Search results for: microbes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 170

Search results for: microbes

140 Effects of Plant Growth Promoting Microbes and Mycorrhizal Fungi on Wheat Growth in the Saline Soil

Authors: Ahmed Elgharably, Nivien Nafady

Abstract:

Arbuscular mycorrhizal fungi (AMF) and plant growth promoting microbes (PGPM) can promote plant growth under saline conditions. This study investigated how AMF and PGPM affected the growth and grain yield of wheat at different soil salinity levels (0, 75 and 150 mM NaCl). AMF colonization percentage, grain yield and dry weights and lengths of shoot and root, N, P K, Na, malondialdehyde, chlorophyll and proline contents and shoot relative permeability were determined. Salinity reduced NPK uptake and malondialdehyde and chlorophyll contents, and increased shoot Na concentration, relative permeability, and proline content, and thus declined plant growth. PGPM inoculation enhanced AMF colonization, P uptake, and K/Na ratio, but alone had no significant effect on plant growth and grain yield. AMF inoculation significantly enhanced NPK uptake, increased chlorophyll content and decreased shoot relative permeability, proline and Na contents, and thus promoted the plant growth. The inoculation of PGPM significantly enhanced the positive effects of AMF in controlling Na uptake and in increasing chlorophyll and NPK contents. Compared to AMF inoculation alone, dual inoculation with AMF and PGPM resulted in approximately 10, 25 and 25% higher grain yield at 0, 75 and 150 mM NaCl, respectively. The results provide that PGPM inoculation can maximize the effects of AMF inoculation in alleviating the deleterious effects of NaCl salts on wheat growth.

Keywords: mycorrhizal fungi, salinity, sodium, wheat

Procedia PDF Downloads 149
139 OBD-Biofertilizer Impact on Crop Yield and Soil Quality in Lowland Rice Production, Badeggi, Niger State, Nigeria

Authors: Ayodele A. Otaiku

Abstract:

Purpose: Nigeria has become the largest importer of rice in Africa and second in the world, 2015. Investigate interactions of organic rice farming on soil quality and health from bio-waste converted to biofertilizer and its environmental impact on rice crop. Methodology: Bio-wastes, poultry waste, organic agriculture wastes, wood ash mixed with microbial inoculant organisms called OBD-Plus microbes (broad spectrum) composted in anaerobic digester to OBD-biofertilizer (2010 - 2012) uses microbes to build humus and other stable carbons. Two field experiments were carried out at Badeggi, Niger state in 2011 and 2012 to evaluate the response of lowland rice production using biofertilizer. The experimental field was laid out in a strip-plot design with five treatments and three replications and at twenty-one day old seedlings of FARO 44 and FARO 52 rice varieties were transplanted. Plots without fertiliser application served as control. Findings: The highest rice grain yield increase of 4.4 t/ha over the control in 2012 against the Nigeria average of lowland rice grain yields of 1.5 t/ha. The utilization of OBD-Biofertilizer can decrease the use of chemical nitrogen fertilizer, prevent the depletion of soil organic matter and reduce environmental pollution. Increasing the floodwater productivity and optimizing the recycling of nutrients cum grazer populations and disease by biocontrols microbes present in the OBD-Biofertilizer. Organic matter in the soil improves by 58% and C/N 15 (2011) and 13.35 (2012). Implications: OBD- Biofertilizer produce plant growth hormones such as indole acetic acid (IAA), glomalin related soil protein and extracellular enzymes as phosphatases that promote soil health and quality. Conclusion: Microorganisms can enhance nutrients use efficiency by increasing root surface area e.g., mycorrhizal, fungi, promoting other beneficial symbioses of the host plant and microbial interactions resulting to increase in soil organic matter. By 2030, climate change is projected to depress cereal production in Africa by 2 to 3 percent. Improved seeds and increased fertilizer use should more than compensate, but this factor will still weigh heavily on efforts to make progress.

Keywords: OBD-plus microbial consortia, OBD-biofertilizer, rice production, soil quality, sustainable agriculture

Procedia PDF Downloads 238
138 Dual Mode Mobile Based Detection of Endogenous Hydrogen Sulfide for Determination of Live and Antibiotic Resistant Bacteria

Authors: Shashank Gahlaut, Chandrashekhar Sharan, J. P. Singh

Abstract:

Increasing incidence of antibiotic-resistant bacteria is a big concern for the treatment of pathogenic diseases. The effect of treatment of patients with antibiotics often leads to the evolution of antibiotic resistance in the pathogens. The detection of antibiotic or antimicrobial resistant bacteria (microbes) is quite essential as it is becoming one of the big threats globally. Here we propose a novel technique to tackle this problem. We are taking a step forward to prevent the infections and diseases due to drug resistant microbes. This detection is based on some unique features of silver (a noble metal) nanorods (AgNRs) which are fabricated by a physical deposition method called thermal glancing angle deposition (GLAD). Silver nanorods are found to be highly sensitive and selective for hydrogen sulfide (H2S) gas. Color and water wetting (contact angle) of AgNRs are two parameters what are effected in the presence of this gas. H₂S is one of the major gaseous products evolved in the bacterial metabolic process. It is also known as gasotransmitter that transmits some biological singles in living systems. Nitric Oxide (NO) and Carbon mono oxide (CO) are two another members of this family. Orlowski (1895) observed the emission of H₂S by the bacteria for the first time. Most of the microorganism produce these gases. Here we are focusing on H₂S gas evolution to determine live/dead and antibiotic-resistant bacteria. AgNRs array has been used for the detection of H₂S from micro-organisms. A mobile app is also developed to make it easy, portable, user-friendly, and cost-effective.

Keywords: antibiotic resistance, hydrogen sulfide, live and dead bacteria, mobile app

Procedia PDF Downloads 116
137 Design of Bacterial Pathogens Identification System Based on Scattering of Laser Beam Light and Classification of Binned Plots

Authors: Mubashir Hussain, Mu Lv, Xiaohan Dong, Zhiyang Li, Bin Liu, Nongyue He

Abstract:

Detection and classification of microbes have a vast range of applications in biomedical engineering especially in detection, characterization, and quantification of bacterial contaminants. For identification of pathogens, different techniques are emerging in the field of biomedical engineering. Latest technology uses light scattering, capable of identifying different pathogens without any need for biochemical processing. Bacterial Pathogens Identification System (BPIS) which uses a laser beam, passes through the sample and light scatters off. An assembly of photodetectors surrounded by the sample at different angles to detect the scattering of light. The algorithm of the system consists of two parts: (a) Library files, and (b) Comparator. Library files contain data of known species of bacterial microbes in the form of binned plots, while comparator compares data of unknown sample with library files. Using collected data of unknown bacterial species, highest voltage values stored in the form of peaks and arranged in 3D histograms to find the frequency of occurrence. Resulting data compared with library files of known bacterial species. If sample data matching with any library file of known bacterial species, sample identified as a matched microbe. An experiment performed to identify three different bacteria particles: Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli. By applying algorithm using library files of given samples, results were compromising. This system is potentially applicable to several biomedical areas, especially those related to cell morphology.

