Search results for: mechanical damage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5792

Search results for: mechanical damage

5582 Data Compression in Ultrasonic Network Communication via Sparse Signal Processing

Authors: Beata Zima, Octavio A. Márquez Reyes, Masoud Mohammadgholiha, Jochen Moll, Luca de Marchi

Abstract:

This document presents the approach of using compressed sensing in signal encoding and information transferring within a guided wave sensor network, comprised of specially designed frequency steerable acoustic transducers (FSATs). Wave propagation in a damaged plate was simulated using commercial FEM-based software COMSOL. Guided waves were excited by means of FSATs, characterized by the special shape of its electrodes, and modeled using PIC255 piezoelectric material. The special shape of the FSAT, allows for focusing wave energy in a certain direction, accordingly to the frequency components of its actuation signal, which makes available a larger monitored area. The process begins when a FSAT detects and records reflection from damage in the structure, this signal is then encoded and prepared for transmission, using a combined approach, based on Compressed Sensing Matching Pursuit and Quadrature Amplitude Modulation (QAM). After codification of the signal is in binary chars the information is transmitted between the nodes in the network. The message reaches the last node, where it is finally decoded and processed, to be used for damage detection and localization purposes. The main aim of the investigation is to determine the location of detected damage using reconstructed signals. The study demonstrates that the special steerable capabilities of FSATs, not only facilitate the detection of damage but also permit transmitting the damage information to a chosen area in a specific direction of the investigated structure.

Keywords: data compression, ultrasonic communication, guided waves, FEM analysis

Procedia PDF Downloads 102
5581 Study on Filter for Semiconductor of Minimizing Damage by X-Ray Laminography

Authors: Chan Jong Park, Hye Min Park, Jeong Ho Kim, Ki Hyun Park, Koan Sik Joo

Abstract:

This research used the MCNPX simulation program to evaluate the utility of a filter that was developed to minimize the damage to a semiconductor device during defect testing with X-ray. The X-ray generator was designed using the MCNPX code, and the X-ray absorption spectrum of the semiconductor device was obtained based on the designed X-ray generator code. To evaluate the utility of the filter, the X-ray absorption rates of the semiconductor device were calculated and compared for Ag, Rh, Mo and V filters with thicknesses of 25μm, 50μm, and 75μm. The results showed that the X-ray absorption rate varied with the type and thickness of the filter, ranging from 8.74% to 49.28%. The Rh filter showed the highest X-ray absorption rates of 29.8%, 15.18% and 8.74% for the above-mentioned filter thicknesses. As shown above, the characteristics of the X-ray absorption with respect to the type and thickness of the filter were identified using MCNPX simulation. With these results, both time and expense could be saved in the production of the desired filter. In the future, this filter will be produced, and its performance will be evaluated.

Keywords: X-ray, MCNPX, filter, semiconductor, damage

Procedia PDF Downloads 395
5580 mRNA Biomarkers of Mechanical Asphyxia-Induced Death in Cardiac Tissue

Authors: Yan Zeng, Li Tao, Liujun Han, Tianye Zhang, Yongan Yu, Kaijun Ma, Long Chen

Abstract:

Mechanical asphyxia is one of the main cause of death; however, death by mechanical asphyxia may be difficult to prove in court, particularly in cases in which corpses exhibit no obvious signs of asphyxia. To identify a credible biomarker of asphyxia, we first examined the expression levels of all the mRNAs in human cardiac tissue specimens subjected to mechanical asphyxia and compared these expression levels with those of the corresponding mRNAs in specimens subjected to craniocerebral injury. A total of 119 differentially expressed mRNAs were selected and the expression levels of these mRNAs were examined in 44 human cardiac tissue specimens subjected to mechanical asphyxia, craniocerebral injury, hemorrhagic shock and other causes of death. We found that DUSP1 and KCNJ2 were up-regulated in tissue specimens of mechanical asphyxia compared with control tissues, with no significant correlation between age, environmental temperature and PMI, indicating that DUSP1 and KCNJ2 may associate with mechanical asphyxia-induced death and can thus serve as useful biomarkers of death by mechanical asphyxia.

