, Marinobacter and Halomonas indicates potential for biodegradation of crude oil, while the resilience of dominant taxa Colwellia, unclassified Gammaproteobacteria, unclassified Rnodobacteria and unclassified Halomonadaceae could be associated with the recovery of microalgal community 13 days after oil exposure. Therefore, the microbial community from the subsurface of FSC has the potential to recover from crude oil pollution even under elevated CO₂ (750 ppm) conditions.

Keywords: phytoplankton, bacteria, crude oil, ocean acidification

Procedia PDF Downloads 199
6181 Preparedness for Microbial Forensics Evidence Collection on Best Practice

Authors: Victor Ananth Paramananth, Rashid Muniginin, Mahaya Abd Rahman, Siti Afifah Ismail

Abstract:

Safety issues, scene protection, and appropriate evidence collection must be handled in any bio crime scene. There will be a scene or multi-scene to be cordoned for investigation in any bio-incident or bio crime event. Evidence collection is critical in determining the type of microbial or toxin, its lethality, and its source. As a consequence, from the start of the investigation, a proper sampling method is required. The most significant challenges for the crime scene officer would be deciding where to obtain samples, the best sampling method, and the sample sizes needed. Since there could be evidence in liquid, viscous, or powder shape at a crime scene, crime scene officers have difficulty determining which tools to use for sampling. To maximize sample collection, the appropriate tools for sampling methods are necessary. This study aims to assist the crime scene officer in collecting liquid, viscous, and powder biological samples in sufficient quantity while preserving sample quality. Observational tests on sample collection using liquid, viscous, and powder samples for adequate quantity and sample quality were performed using UV light in this research. The density of the light emission varies upon the method of collection and sample types. The best tools for collecting sufficient amounts of liquid, viscous, and powdered samples can be identified by observing UV light. Instead of active microorganisms, the invisible powder is used to assess sufficient sample collection during a crime scene investigation using various collection tools. The liquid, powdered and viscous samples collected using different tools were analyzed using Fourier transform infrared - attenuate total reflection (FTIR-ATR). FTIR spectroscopy is commonly used for rapid discrimination, classification, and identification of intact microbial cells. The liquid, viscous and powdered samples collected using various tools have been successfully observed using UV light. Furthermore, FTIR-ATR analysis showed that collected samples are sufficient in quantity while preserving their quality.

Keywords: biological sample, crime scene, collection tool, UV light, forensic

Procedia PDF Downloads 170
6180 Genetic Assessment of The Managed Gharial Population In The Girwa River, India

Authors: Surya Prasad Sharma, Suyash Katdare, Syed Ainul Hussain

Abstract:

Human-induced factors contributed to the population decline of crocodylians in India which became evident by the mid-20th century when authorities forewarned the extinction risk for the crocodile and proposed regulation in the crocodile trade. The proposed action led to the enactment of national and international wildlife regulations to prohibit the trade-in of crocodile skins and parts. Subsequently, conservation translocation programs were initiated to restore the species in the wild through a 'head-start' approach. In India, the crocodile conservation program, which began in the early 1970s, has been one of India's longest-running conservation initiatives. The gharial (Gavialis gangeticus) population has benefitted, and the gharial number increased rapidly owing to these efforts. The immediate risk of extinction was averted as the gharial has recovered due to decades-long cumulative conservation efforts, the consideration of the genetic for monitoring the recovery of the recovered populations is still lacking. Hence, we assessed the genetic diversity of the Girwa gharial population in India using six polymorphic nuclear microsatellites loci and mitochondrial control region. The number of alleles per loci ranged between 2 to 5, and the allelic richness (Ar) was 2.67 ± 0.49, and the observed (Ho) and expected (He) heterozygosities were 0.42 ± 0.08 and 0.42 ± 0.09, respectively. The M-ratio yielded a value of (0.41 ± 0.16) lower than critical M, suggesting a genetic bottleneck in the Girwa population. We observed more mitochondrial control region haplotypes in the Girwa population than previously reported in the largest gharial population in the Chambal River. Overall, our study indicates that genetic diversity remains low despite the recovery in the Girwa population. Hence, we recommend a range-wide genetic assessment of gharial populations using high-throughput techniques to identify the source population and plan future translocation programs.