Keywords: microbial identification, laser scattering, peak identification, binned plots classification

Procedia PDF Downloads 122
136 Exploring Marine Bacteria in the Arabian Gulf Region for Antimicrobial Metabolites

Authors: Julie Connelly, Tanvi Toprani, Xin Xie, Dhinoth Kumar Bangarusamy, Kris C. Gunsalus

Abstract:

The overuse of antibiotics worldwide has contributed to the development of multi-drug resistant (MDR) pathogenic bacterial strains. There is an increasing urgency to discover antibiotics to combat MDR pathogens. The microbiome of the Arabian Gulf is a largely unexplored and potentially rich source of novel bioactive compounds. Microbes that inhabit the Abu Dhabi coastal regions adapt to extreme environments with high salinity, hot temperatures, large temperature fluctuations, and acute exposure to solar energy. The microbes native to this region may produce unique metabolites with therapeutic potential as antibiotics and antifungals. We have isolated 200 pure bacterial strains from mangrove sediments, cyanobacterial mats, and coral reefs of the Abu Dhabi region. In this project, we aim to screen the marine bacterial strains to identify antibiotics, in particular undocumented compounds that show activity against existing antibiotic-resistant strains. We have acquired the ESKAPE pathogen panel, which consists of six antibiotic-resistant gram-positive and gram-negative bacterial pathogens that collectively cause most clinical infections. Our initial efforts of the primary screen using colony-picking co-culture assay have identified several candidate marine strains producing potential antibiotic compounds. We will next apply different assays, including disk-diffusion and broth turbidity growth assay, to confirm the results. This will be followed by bioactivity-guided purification and characterization of target compounds from the scaled-up volume of candidate strains, including SPE fraction, HPLC fraction, LC-MS, and NMR. For antimicrobial compounds with unknown structures, our final goal is to investigate their mode of action by identifying the molecular target.

Keywords: marine bacteria, natural products, drug discovery, ESKAPE panel

Procedia PDF Downloads 48
135 PolyScan: Comprehending Human Polymicrobial Infections for Vector-Borne Disease Diagnostic Purposes

Authors: Kunal Garg, Louise Theusen Hermansan, Kanoktip Puttaraska, Oliver Hendricks, Heidi Pirttinen, Leona Gilbert

Abstract:

The Germ Theory (one infectious determinant is equal to one disease) has unarguably evolved our capability to diagnose and treat infectious diseases over the years. Nevertheless, the advent of technology, climate change, and volatile human behavior has brought about drastic changes in our environment, leading us to question the relevance of the Germ Theory in our day, i.e. will vector-borne disease (VBD) sufferers produce multiple immune responses when tested for multiple microbes? Vector diseased patients producing multiple immune responses to different microbes would evidently suggest human polymicrobial infections (HPI). Ongoing diagnostic tools are exceedingly unequipped with the current research findings that would aid in diagnosing patients for polymicrobial infections. This shortcoming has caused misdiagnosis at very high rates, consequently diminishing the patient’s quality of life due to inadequate treatment. Equipped with the state-of-art scientific knowledge, PolyScan intends to address the pitfalls in current VBD diagnostics. PolyScan is a multiplex and multifunctional enzyme linked Immunosorbent assay (ELISA) platform that can test for numerous VBD microbes and allow simultaneous screening for multiple types of antibodies. To validate PolyScan, Lyme Borreliosis (LB) and spondyloarthritis (SpA) patient groups (n = 54 each) were tested for Borrelia burgdorferi, Borrelia burgdorferi Round Body (RB), Borrelia afzelii, Borrelia garinii, and Ehrlichia chaffeensis against IgM and IgG antibodies. LB serum samples were obtained from Germany and SpA serum samples were obtained from Denmark under relevant ethical approvals. The SpA group represented chronic LB stage because reactive arthritis (SpA subtype) in the form of Lyme arthritis links to LB. It was hypothesized that patients from both the groups will produce multiple immune responses that as a consequence would evidently suggest HPI. It was also hypothesized that the multiple immune response proportion in SpA patient group would be significantly larger when compared to the LB patient group across both antibodies. It was observed that 26% LB patients and 57% SpA patients produced multiple immune responses in contrast to 33% LB patients and 30% SpA patients that produced solitary immune responses when tested against IgM. Similarly, 52% LB patients and an astounding 73% SpA patients produced multiple immune responses in contrast to 30% LB patients and 8% SpA patients that produced solitary immune responses when tested against IgG. Interestingly, IgM immune dysfunction in both the patient groups was also recorded. Atypically, 6% of the unresponsive 18% LB with IgG antibody was recorded producing multiple immune responses with the IgM antibody. Similarly, 12% of the unresponsive 19% SpA with IgG antibody was recorded producing multiple immune responses with the IgM antibody. Thus, results not only supported hypothesis but also suggested that IgM may atypically prevail longer than IgG. The PolyScan concept will aid clinicians to detect patients for early, persistent, late, polymicrobial, & immune dysfunction conditions linked to different VBD. PolyScan provides a paradigm shift for the VBD diagnostic industry to follow that will drastically shorten patient’s time to receive adequate treatment.

Keywords: diagnostics, immune dysfunction, polymicrobial, TICK-TAG

Procedia PDF Downloads 299
134 Infographics to Identify, Diagnose, and Review Medically Important Microbes and Microbial Diseases: A Tool to Ignite Minds of Undergraduate Medical Students

Authors: Mohan Bilikallahalli Sannathimmappa, Vinod Nambiar, Rajeev Aravindakshan

Abstract:

Background: Image-based teaching-learning module is innovative student-centered andragogy. The objective of our study was to explore medical students’ perception of effectiveness of image-based learning strategy in promoting their lifelong learning skills and evaluate its impact on improving students’ exam grades. Methods: A prospective single-cohort study was conducted on undergraduate medical students of the academic year 2021-22. The image-based teaching-learning module was assessed through pretest, posttest, and exam grades. Students’ feedback was collected through a predesigned questionnaire on a 3-point Likert Scale. The reliability of the questionnaire was assessed using Cronbach’s alpha coefficient test. In-Course Exam-4 results were compared with In-Course Exams 1, 2, and 3. Correlation coefficients were worked out wherever relevant to find the impact of the exercise on grades. Data were collected, entered into Microsoft Excel, and statistically analyzed using SPSS version 22. Results: In total, 127 students were included in the study. The posttest scores of the students were significantly high (24.75±) as compared to pretest scores (8.25±). Students’ opinion towards the effectiveness of image-based learning in promoting their lifelong learning skills was overwhelmingly positive (Cronbach’s alpha for all items was 0.756). More than 80% of the students indicated image-based learning was interesting, encouraged peer discussion, and helped them to identify, explore, and revise key information and knowledge improvement. Nearly 70% expressed image-based learning enhanced their critical thinking and problem-solving skills. Nine out of ten students recommended image-based learning module for future topics. Conclusion: Overall, Image-based learning was found to be effective in achieving undergraduate medical students learning outcomes. The results of the study are in favor of the implementation of Image-based learning in Microbiology courses. However, multicentric studies are required to authenticate our study findings.