Keywords: mechanical asphyxia, biomarkers, DUSP1, KCNJ2, cardiac tissue

Procedia PDF Downloads 263
5579 Involvement of Multi-Drug Resistance Protein (Mrp) 3 in Resveratrol Protection against Methotrexate-Induced Testicular Damage

Authors: Mohamed A. Morsy, Azza A. K. El-Sheikh, Abdulla Y. Al-Taher

Abstract:

The aim of the present study is to investigate the effect of resveratrol (RES) on methotrexate (MTX)-induced testicular damage. RES (10 mg/kg/day) was given for 8 days orally and MTX (20 mg/kg i.p.) was given at day 4 of experiment, with or without RES in rats. MTX decreased serum testosterone, induced histopathological testicular damage, increased testicular tumor necrosis factor-α level and expression of nuclear factor-κB and cyclooxygenase-2. In MTX/RES group, significant reversal of these parameters was noticed, compared to MTX group. Testicular expression of multidrug resistance protein (Mrp) 3 was three- and five-folds higher in RES- and MTX/RES-treated groups, respectively. In vitro, using prostate cancer cells, each of MTX and RES alone induced cytotoxicity with IC50 0.18 ± 0.08 and 20.5 ± 3.6 µM, respectively. RES also significantly enhanced cytotoxicity of MTX. In conclusion, RES appears to have dual beneficial effect, as it promotes MTX tumor cytotoxicity, while protecting the testes, probably via up-regulation of testicular Mrp3 as a novel mechanism.

Keywords: resveratrol, methotrexate, multidrug resistance protein 3, tumor necrosis factor-α, nuclear factor-κB, cyclooxygenase-2

Procedia PDF Downloads 424
5578 Computational Modeling of Load Limits of Carbon Fibre Composite Laminates Subjected to Low-Velocity Impact Utilizing Convolution-Based Fast Fourier Data Filtering Algorithms

Authors: Farhat Imtiaz, Umar Farooq

Abstract:

In this work, we developed a computational model to predict ply level failure in impacted composite laminates. Data obtained from physical testing from flat and round nose impacts of 8-, 16-, 24-ply laminates were considered. Routine inspections of the tested laminates were carried out to approximate ply by ply inflicted damage incurred. Plots consisting of load–time, load–deflection, and energy–time history were drawn to approximate the inflicted damages. Impact test generated unwanted data logged due to restrictions on testing and logging systems were also filtered. Conventional filters (built-in, statistical, and numerical) reliably predicted load thresholds for relatively thin laminates such as eight and sixteen ply panels. However, for relatively thick laminates such as twenty-four ply laminates impacted by flat nose impact generated clipped data which can just be de-noised using oscillatory algorithms. The literature search reveals that modern oscillatory data filtering and extrapolation algorithms have scarcely been utilized. This investigation reports applications of filtering and extrapolation of the clipped data utilising fast Fourier Convolution algorithm to predict load thresholds. Some of the results were related to the impact-induced damage areas identified with Ultrasonic C-scans and found to be in acceptable agreement. Based on consistent findings, utilizing of modern data filtering and extrapolation algorithms to data logged by the existing machines has efficiently enhanced data interpretations without resorting to extra resources. The algorithms could be useful for impact-induced damage approximations of similar cases.

Keywords: fibre reinforced laminates, fast Fourier algorithms, mechanical testing, data filtering and extrapolation

Procedia PDF Downloads 114
5577 High Temperature Behaviour of Various Limestone Used in Heritage Buildings at Material and Block Scales

Authors: Ayoub Daoudi, Javad Eslami, Anne-Lise Beaucour, Martin Vigroux, Albert Noumowé

Abstract:

As a fact, many cultural heritage masonry buildings have undergone violent fires during their history. In order to investigate the high temperature behaviour of stone masonry, six French limestones were heated to 600 °C at a rate of 9 °C/min. The main focus is the comparison between the high temperature behaviour of stones at the material and at the structural scale. In order to evaluate the risk of spalling, the tests have been carried out on the stone blocks (12x30x30 cm) instrumented with thermocouples and subjected to an unidirectional heating on one face. Thereafter, visual assessments and non-destructive measurements (dynamic elastic modulus) performed on blocks demonstrate a different behaviour from what was observed at the material scale. Finally, a series of thermo-mechanical computations, using finite element method, allowed us to highlight the difference between the behaviour of stones at material and block scales.