Keywords: conservation translocation, recovery, crocodile, bottleneck

Procedia PDF Downloads 88
6179 Electrochemistry Analysis of Oxygen Reduction with Microalgal on Microbial Fuel Cell

Authors: Azri Yamina Mounia, Zitouni Dalila, Aziza Majda, Tou Insaf, Sadi Meriem

Abstract:

To confront the fossil fuel crisis and the consequences of global warning, many efforts were devoted to develop alternative electricity generation and attracted numerous researchers, especially in the microbial fuel cell field, because it allows generating electric energy and degrading multiple organics compounds at the same time. However, one of the main constraints on power generation is the slow rate of oxygen reduction at the cathode electrode. This paper describes the potential of algal biomass (Chlorella vulgaris) as photosynthetic cathodes, eliminating the need for a mechanical air supply and the use of often expensive noble metal cathode catalysts, thus improving the sustainability and cost-effectiveness of the MFC system. During polarizations, MFC power density using algal biomass was 0.4mW/m², whereas the MFC with mechanic aeration showed a value of 0.2mW/m². Chlorella vulgaris was chosen due to its fastest growing. C. vulgaris grown in BG11 medium in sterilized Erlenmeyer flask. C. vulgaris was used as a bio‐cathode. Anaerobic activated sludge from the plant of Beni‐Messous WWTP(Algiers) was used in an anodic compartment. A dual‐chamber reactor MFC was used as a reactor. The reactor has been fabricated in the laboratory using plastic jars. The cylindrical and rectangular jars were used as the anode and cathode chambers, respectively. The volume of anode and cathode chambers was 0.8 and 2L, respectively. The two chambers were connected with a proton exchange membrane (PEM). The plain graphite plates (5 x 2cm) were used as electrodes for both anode and cathode. The cyclic voltammetry analysis of oxygen reduction revealed that the cathode potential was proportional to the amount of oxygen available in the cathode surface electrode. In the case of algal aeration, the peak reduction value of -2.18A/m² was two times higher than in mechanical aeration -1.85A/m². The electricity production reached 70 mA/m² and was stimulated immediately by the oxygen produced by algae up to the value of 20 mg/L.

Keywords: Chlorella vulgaris, cyclic voltammetry, microbial fuel cell, oxygen reduction

Procedia PDF Downloads 34
6178 Impact of Ethnomedicinal Plants on Toothpaste Improvement

Authors: Muna Jalal Ali, Essam A. Makky, Mashitah M. Yusoff

Abstract:

Objectives: The aim of this study to evaluate the antimicrobial susceptibility of combined toothpaste with medicinal plants and the relations between the commercial toothpaste to its price and the patient age as well. Materials and Methods: Oral isolates of different patients aged 3 to 60 years were obtained, purified, and tested against four different ethnomedicinal plant extracts for antimicrobial activity. A total of 10 different commercial toothpastes (different brands and prices) were collected from the market, and the combined action of the medicinal plants and toothpaste was studied. Results: We found a higher bacterial population in the age group of 3–40 years than the group of 40–60 years, with approximately 44% and 32%, respectively. The combined action of ethanolic extract (alone) against oral isolates showed a synergistic effect, with 32.20, 30.50, and 25.42% for combinations A (Ci/Ca), B (Ci/Ca/P), and C (Ci/Ca/P/N), respectively. By contrast, the combined action of ethnomedicinal plants with 10 different toothpastes improved the antimicrobial sensitivity by 60, 100, and 0% for combinations A, B, and C respectively. Clinical relevance: The ethanolic extract of only combinations A and B with commercial toothpaste showed high antibacterial activity against oral isolates and the effectiveness of toothpaste is not related to the price.