Keywords: active learning, knowledge, medical education, microbes, problem solving

Procedia PDF Downloads 50
133 Metagenomics Analysis of Bacteria in Sorghum Using next Generation Sequencing

Authors: Kedibone Masenya, Memory Tekere, Jasper Rees

Abstract:

Sorghum is an important cereal crop in the world. In particular, it has attracted breeders due to capacity to serve as food, feed, fiber and bioenergy crop. Like any other plant, sorghum hosts a variety of microbes, which can either, have a neutral, negative and positive influence on the plant. In the current study, regions (V3/V4) of 16 S rRNA were targeted to extensively assess bacterial multitrophic interactions in the phyllosphere of sorghum. The results demonstrated that the presence of a pathogen has a significant effect on the endophytic bacterial community. Understanding these interactions is key to develop new strategies for plant protection.

Keywords: bacteria, multitrophic, sorghum, target sequencing

Procedia PDF Downloads 255
132 Antibacterial Activity of Northern Algerian Honey

Authors: Messaouda Belaid, Salima Kebbouche-Gana, Djamila Benaziza

Abstract:

Our study focuses on determining the antibacterial activity of some honeys from northern Algeria. To test this activity, the agar well diffusion methods was employed. The bacterial strains tested were Staphylococcus aureus, Bacillus subtilis, Streptococcus faecalis, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeroginosae. The results showed that all the microbes tested were inhibited by all honey used in this study but Those bacteria that appear to be more sensitive to all honey tested are Staphylococcus aureus and Pseudomonas aeroginosae.

Keywords: honey, antibacterial activity, Northern Algeria, Staphylococcus aureus

Procedia PDF Downloads 362
131 Metagenomics Analysis on Microbial Communities of Sewage Sludge from Nyeri-Kangemi Wastewater Treatment Plant, Nyeri County-Kenya

Authors: Allan Kiptanui Kimisto, Geoffrey Odhiambo Ongondo, Anastasia Wairimu Muia, Cyrus Ndungu Kimani

Abstract:

The major challenge to proper sewage sludge treatment processes is the poor understanding of sludge microbiome diversities. This study applied the whole-genome. shotgun metagenomics technique to profile the microbial composition of sewage sludge in two active digestion lagoons at the Nyeri-Kangemi Wastewater Treatment Plant in Nyeri County, Kenya. Total microbial community DNA was extracted from samples using the available ZymoBIOMICS™ DNA Miniprep Kit and sequenced using Shotgun metagenomics. Samples were analyzed using MG-RAST software (Project ID: mgp100988), which allowed for comparing taxonomic diversity before β-diversities studies for Bacteria, Archaea and Eukaryotes. The study identified 57 phyla, 145 classes, 301 orders, 506 families, 963 genera, and 1980 species. Bacteria dominated the microbes and comprised 28 species, 51 classes, 110 orders, 243 families, 597 genera, and 1518 species. The Bacteroides(6.77%) were dominant, followed by Acinetobacter(1.44%) belonging to the Gammaproteobacteria and Acidororax (1.36%), Bacillus (1.24%) and Clostridium (1.02%) belonging to Betaproteobacteria. Archaea recorded 5 phyla, 13 classes, 19 orders, 29 families, 60 genera,and87 species, with the dominant genera being Methanospirillum (16.01%), methanosarcina (15.70%), and Methanoregula(14.80%) and Methanosaeta (8.74%), Methanosphaerula(5.48%) and Methanobrevibacter(5.03%) being the subdominant group. The eukaryotes were the least in abundance and comprised 24 phyla, 81 classes, 301 orders, 506 families, 963 genera, and 980 species. Arabidopsis (4.91%) and Caenorhabditis (4.81%) dominated the eukaryotes, while Dityostelium (3.63%) and Drosophila(2.08%) were the subdominant genera. All these microbes play distinct roles in the anaerobic treatment process of sewage sludge. The local sludge microbial composition and abundance variations may be due to age difference differences between the two digestion lagoons in operation at the plant and the different degradation rales played by the taxa. The information presented in this study can help in the genetic manipulation or formulation of optimal microbial ratios to improve their effectiveness in sewage sludge treatment. This study recommends further research on how the different taxa respond to environmental changes over time and space.

Keywords: shotgun metagenomics, sludge, bacteria, archaea, eukaryotes

Procedia PDF Downloads 64
130 Metagenomic Assessment of the Effects of Genetically Modified Crops on Microbial Ecology and Physicochemical Properties of Soil

Authors: Falana Yetunde Olaitan, Ijah U. J. J, Solebo Shakirat O.

Abstract:

Genetically modified crops are already phenomenally successful and are grown worldwide in more than eighteen countries on more than 67 million hectares. Nigeria, in October 2018, approved Bacillus thuringiensis (Bt) cotton and maize; therefore, the need to carry out environmental risk assessment studies. A total of 15 4L octagonal ceramic pots were filled with 4kg of soil and placed on the bench in 2 rows of 10 pots each and the 3rd row of 5 pots, 1st-row pots were used to plant GM cotton seeds, while the 2nd-row pots were used for non-GM cotton seeds and the 3rd row of 5 pots served as control, all in the screen house. Soil samples for metagenomic DNA extraction were collected at random and at the monthly interval after planting at a distance of 2mm from the plant’s root and at a depth of 10cm using a sterile spatula. Soil samples for physicochemical analysis were collected before planting and after harvesting the GM and non-GM crops as well as from the control soil. The DNA was extracted, quantified and sequenced; Sample 1A (DNA from GM cotton Soil at 1st interval) gave the lowest sequence read with 0.853M while sample 2B (DNA from GM cotton Soil at 2nd interval) gave the highest with 5.785M, others gave between 1.8M and 4.7M. The samples treatment were grouped into four, Group 1 (GM cotton soil from 1 to 3 intervals) had between 800,000 and 5,700,000 strains of microbes (SOM), Group 2 (non GM cotton soil from 1 to 3 intervals) had between 1,400,600 and 4,200,000 SOM, Group 3 (control soil) had between 900,000 and 3,600,000 SOM and Group 4 (initial soil) had between 3,700,000 and 4,000,000 SOM. The microbes observed were predominantly bacteria (including archaea), fungi, dark matter alongside protists and phages. The predominant bacterial groups were the Terrabacteria (Bacillus funiculus, Bacillus sp.), the Proteobacteria (Microvirga massiliensis, sphingomonas sp.) and the Archaea (Nitrososphaera sp.), while the fungi were Aspergillus fischeri and Fusarium falciforme. The comparative analysis between groups was done using JACCARD PERMANOVA beta diversity analysis at P-value not more than 0.76 and there was no significant pair found. The pH for initial, GM cotton, non-GM cotton and control soil were 6.28, 6.26, 7.25, 8.26 and the percentage moisture was 0.63, 0.78, 0.89 and 0.82, respectively, while the percentage Nitrogen was observed to be 17.79, 1.14, 1.10 and 0.56 respectively. Other parameters include, varying concentrations of Potassium (0.46, 1,284.47, 1,785.48, 1,252.83 mg/kg) and Phosphorus (18.76, 17.76, 16.87, 15.23 mg/kg) were recorded for the four treatments respectively. The soil consisted mainly of silt (32.09 to 34.66%) and clay (58.89 to 60.23%), reflecting the soil texture as silty – clay. The results were then tested with ANOVA at less than 0.05 P-value and no pair was found to be significant as well. The results suggest that the GM crops have no significant effect on microbial ecology and physicochemical properties of the soil and, in turn, no direct or indirect effects on human health.