Keywords: limestones, hight temperature behaviour, damage, thermo-mechanical modeling, material and blocks scales, color change

Procedia PDF Downloads 75
5576 Optimal Continuous Scheduled Time for a Cumulative Damage System with Age-Dependent Imperfect Maintenance

Authors: Chin-Chih Chang

Abstract:

Many manufacturing systems suffer failures due to complex degradation processes and various environment conditions such as random shocks. Consider an operating system is subject to random shocks and works at random times for successive jobs. When successive jobs often result in production losses and performance deterioration, it would be better to do maintenance or replacement at a planned time. A preventive replacement (PR) policy is presented to replace the system before a failure occurs at a continuous time T. In such a policy, the failure characteristics of the system are designed as follows. Each job would cause a random amount of additive damage to the system, and the system fails when the cumulative damage has exceeded a failure threshold. Suppose that the deteriorating system suffers one of the two types of shocks with age-dependent probabilities: type-I (minor) shock is rectified by a minimal repair, or type-II (catastrophic) shock causes the system to fail. A corrective replacement (CR) is performed immediately when the system fails. In summary, a generalized maintenance model to scheduling replacement plan for an operating system is presented below. PR is carried out at time T, whereas CR is carried out when any type-II shock occurs and the total damage exceeded a failure level. The main objective is to determine the optimal continuous schedule time of preventive replacement through minimizing the mean cost rate function. The existence and uniqueness of optimal replacement policy are derived analytically. It can be seen that the present model is a generalization of the previous models, and the policy with preventive replacement outperforms the one without preventive replacement.

Keywords: preventive replacement, working time, cumulative damage model, minimal repair, imperfect maintenance, optimization

Procedia PDF Downloads 330
5575 Vibration Measurements of Single-Lap Cantilevered SPR Beams

Authors: Xiaocong He

Abstract:

Self-pierce riveting (SPR) is a new high-speed mechanical fastening technique which is suitable for point joining dissimilar sheet materials, as well as coated and pre-painted sheet materials. Mechanical structures assembled by SPR are expected to possess a high damping capacity. In this study, experimental measurement techniques were proposed for the prediction of vibration behavior of single-lap cantilevered SPR beams. The dynamic test software and the data acquisition hardware were used in the experimental measurement of the dynamic response of the single-lap cantilevered SPR beams. Free and forced vibration behavior of the single-lap cantilevered SPR beams was measured using the LMS CADA-X experimental modal analysis software and the LMS-DIFA Scadas II data acquisition hardware. The frequency response functions of the SPR beams of different rivet number were compared. The main goal of the paper is to provide a basic measuring method for further research on vibration based non-destructive damage detection in single-lap cantilevered SPR beams.

Keywords: self-piercing riveting, dynamic response, experimental measurement, frequency response functions

Procedia PDF Downloads 404
5574 Determining Full Stage Creep Properties from Miniature Specimen Creep Test

Authors: W. Sun, W. Wen, J. Lu, A. A. Becker

Abstract:

In this work, methods for determining creep properties which can be used to represent the full life until failure from miniature specimen creep tests based on analytical solutions are presented. Examples used to demonstrate the application of the methods include a miniature rectangular thin beam specimen creep test under three-point bending and a miniature two-material tensile specimen creep test subjected to a steady load. Mathematical expressions for deflection and creep strain rate of the two specimens were presented for the Kachanov-Rabotnov creep damage model. On this basis, an inverse procedure was developed which has potential applications for deriving the full life creep damage constitutive properties from a very small volume of material, in particular, for various microstructure constitutive  regions, e.g. within heat-affected zones of power plant pipe weldments. Further work on validation and improvement of the method is addressed.

Keywords: creep damage property, miniature specimen, inverse approach, finite element modeling

Procedia PDF Downloads 205
5573 Application of Subversion Analysis in the Search for the Causes of Cracking in a Marine Engine Injector Nozzle

Authors: Leszek Chybowski, Artur Bejger, Katarzyna Gawdzińska

Abstract:

Subversion analysis is a tool used in the TRIZ (Theory of Inventive Problem Solving) methodology. This article introduces the history and describes the process of subversion analysis, as well as function analysis and analysis of the resources, used at the design stage when generating possible undesirable situations. The article charts the course of subversion analysis when applied to a fuel injection nozzle of a marine engine. The work describes the fuel injector nozzle as a technological system and presents principles of analysis for the causes of a cracked tip of the nozzle body. The system is modelled with functional analysis. A search for potential causes of the damage is undertaken and a cause-and-effect analysis for various hypotheses concerning the damage is drawn up. The importance of particular hypotheses is evaluated and the most likely causes of damage identified.