Keywords: microbial evolution, oral isolates, ethnomedicinal plants, antimicrobial activity, toothpaste

Procedia PDF Downloads 280
6177 A Mathematical Analysis of Behavioural Epidemiology: Drugs Users Transmission Dynamics Based on Level Education for Susceptible Population

Authors: Firman Riyudha, Endrik Mifta Shaiful

Abstract:

The spread of drug users is one kind of behavioral epidemiology that becomes a threat to every country in the world. This problem caused various crisis simultaneously, including financial or economic crisis, social, health, until human crisis. Most drug users are teenagers at school age. A new deterministic model would be constructed to determine the dynamics of the spread of drug users by considering level of education in a susceptible population. Based on the analytical model, two equilibria points were obtained; there were E₀ (zero user) and E₁ (endemic equilibrium). Existence of equilibrium and local stability of equilibria depended on the Basic Reproduction Ratio (R₀). This parameter was defined as the expected rate of secondary prevalence and primary prevalence in virgin population along spreading primary prevalence. The zero-victim equilibrium would be locally asymptotically stable if R₀ < 1 while if R₀ > 1 the endemic equilibrium would be locally asymptotically stable. The result showed that R₀ was proportional to the rate of interaction of each susceptible population based on educational level with the users' population. It is concluded that there was a need to be given a control in interaction, so that drug users population could be minimized. Numerical simulations were also provided to support analytical results.

Keywords: drugs users, level education, mathematical model, stability

Procedia PDF Downloads 449
6176 Comparison of Maternal and Perinatal Outcomes of Obstetric Population Diagnosed with Covid-19 in Reference to Influenza A/H1N1: A Systematic Review and Meta-Analysis

Authors: Maria Vargas Hernandez, Jose Rojas Suarez, Carmelo Dueñas Castell, Sandra Contreras, Camilo Bello, Diana Borre, Walter Anichiarico, Harold Vasquez, Eduard Perez, Jose Santacruz

Abstract:

In the last two decades, there have been outbreaks of emerging infectious diseases, with an impact on both the general population and the obstetric population. These infections, which affect the general population, pose a high risk for adverse maternal and perinatal outcomes, taking into account that physiological and immunological changes that occur during pregnancy can increase their risk or severity. Among these, the pandemics of viral infections, Influenza A/H1N1 and SARS-CoV-2/COVID-19, stand out. In 2009, Influenza A/H1N1 infection (H1N1 2009pdm) affected approximately 3,110 obstetric patients, with data reported from 29 countries, including 1,625 (52.3%) cases that were hospitalized, 378 (23.3%) admissions to ICU and 130 (8%) deaths; and since the end of 2019, the Severe Acute Respiratory Syndrome - 2 (SARS-CoV-2) has been identified, causing the COVID-19 pandemic, with global mortality that is around 2-4% for the general population, and higher mortality in patients requiring admission to the intensive care unit. Its impact on the obstetric population is still unknown. Objectives: To evaluate the impact on maternal and perinatal outcomes of COVID-19 infection in reference to influenza A/H1N1 infection in the obstetric population. Methodology: Systematic review of the literature and meta-analysis. Results: Mortality from maternal infection with influenza A/H1N1 appears to be higher (8%) than mortality due to maternal infection with COVID-19 (3%). The rates of ICU admission, hospitalization, the requirement for invasive mechanical ventilation, and fetal death also appear to be higher in the maternal population with A/H1N1 infection, in reference to the maternal population with COVID-19 infection. Within perinatal outcomes, the admission to the neonatal ICU appears to be higher in the infants born to mothers with COVID-19 infection (28% vs. 15% for COVID-19 and A/H1N1, respectively). Conclusion: A/H1N1 infection in the obstetric population seems to be associated with a higher proportion of adverse outcomes in relation to COVID-19 infection. The actual impact of maternal influenza A/H1N1 infection on perinatal outcomes is unknown. More COVID-19 studies are needed to understand the impact of maternal infection on perinatal outcomes in this population.