Keywords: genetically modified crop, microbial ecology, physicochemical properties, metagenomics, DNA, soil

Procedia PDF Downloads 121
129 An Approach to Study the Biodegradation of Low Density Polyethylene Using Microbial Strains of Bacillus subtilus, Aspergillus niger, Pseudomonas fluroscence in Different Media Form and Salt Condition

Authors: Monu Ojha, Rahul Rana, Satywati Sharma, Kavya Dashora

Abstract:

The global production rate of plastics has increased enormously and global demand for polyethylene resins –High-density polyethylene (HDPE), Linear low-density polyethylene (LLDPE) and Low-density polyethylene (LDPE) is expected to rise drastically, with very high value. These get accumulated in the environment, posing a potential ecological threat as they are degrading at a very slow rate and remain in the environment indefinitely. The aim of the present study was to investigate the potential of commonly found soil microbes like Bacillus subtilus, Aspergillus niger, Pseudomonas fluroscence for their ability to biodegrade LDPE in the lab on solid and liquid media conditions as well as in presence of 1% salt in the soil. This study was conducted at Indian Institute of Technology, Delhi, India from July to September where average temperature and RH (Relative Humidity) were 33 degrees Celcius and 80% respectively. It revealed that the weight loss of LDPE strip obtained from market of approximately 4x6 cm dimensions is more in liquid broth media than in solid agar media. The percentage weight loss by P. fluroscence, A. niger and B. subtilus observed after 80 days of incubation was 15.52, 9.24 and 8.99% respectively in broth media and 6.93, 2.18 and 4.76 % in agar media. The LDPE strips from same source and on the same were subjected to soil in presence of above microbes with 1% salt (NaCl: obtained from commercial table salt) with temperature and RH 33 degree Celcius and 80%. It was found that the rate of degradation increased in the soil than under lab conditions. The rate of weight loss of LDPE strips under same conditions given in lab was found to be 32.98, 15.01 and17.09 % by P. fluroscence, A. niger and B. subtilus respectively. The breaking strength was found to be 9.65N, 29N and 23.85 N for P. fluroscence, A. niger and B. subtilus respectively. SEM analysis conducted on Zeiss EVO 50 confirmed that surface of LDPE becomes physically weak after biological treatment. There was the increase in the surface roughness indicating Surface erosion of LDPE film. FTIR (Fourier-transform infrared spectroscopy) analysis of the degraded LDPE films showed stretching of aldehyde group at 3334.92 and 3228.84 cm-1,, C–C=C symmetric of aromatic ring at 1639.49 cm-1.There was also C=O stretching of aldehyde group at 1735.93 cm-1. N=O peak bend was also observed which corresponds to 1365.60 cm-1, C–O stretching of ether group at 1217.08 and 1078.21 cm-1.

Keywords: microbial degradation, LDPE, Aspergillus niger, Bacillus subtilus, Peudomonas fluroscence, common salt

Procedia PDF Downloads 135
128 Antimicrobial Activity of Fatty Acid Salts against Microbes for Food Safety

Authors: Aya Tanaka, Mariko Era, Manami Masuda, Yui Okuno, Takayoshi Kawahara, Takahide Kanyama, Hiroshi Morita

Abstract:

Objectives— Fungi and bacteria are present in a wide range of natural environments. They are breed in the foods such as vegetables and fruit, causing corruption and deterioration of these foods in some cases. Furthermore, some species of fungi and bacteria are known to cause food intoxication or allergic reactions in some individuals. To prevent fungal and bacterial contamination, various fungicides and bactericidal have been developed that inhibit fungal and bacterial growth. Fungicides and bactericides must show high antifungal and antibacterial activity, sustainable activity, and a high degree of safety. Therefore, we focused on the fatty acid salt which is the main component of soap. We focused on especially C10K and C12K. This study aimed to find the effectiveness of the fatty acid salt as antimicrobial agents for food safety. Materials and Methods— Cladosporium cladosporioides NBRC 30314, Penicillium pinophilum NBRC 6345, Aspergillus oryzae (Akita Konno store), Rhizopus oryzae NBRC 4716, Fusarium oxysporum NBRC 31631, Escherichia coli NBRC 3972, Bacillus subtilis NBRC 3335, Staphylococcus aureus NBRC 12732, Pseudomonas aenuginosa NBRC 13275 and Serratia marcescens NBRC 102204 were chosen as tested fungi and bacteria. Hartmannella vermiformis NBRC 50599 and Acanthamoeba castellanii NBRC 30010 were chosen as tested amoeba. Nine fatty acid salts including potassium caprate (C10K) and laurate (C12K) at 350 mM and pH 10.5 were used as antifungal activity. The spore suspension of each fungus (3.0×10⁴ spores/mL) or the bacterial suspension (3.0×10⁵ or 3.0×10⁶ or 3.0×10⁷ CFU/mL) was mixed with each of the fatty acid salts (final concentration of 175 mM). Samples were counted at 0, 10, 60, and 180 min by plating (100 µL) on potato dextrose agar or nutrient agar. Fungal and bacterial colonies were counted after incubation for 1 or 2 days at 30 °C. Results— C10K was antifungal activity of 4 log-unit incubated time for 10 min against fungi other than A. oryzae. C12K was antifungal activity of 4 log-unit incubated time for 10 min against fungi other than P. pinophilum and A. oryzae. C10K and C12K did not show high anti-yeast activity. C10K was antibacterial activity of 6 or 7 log-unit incubated time for 10 min against bacteria other than B. subtilis. C12K was antibacterial activity of 5 to 7 log-unit incubated time for 10 min against bacteria other than S. marcescens. C12K was anti-amoeba activity of 4 log-unit incubated time for 10 min against H. vermiformis. These results suggest C10K and C12K have potential in the field of food safety.