Keywords: complex technical system, fuel injector, function analysis, importance analysis, resource analysis, sabotage analysis, subversion analysis, TRIZ (Theory of Inventive Problem Solving)

Procedia PDF Downloads 585
5572 Experimental-Numerical Inverse Approaches in the Characterization and Damage Detection of Soft Viscoelastic Layers from Vibration Test Data

Authors: Alaa Fezai, Anuj Sharma, Wolfgang Mueller-Hirsch, André Zimmermann

Abstract:

Viscoelastic materials have been widely used in the automotive industry over the last few decades with different functionalities. Besides their main application as a simple and efficient surface damping treatment, they may ensure optimal operating conditions for on-board electronics as thermal interface or sealing layers. The dynamic behavior of viscoelastic materials is generally dependent on many environmental factors, the most important being temperature and strain rate or frequency. Prior to the reliability analysis of systems including viscoelastic layers, it is, therefore, crucial to accurately predict the dynamic and lifetime behavior of these materials. This includes the identification of the dynamic material parameters under critical temperature and frequency conditions along with a precise damage localization and identification methodology. The goal of this work is twofold. The first part aims at applying an inverse viscoelastic material-characterization approach for a wide frequency range and under different temperature conditions. For this sake, dynamic measurements are carried on a single lap joint specimen using an electrodynamic shaker and an environmental chamber. The specimen consists of aluminum beams assembled to adapter plates through a viscoelastic adhesive layer. The experimental setup is reproduced in finite element (FE) simulations, and frequency response functions (FRF) are calculated. The parameters of both the generalized Maxwell model and the fractional derivatives model are identified through an optimization algorithm minimizing the difference between the simulated and the measured FRFs. The second goal of the current work is to guarantee an on-line detection of the damage, i.e., delamination in the viscoelastic bonding of the described specimen during frequency monitored end-of-life testing. For this purpose, an inverse technique, which determines the damage location and size based on the modal frequency shift and on the change of the mode shapes, is presented. This includes a preliminary FE model-based study correlating the delamination location and size to the change in the modal parameters and a subsequent experimental validation achieved through dynamic measurements of specimen with different, pre-generated crack scenarios and comparing it to the virgin specimen. The main advantage of the inverse characterization approach presented in the first part resides in the ability of adequately identifying the material damping and stiffness behavior of soft viscoelastic materials over a wide frequency range and under critical temperature conditions. Classic forward characterization techniques such as dynamic mechanical analysis are usually linked to limitations under critical temperature and frequency conditions due to the material behavior of soft viscoelastic materials. Furthermore, the inverse damage detection described in the second part guarantees an accurate prediction of not only the damage size but also its location using a simple test setup and outlines; therefore, the significance of inverse numerical-experimental approaches in predicting the dynamic behavior of soft bonding layers applied in automotive electronics.

Keywords: damage detection, dynamic characterization, inverse approaches, vibration testing, viscoelastic layers

Procedia PDF Downloads 175
5571 X-Ray Diffraction Technique as a Means for Degradation Assessment of Welded Joints

Authors: Jaroslav Fiala, Jaroslav Kaiser, Pavel Zlabek, Vaclav Mentl

Abstract:

The X-ray diffraction technique was recognized as a useful tool for the assessment of material degradation degree after a long-time service. In many industrial applications materials are subjected to degradation of mechanical properties as a result of real service conditions. The assessment of the remnant lifetime of components and structures is commonly based on correlated procedures including numerous destructive, non-destructive and mathematical techniques that should guarantee reasonable precise assessment of the current damage extent of materials in question and the remnant lifetime assessment. This paper summarizes results of an experimental programme concentrated on mechanical properties degradation of welded components. Steel an Al-alloy test specimens of base metal, containing welds and simple weldments were fatigue loaded at room temperature to obtain Woehler S-N curve. X-ray diffraction technique was applied to assess the degradation degree of material as a result of cyclic loading.

Keywords: fatigue loading, material degradation, steels, AL-alloys, X-ray diffraction

Procedia PDF Downloads 412
5570 A Study on the Magnetic and Mechanical Properties of Nd-Fe-B Sintered Magnets According to Sintering Temperature

Authors: J. H. Kim, S. Y. Park, K. M. Lim, S. K. Hyun

Abstract:

The effect of sintering temperature on the magnetic and mechanical properties of Nd-Fe-B sintered magnets has been investigated in this study. The sintering temperature changed from 950°C to 1120°C. While remanence and hardness of the magnets increased with increasing sintering temperature, the coercivity first increased, and then decreased. The optimum magnetic and mechanical properties of the magnets were obtained at the sintering temperature of 1050°C. In order to clarify the reason for the variation on magnetic and mechanical properties of the magnets, we systematically analyzed the microstructure.