Keywords: A/H1N1, COVID-19, maternal outcomes, perinatal outcomes

Procedia PDF Downloads 189
6175 Combinated Effect of Cadmium and Municipal Solid Waste Compost Addition on Physicochemical and Biochemical Proprieties of Soil and Lolium Perenne Production

Authors: Sonia Mbarki Marian Brestic, Artemio Cerda Naceur Jedidi, Jose Antonnio Pascual Chedly Abdelly

Abstract:

Monitoring the effect addition bio-amendment as compost to an agricultural soil for growing plant lolium perenne irrigated with a CdCl2 solution at 50 µM on physicochemical soils characteristics and plant production in laboratory condition. Even microbial activity indexes (acid phosphatase, β-glucosidase, urease, and dehydrogenase) was determined. Basal respiration was the most affected index, while enzymatic activities and microbial biomass showed a decrease due to the cadmium treatments. We noticed that this clay soil with higher pH showed inhibition of basal respiration. Our results provide evidence for the importance of ameliorating effect compost on plant growth even when soil was added with cadmium solution at 50 µmoml.l-1. Soil heavy metal concentrations depended on heavy metals types, increased substantially with cadmium increase and with compost addition, but the recorded values were below the toxicity limits in soils and plants except for cadmium.

Keywords: compost, enzymatic activity, lolium perenne, bioremediation

Procedia PDF Downloads 346
6174 Characteristics of Regional Issues in Local Municipalities of Japan in Consideration of Socio-Economic Condition

Authors: Akiko Kondo, Akio Kondo

Abstract:

We are facing serious problems related to a long-term depopulation and an aging society with a falling birth rate in Japan. In this situation, we are suffering from a shortfall in human resources as well as a shortage of workforce in rural regions. In addition, we are struggling with a protracted economic slump and excess concentration of population in the Tokyo Metropolitan area. It is an urgent national issue to consider how to live in this country and what kind of structure of society and administration policy is needed. It is necessary to clarify people’s desire for their way of living and social assistance to be provided. The aim of this study is to clarify the characteristics of regional issues and the degree of their seriousness in local municipalities of Japan. We conducted a questionnaire survey about regional agenda in all local municipalities in Japan. We obtained responses concerning the degree of seriousness of regional issues and degree of importance of policies. Based on the data gathered from the survey, it is apparent that many local municipalities are facing an aging population and declining population. We constructed a model to analyze factors for declining population. Using the model, it was clarified that a population’s age structure, job opportunities, and income level affect the decline of population. In addition, we showed the way of the evaluation of the state of a local municipality.

Keywords: evaluation, local municipality, regional analysis, regional issue

Procedia PDF Downloads 252
6173 Transformation of Iopromide Due to Redox Gradients in Sediments of the Hyporheic Zone

Authors: Niranjan Mukherjee, Burga Braun, Ulrich Szewzyk

Abstract:

Recalcitrant pharmaceuticals are increasingly found in urban water systems forced by demographic changes. The groundwater-surface water interface, or the hyporheic zone, is known for its impressive self-purification capacity of water bodies. Redox gradients present in this zone provide a wide range of electron acceptors and harbour diverse microbial communities. Biotic transformations of pharmaceuticals in this zone have been demonstrated, but not much information is available on the kind of communities bringing about these transformations. Therefore, bioreactors using sediment from the hyporheic zone of a river in Berlin were set up and fed with iopromide, a recalcitrant iodinated X-ray contrast medium. Iopromide, who’s many oxic and anoxic transformation products have been characterized, was shown to be transformed in such a bioreactor as it passes along the gradient. Many deiodinated transformation products of iopromide could be identified at the outlet of the reactor. In our experiments, it was seen that at the same depths of the column, the transformation of iopromide increased over time. This could be an indication of the microbial communities in the sediment adapting to iopromide. The hyporheic zone, with its varying redox conditions, mainly due to the upwelling and downwelling of surface and groundwater levels, could potentially provide microorganisms with conditions for the complete transformation of recalcitrant pharmaceuticals.

Keywords: iopromide, hyporheic zone, recalcitrant pharmaceutical, redox gradients

Procedia PDF Downloads 98