Keywords: food safety, microbes, antimicrobial, fatty acid salts

Procedia PDF Downloads 457
127 A Holistic View of Microbial Community Dynamics during a Toxic Harmful Algal Bloom

Authors: Shi-Bo Feng, Sheng-Jie Zhang, Jin Zhou

Abstract:

The relationship between microbial diversity and algal bloom has received considerable attention for decades. Microbes undoubtedly affect annual bloom events and impact the physiology of both partners, as well as shape ecosystem diversity. However, knowledge about interactions and network correlations among broader-spectrum microbes that lead to the dynamics in a complete bloom cycle are limited. In this study, pyrosequencing and network approaches simultaneously assessed the associate patterns among bacteria, archaea, and microeukaryotes in surface water and sediments in response to a natural dinoflagellate (Alexandrium sp.) bloom. In surface water, among the bacterial community, Gamma-Proteobacteria and Bacteroidetes dominated in the initial bloom stage, while Alpha-Proteobacteria, Cyanobacteria, and Actinobacteria become the most abundant taxa during the post-stage. In the archaea biosphere, it clustered predominantly with Methanogenic members in the early pre-bloom period while the majority of species identified in the later-bloom stage were ammonia-oxidizing archaea and Halobacteriales. In eukaryotes, dinoflagellate (Alexandrium sp.) was dominated in the onset stage, whereas multiply species (such as microzooplankton, diatom, green algae, and rotifera) coexistence in bloom collapse stag. In sediments, the microbial species biomass and richness are much higher than the water body. Only Flavobacteriales and Rhodobacterales showed a slight response to bloom stages. Unlike the bacteria, there are small fluctuations of archaeal and eukaryotic structure in the sediment. The network analyses among the inter-specific associations show that bacteria (Alteromonadaceae, Oceanospirillaceae, Cryomorphaceae, and Piscirickettsiaceae) and some zooplankton (Mediophyceae, Mamiellophyceae, Dictyochophyceae and Trebouxiophyceae) have a stronger impact on the structuring of phytoplankton communities than archaeal effects. The changes in population were also significantly shaped by water temperature and substrate availability (N & P resources). The results suggest that clades are specialized at different time-periods and that the pre-bloom succession was mainly a bottom-up controlled, and late-bloom period was controlled by top-down patterns. Additionally, phytoplankton and prokaryotic communities correlated better with each other, which indicate interactions among microorganisms are critical in controlling plankton dynamics and fates. Our results supplied a wider view (temporal and spatial scales) to understand the microbial ecological responses and their network association during algal blooming. It gives us a potential multidisciplinary explanation for algal-microbe interaction and helps us beyond the traditional view linked to patterns of algal bloom initiation, development, decline, and biogeochemistry.

Keywords: microbial community, harmful algal bloom, ecological process, network

Procedia PDF Downloads 83
126 Diversified Farming and Agronomic Interventions Improve Soil Productivity, Soybean Yield and Biomass under Soil Acidity Stress

Authors: Imran, Murad Ali Rahat

Abstract:

One of the factors affecting crop production and nutrient availability is acidic stress. The most important element decreasing under acidic stress conditions is phosphorus deficiency, which results in stunted growth and yield because of inefficient nutrient cycling. At the Agriculture Research Institute Mingora Swat, Pakistan, tests were carried out for the first time throughout the course of two consecutive summer seasons in 2016 (year 1) and 2017 (year 2) with the goal of increasing crop productivity and nutrient availability under acidic stress. Three organic supplies (peach nano-black carbon, compost, and dry-based peach wastes), three phosphorus rates, and two advantageous microorganisms (Trichoderma and PSB) were incorporated in the experimental treatments. The findings showed that, in conditions of acid stress, peach organic sources had a significant impact on yield and yield components. The application of nano-black carbon produced the greatest thousand seed weight of 164.6 g among organic sources, however the use of phosphorus solubilizing bacteria (PSB) for seed inoculation increased the thousand seed weight of beneficial microbes when compared to Trichoderma soil application. The thousand seed weight was significantly impacted by the quantities of phosphorus. The treatment of 100 kg P ha-1 produced the highest thousand seed weight (167.3 g), which was followed by 75 kg P ha-1 (162.5 g). Compost amendments provided the highest seed yield (2,140 kg ha-1) and were comparable to the application of nano-black carbon (2,120 kg ha-1). With peach residues, the lowest seed output (1,808 kg ha-1) was observed.Compared to seed inoculation with PSB (1,913 kg ha-1), soil treatment with Trichoderma resulted in the maximum seed production (2,132 kg ha-1). Applying phosphorus to the soybean crop greatly increased its output. The highest seed yield (2,364 kg ha-1) was obtained with 100 kg P ha-1, which was comparable to 75 kg P ha-1 (2,335 kg ha-1), while the lowest seed yield (1,569 kg ha-1) was obtained with 50 kg P ha-1. The average values showed that compared to control plots (3.3 g kg-1), peach organic sources produced greatest SOC (10.0 g kg-1). Plots with treated soil had a maximum soil P of 19.7 mg kg-1, while plots under stress had a maximum soil P of 4.8 mg kg-1. While peach compost resulted in the lowest soil P levels, peach nano-black carbon yielded the highest soil P levels (21.6 mg kg-1). Comparing beneficial bacteria with PSB to Trichoderma (18.3 mg/kg-1), the former also shown an improvement in soil P (21.1 mg kg-1). Regarding P treatments, the application of 100 kg P per ha produced significantly higher soil P values (26.8 mg /kg-1), followed by 75 kg P per ha (18.3 mg /kg-1), and 50 kg P ha-1 produced the lowest soil P values (14.1 mg /kg-1). Comparing peach wastes and compost to peach nano-black carbon (13.7 g kg-1), SOC rose. In contrast to PSB (8.8 g kg-1), soil-treated Trichoderma was shown to have a greater SOC (11.1 g kg-1). Higher among the P levels.

Keywords: acidic stress, trichoderma, beneficial microbes, nano-black carbon, compost, peach residues, phosphorus, soybean

Procedia PDF Downloads 34
125 Neutral Sugar Contents of Laurel-leaved and Cryptomeria japonica Forests

Authors: Ayuko Itsuki, Sachiyo Aburatani

Abstract:

Soil neutral sugar contents in Kasuga-yama Hill Primeval Forest (Nara, Japan) were examined using the Waksman’s approximation analysis to clarify relations with the neutral sugar constituted the soil organic matter and the microbial biomass. Samples were selected from the soil surrounding laurel-leaved (BB-1) and Carpinus japonica (BB-2) trees for analysis. The water and HCl soluble neutral sugars increased microbial biomass of the laurel-leaved forest soil. Arabinose, xylose, and galactose of the HCl soluble fraction were used immediately in comparison with other neutral sugars. Rhamnose, glucose, and fructose of the HCl soluble fraction were re-composed by the microbes.

Keywords: forest soil, neutral sugaras, soil organic matter, Waksman’s approximation analysis

Procedia PDF Downloads 281
124 Biofilm Is Facilitator for Microplastic Ingestion in Green Mussel Perna Viridis

Authors: Yixuan Wang, A. C. Y. Wong, J. M. Y. Chiu, S. G. Cheung

Abstract:

After being released into the ocean, microplastics (MPs) are quickly colonized by microbes. The biofilm that forms on MPs alters their characteristics and perplexes users, including filter-feeders, some of whom choose to eat MPs that have biofilm. It has been proposed that filter feeders like mussels and other bivalves could serve as bioindicators of MP pollution. Mussels are considered selective feeders with particle sorting capability. Two sizes (27-32 µm and 90-106 µm), shapes (microspheres and microfibers), and types (polyethylene, polystyrene and polyester) of MPs were available for the green mussel, Perna viridis, at three concentrations (100 P/ml, 1000 P/ml and 10,000 P/ml). These MPs were incubated in the sea for 0, 3 or 14 days for biofilm development. The presence of the biofilm significantly affected the ingestion of MPs, and the mussels preferred MPs with biofilm, with a higher preference observed for biofilm with a longer incubation period. Additionally, the ingestion rate varied with the interaction between the concentration, size and form of MPs. The findings are discussed in relation to the possibility that mussels serve as MP bioindicators.

Keywords: marine miroplastics, biofilm, bioindicator, green mussel perna viridis

Procedia PDF Downloads 19
123 Recent Nano technological Advancements in Antimicrobial Edible Films for Food Packaging: A Review

Authors: Raana Babadi Fathipour

Abstract:

Researchers are now focusing on sustainable advancements in active packaging systems to meet the growing consumer demand for high-quality food with Eco-friendly packaging. One significant advancement in this area is the inclusion of antimicrobial agents in bio-polymer-based edible films, which effectively inhibit or kill pathogenic/spoilage microbes that can contaminate food. This technology also helps reduce undesirable flavors caused by active compounds directly incorporated into the food. To further enhance the efficiency of antimicrobial bio-based packaging systems, Nano technological concepts such as bio-nano composites and Nano encapsulation systems have been applied. This review examines the current state and applications of antimicrobial biodegradable films in the food packaging industry, while also highlighting ongoing research on the use of nanotechnology to develop innovative bio-based packaging systems.

Keywords: active packaging, antimicrobial edible films, bioactive agents, biopolymers, bio-nanocomposites

Procedia PDF Downloads 42
122 Introduction of Microbial Symbiosis in Genus of Tridacna and Kiwaidae with Insights into Aquaculture

Authors: Jincao Guo

Abstract:

Aquaculture plays a significant role in the diet of people in many regions. However, problems such as bioaccumulation have risen with the rapidly growing industry due to a lack of control in the feeding process, which brings uncertainty to the quality of the products. The paper tackles the problem by introducing the symbiosis of the Giant Clam (Tridacna) with photosynthetic algae and Yeti Crab (Kiwaidae) with chemosynthetic bacteria in molecular and developmental details. By combing the knowledge gained from the two models and past studies, innovative ideas such as using mass selection methods to domesticate and farm those symbiotic species, as well as improvements for the current farming methods, such as introducing algae feeding, are discussed. Further studies are needed, but experiments are worth conducting since it increases the variety of choices for consumers and can potentially improve the quality and efficiency of aquaculture.

Keywords: the giant clam Tridacna, yeti crab Kiwaidae, autotroph microbes, microbial symbiosis, aquaculture, bivalves, crustaceans, mollusk, photosynthesis, chemosynthesis

Procedia PDF Downloads 46
121 Gut Metabolite Profiling of the Ethnic Groups from Assam, India

Authors: Madhusmita Dehingia, Supriyo Sen, Bhuwan Bhaskar, Tulsi Joishy, Mojibur R. Khan

Abstract:

Human gut microbes and their metabolites are important for maintaining homeostasis in the gut and are responsible for many metabolic and immune mediated diseases. In the present study, we determined the profiles of the gut metabolites of five different ethnic groups (Bodo, Tai-Phake, Karbi, Tea tribe and Tai-Aiton) of Assam. Fecal metabolite profiling of the 39 individuals belonging to the ethnic groups was carried out using Gas chromatography – Mass spectrometry (GC-MS), and comparison was performed among the tribes for common and unique metabolites produced within their gut. Partial Least Squares Discriminant Analysis (PLS-DA) of the metabolites suggested that the individuals grouped according to their ethnicity. Among the 66 abundant metabolites, 12 metabolites were found to be common among the five ethnic groups. Additionally, ethnicity wise some unique metabolites were also detected. For example, the tea tribe of Assam contained the tea components, Aniline and Benzoate more in their gut in comparison to others. Metabolites of microbial origin were also correlated with the already published metagenomic data of the same ethnic group and functional analysis were carried out based on human metabolome database.

Keywords: ethnicity, gut microbiota, GC-MS, metabolites

Procedia PDF Downloads 393
120 Antimicrobial Properties of Copper in Gram-Negative and Gram-Positive Bacteria

Authors: Travis J. Meyer, Jasodra Ramlall, Phyo Thu, Nidhi Gadura

Abstract:

For centuries humans have used the antimicrobial properties of copper to their advantage. Yet, after all these years the underlying mechanisms of copper mediated cell death in various microbes remain unclear. We had explored the hypothesis that copper mediated increased levels of lipid peroxidation in the membrane fatty acids is responsible for increased killing inEscherichia coli. In this study we show that in both gram positive (Staphylococcus aureus) and gram negative (Pseudomonas aeruginosa) bacteria there is a strong correlation between copper mediated cell death and increased levels of lipid peroxidation. Interestingly, the non-spore forming gram positive bacteria as well as gram negative bacteria show similar patterns of cell death, increased levels of lipid peroxidation, as well as genomic DNA degradation, however there is some difference inloss in membrane integrity upon exposure to copper alloy surface.

Keywords: antimicrobial, copper, gram positive, gram negative

Procedia PDF Downloads 445
119 Nanocomposite Metal Material: Study of Antimicrobial and Catalytic Properties

Authors: Roman J. Jedrzejczyk, Damian K. Chlebda, Anna Dziedzicka, Rafal Wazny, Agnieszka Domka, Maciej Sitarz, Przemyslaw J. Jodlowski

Abstract:

The aim of this study was to obtain antimicrobial material based on thin zirconium dioxide coatings on structured reactors doped with metal nanoparticles using the sonochemical sol-gel method. As a result, dense, uniform zirconium dioxide films were obtained on the kanthal sheets which can be used as support materials in antimicrobial converters with sophisticated shapes. The material was characterised by physicochemical methods, such as AFM, SEM, EDX, XRF, XRD, XPS and in situ Raman and DRIFT spectroscopy. In terms of antimicrobial activity, the material was tested by ATP/AMP method using model microbes isolated from the real systems. The results show that the material can be potentially used in the market as a good candidate for active package and as active bulkheads of climatic systems. The mechanical tests showed that the developed method is an efficient way to obtain durable converters with high antimicrobial activity against fungi and bacteria.

Keywords: antimicrobial properties, kanthal steel, nanocomposite, zirconium oxide

Procedia PDF Downloads 174
118 Highly-Sensitive Nanopore-Based Sensors for Point-Of-Care Medical Diagnostics

Authors: Leyla Esfandiari

Abstract:

Rapid, sensitive detection of nucleic acid (NA) molecules of specific sequence is of interest for a range of diverse health-related applications such as screening for genetic diseases, detecting pathogenic microbes in food and water, and identifying biological warfare agents in homeland security. Sequence-specific nucleic acid detection platforms rely on base pairing interaction between two complementary single stranded NAs, which can be detected by the optical, mechanical, or electrochemical readout. However, many of the existing platforms require amplification by polymerase chain reaction (PCR), fluorescent or enzymatic labels, and expensive or bulky instrumentation. In an effort to address these shortcomings, our research is focused on utilizing the cutting edge nanotechnology and microfluidics along with resistive pulse electrical measurements to design and develop a cost-effective, handheld and highly-sensitive nanopore-based sensor for point-of-care medical diagnostics.

Keywords: diagnostics, nanopore, nucleic acids, sensor

Procedia PDF Downloads 436
117 Isolation and Identification of Low-Temperature Tolerant-Yeast Strains from Apple with Biocontrol Activity

Authors: Lachin Mikjtarnejad, Mohsen Farzaneh

Abstract:

Various microbes, such as fungi and bacteria species, are naturally found in the fruit microbiota, and some of them act as a pathogen and result in fruit rot. Among non-pathogenic microbes, yeasts (single-celled microorganisms belonging to the fungi kingdom) can colonize fruit tissues and interact with them without causing any damage to them. Although yeasts are part of the plant microbiota, there is little information about their interactions with plants in comparison with bacteria and filamentous fungi. According to several existing studies, some yeasts can colonize different plant species and have the biological control ability to suppress some of the plant pathogens. It means those specific yeast-colonized plants are more resistant to some plant pathogens. The major objective of the present investigation is to isolate yeast strains from apple fruit and screen their ability to control Penicillium expansum, the causal agent of blue mold of fruits. In the present study, psychrotrophic and epiphytic yeasts were isolated from apple fruits that were stored at low temperatures (0–1°C). Totally, 42 yeast isolates were obtained and identified by molecular analysis based on genomic sequences of the D1/D2 and ITS1/ITS4 regions of their rDNA. All isolated yeasts were primarily screened by' in vitro dual culture assay against P. expansum by measuring the fungus' relative growth inhibition after 10 days of incubation. The results showed that the mycelial growth of P. expansum was reduced between 41–53% when challenged by promising yeast strains. The isolates with the strongest antagonistic activity belonged to Metschnikowia pulcherrima A13, Rhodotorula mucilaginosa A41, Leucosporidium Scottii A26, Aureobasidium pullulans A19, Pichia guilliermondii A32, Cryptococcus flavescents A25, and Pichia kluyveri A40. The results of seven superior isolates to inhibit blue mold decay on fruit showed that isolates A. pullulans A19, L. scottii A26, and Pi. guilliermondii A32 could significantly reduce the fruit rot and decay with 26 mm, 22 mm and 20 mm zone diameter, respectively, compared to the control sample with 43 mm. Our results show Pi. guilliermondii strain A13 was the most effective yeast isolates in inhibiting P. expansum on apple fruits. In addition, various biological control mechanisms of promising biological isolates against blue mold have been evaluated to date, including competition for nutrients and space, production of volatile metabolites, reduction of spore germination, production of siderophores and production of extracellular lytic enzymes such as chitinase and β-1,3-glucanase. However, the competition for nutrients and the ability to inhibit P. expansum spore growth have been introduced as the prevailing mechanisms among them. Accordingly, in our study, isolates A13, A41, A40, A25, A32, A19 and A26 inhibited the germination of P. expansum, whereas isolates A13 and A19 were the strongest inhibitors of P. expansum mycelia growth, causing 89.13% and 81.75 % reduction in the mycelial surface, respectively. All the promising isolates produced chitinase and β-1,3-glucanase after 3, 5 and 7 days of cultivation. Finally, based on our findings, we are proposing that, Pi. guilliermondiias as an effective biocontrol agent and alternative to chemical fungicides to control the blue mold of apple fruit.

Keywords: yeast, yeast enzymes, biocontrol, post harvest diseases

Procedia PDF Downloads 89
116 Genome-Wide Insights into Whole Gut Microbiota of Rainbow Trout, Oncorhynchus Mykiss Associated with Changes in Dietary Composition and Temperature Regimens

Authors: John N. Idenyi, Hadimundeen Abdallah, Abigeal D. Adeyemi, Jonathan C. Eya

Abstract:

Gut microbiomes play a significant role in the growth, metabolism, and health of fish. However, we know very little about the interactive effects of variations in dietary composition and temperature on rainbow trout gut microbiota. Exactly 288 rainbow trout weighing 45.6g ± 0.05 (average ± SD) were fed four isocaloric, isolipidic, and isonitrogenous diets comprising 40% crude protein and 20% crude lipid and formulated as 100 % animal-based protein (AP) and a blend of 50 fish oil (FO)/50 camelina oil (CO), 100 % AP and100 % CO, 100 % plant-based protein (PP) and a blend of 50FO/50CO or 100 % PP and 100 % CO in 14 or 18°C for 150 days. Gut content was analyzed using 16S rRNA gene and shotgun sequencing. The most abundant phyla identified regardless of diet were Tenericutes, Firmicutes, Proteobacteria, Spirochaetes, Bacteroidetes, and Actinobacteria, while Aeromonadaceae and Enterobacteriaceae were dominant families in 18°C. Moreover, gut microbes were dominated by genes relating to an amino acid, carbohydrate, fat, and energy metabolisms and influenced by temperature. The shared functional profiles for all the diets suggest that plant protein sources in combination with CO could be as good as the fish meal with 50/50 FO & CO in rainbow trout farming.

Keywords: aquafeed, aquaculture, microbiome, rainbow trout

Procedia PDF Downloads 61
115 Electricity Production Enhancement in a Constructed Microbial Fuel Cell MFC Using Iron Nanoparticles

Authors: Khaoula Bensaida, Osama Eljamal

Abstract:

The electrical energy generation through Microbial Fuel Cells (MFCs) using microorganisms is a renewable and sustainable approach. It creates truly an efficient technology for power production and wastewater treatment. MFC is an electrochemical device which turns wastewater into electricity. The most important part of MFC is microbes. Nano zero-valent Iron NZVI technique was successfully applied in degrading the chemical pollutants and cleaning wastewater. However, the use of NZVI for enhancing the current production is still not confirmed yet. This study aims to confirm the effect of these particles on the current generation by using MFC. A constructed microbial fuel cell, which utilizes domestic wastewater, has been considered for wastewater treatment and bio-electricity generation. The two electrodes were connected to an external resistor (200 ohms). Experiments were conducted in two steps. First, the MFC was constructed without adding NZVI particles (Control) while at a second step, nanoparticles were added with a concentration of 50mg/L. After 20 hours, the measured voltage increased to 5 and 8mV, respectively. To conclude, the use of zero-valent iron in an MFC system can increase electricity generation.

Keywords: bacterial growth, electricity generation, microbial fuel cell MFC, nano zero-valent iron NZVI.

Procedia PDF Downloads 116
114 Effects of Type and Concentration Stabilizers on the Characteristics of Nutmeg Oil Nanoemulsions Prepared by High-Pressure Homogenization

Authors: Yuliani Aisyah, Sri Haryani, Novi Safriani

Abstract:

Nutmeg oil is one of the essential oils that have the ability as an antibacterial so it potentially uses to inhibit the growth of undesirable microbes in food. However, the essential oil that has low solubility in water, high volatile content, and strong aroma properties is difficult to apply in to foodstuffs. Therefore, the oil-in-water nanoemulsion system was used in this research. Gelatin, lecithin and tween 80 with 10%, 20%, 30% concentrations have been examined for the preparation of nutmeg oil nanoemulsions. The physicochemical properties and stability of nutmeg oil nanoemulsion were analyzed on viscosity, creaming index, emulsifying activity, droplet size, and polydispersity index. The results showed that the type and concentration stabilizer had a significant effect on viscosity, creaming index, droplet size and polydispersity index (P ≤ 0,01). The nanoemulsions stabilized with tween 80 had the best stability because the creaming index value was 0%, the emulsifying activity value was 100%, the droplet size was small (79 nm) and the polydispersity index was low (0.10) compared to the nanoemulsions stabilized with gelatin and lecithin. In brief, Tween 80 is strongly recommended to be used for stabilizing nutmeg oil nanoemulsions.

Keywords: nanoemulsion, nutmeg oil, stabilizer, stability

Procedia PDF Downloads 131
113 Isolation and Identification of Biosurfactant Producing Microorganism for Bioaugmentation

Authors: Karthick Gopalan, Selvamohan Thankiah

Abstract:

Biosurfactants are lipid compounds produced by microbes, which are amphipathic molecules consisting of hydrophophic and hydrophilic domains. In the present investigation, ten bacterial strains were isolated from petroleum oil contaminated sites near petrol bunk. Oil collapsing test, haemolytic activity were used as a criteria for primary isolation of biosurfactant producing bacteria. In this study, all the bacterial strains gave positive results. Among the ten strains, two were observed as good biosurfactant producers, they utilize the diesel as a sole carbon source. Optimization of biosurfactant producing bacteria isolated from petroleum oil contaminated sites was carried out using different parameters such as, temperature (20ºC, 25ºC, 30ºC, 37ºC and 45ºC), pH (5,6,7,8 & 9) and nitrogen sources (ammonium chloride, ammonium carbonate and sodium nitrate). Biosurfactants produced by bacteria were extracted, dried and quantified. As a result of optimization of parameters the suitable values for the production of more amount of biosurfactant by the isolated bacterial species was observed as 30ºC (0.543 gm/lt) in the pH 7 (0.537 gm/lt) with ammonium nitrate (0.431 gm/lt) as sole carbon source.

Keywords: isolation and identification, biosurfactant, microorganism, bioaugmentation

Procedia PDF Downloads 315
112 Role of Natural Products in Drug Discovery of Anti-Biotic and Anti-Cancer Agents

Authors: Sunil Kumar

Abstract:

For many years, small organic molecules derived naturally from microbes and plants have delivered a number of expedient therapeutic drug agents. The search for naturally occurring lead compounds has continued in recent years as well, with the constituents of marine flora and fauna along with those of telluric microorganisms and plants being investigated for their anti-bacterial and anti-cancer activities. It has been observed that such promising lead molecules incline to promptly generate substantial attention among scientists like synthetic organic chemists and biologists. Subsequently, the availability of a given precious natural product sample may be enriched, and it may be possible to determine a preliminary idea of structure-activity relationships to develop synthetic analogues. For instance, anti-tumor drug topotecan is a synthetic chemical compound similar in chemical structure to camptothecin which is found in extracts of Camptotheca acuminate. Similarly, researchers at AstraZeneca discovered anti-biotic pyrrolamide through a fragment-based lead generation approach from kibdelomycin, which is isolated from Staphylococcus aureuss.

Keywords: anticancer, antibiotic, lead molecule, natural product, synthetic analogues

Procedia PDF Downloads 123
111 Comparative Analysis of Ranunculus muricatus and Typha latifolia as Wetland Plants Applied for Domestic Wastewater Treatment in a Mesocosm Scale Study

Authors: Sadia Aziz, Mahwish Ali, Safia Ahmed

Abstract:

Comparing other methods of waste water treatment, constructed wetlands are one of the most fascinating practices because being a natural process they are eco-friendly have low construction and maintenance cost and have considerable capability of wastewater treatment. The current research was focused mainly on comparison of Ranunculus muricatus and Typha latifolia as wetland plants for domestic wastewater treatment by designing and constructing efficient pilot scale HSSF mesocosms. Parameters like COD, BOD5, PO4, SO4, NO3, NO2, and pathogenic indicator microbes were studied continuously with successive treatments. Treatment efficiency of the system increases with passage of time and with increase in temperature. Efficiency of T. latifolia planted setups in open environment was fairly good for parameters like COD and BOD5 which was showing up to 82.5% for COD and 82.6% for BOD5 while DO was increased up to 125%. Efficiency of R. muricatus vegetated setup was also good but lowers than that of T. latifolia planted showing 80.95% removal of COD and BOD5. Ranunculus muricatus was found effective in reducing bacterial count in wastewater. Both macrophytes were found promising in wastewater treatment.

Keywords: wastewater treatment, wetland, mesocosms study, wetland plants

Procedia PDF Downloads 279