Keywords: magnetic and mechanical property, microstructure, permanent magnets, sintered Nd-Fe-B magnet

Procedia PDF Downloads 303
5569 Effect of Zinc Additions on the Microstructure and Mechanical Properties of Mg-3Al Alloy

Authors: Erkan Koç, Mehmet Ünal, Ercan Candan

Abstract:

In this study, the effect of zinc content (0.5-3.0 wt.%) in as-cast Mg-3Al alloy which were fabricated with high-purity raw materials towards the microstructure and mechanical properties was studied. Microstructure results showed that increase in zinc content changed the secondary phase distribution of the alloys. Mechanical test results demonstrate that with the increasing Zn addition the enhancement of the hardness value by 29%, ultimate tensile strength by 16% and yield strength by 15% can be achieved as well as decreasing of elongation by 33%. The improvement in mechanical properties for Mg-Al–Zn alloys with increasing Zn content up to 3% of weight may be ascribed to second phase strengthening.

Keywords: magnesium, zinc, mechanical properties, Mg17Al12

Procedia PDF Downloads 390
5568 Seismic Microzonation Analysis for Damage Mapping of the 2006 Yogyakarta Earthquake, Indonesia

Authors: Fathul Mubin, Budi E. Nurcahya

Abstract:

In 2006, a large earthquake ever occurred in the province of Yogyakarta, which caused considerable damage. This is the basis need to investigate the seismic vulnerability index in around of the earthquake zone. This research is called microzonation of earthquake hazard. This research has been conducted at the site and surrounding of Prambanan Temple, includes homes and civil buildings. The reason this research needs to be done because in the event of an earthquake in 2006, there was damage to the temples at Prambanan temple complex and its surroundings. In this research, data collection carried out for 60 minutes using three component seismograph measurements at 165 points with spacing of 1000 meters. The data recorded in time function were analyzed using the spectral ratio method, known as the Horizontal to Vertical Spectral Ratio (HVSR). Results from this analysis are dominant frequency (Fg) and maximum amplification factor (Ag) are used to obtain seismic vulnerability index. The results of research showed the dominant frequency range from 0.5 to 30 Hz and the amplification is in interval from 0.5 to 9. Interval value for seismic vulnerability index is 0.1 to 50. Based on distribution maps of seismic vulnerability index and impact of buildings damage seemed for suitability. For further research, it needs to survey to the east (klaten) and south (Bantul, DIY) to determine a full distribution maps of seismic vulnerability index.

Keywords: amplification factor, dominant frequency, microzonation analysis, seismic vulnerability index

Procedia PDF Downloads 172
5567 Fatigue Analysis of Spread Mooring Line

Authors: Chanhoe Kang, Changhyun Lee, Seock-Hee Jun, Yeong-Tae Oh

Abstract:

Offshore floating structure under the various environmental conditions maintains a fixed position by mooring system. Environmental conditions, vessel motions and mooring loads are applied to mooring lines as the dynamic tension. Because global responses of mooring system in deep water are specified as wave frequency and low frequency response, they should be calculated from the time-domain analysis due to non-linear dynamic characteristics. To take into account all mooring loads, environmental conditions, added mass and damping terms at each time step, a lot of computation time and capacities are required. Thus, under the premise that reliable fatigue damage could be derived through reasonable analysis method, it is necessary to reduce the analysis cases through the sensitivity studies and appropriate assumptions. In this paper, effects in fatigue are studied for spread mooring system connected with oil FPSO which is positioned in deep water of West Africa offshore. The target FPSO with two Mbbls storage has 16 spread mooring lines (4 bundles x 4 lines). The various sensitivity studies are performed for environmental loads, type of responses, vessel offsets, mooring position, loading conditions and riser behavior. Each parameter applied to the sensitivity studies is investigated from the effects of fatigue damage through fatigue analysis. Based on the sensitivity studies, the following results are presented: Wave loads are more dominant in terms of fatigue than other environment conditions. Wave frequency response causes the higher fatigue damage than low frequency response. The larger vessel offset increases the mean tension and so it results in the increased fatigue damage. The external line of each bundle shows the highest fatigue damage by the governed vessel pitch motion due to swell wave conditions. Among three kinds of loading conditions, ballast condition has the highest fatigue damage due to higher tension. The riser damping occurred by riser behavior tends to reduce the fatigue damage. The various analysis results obtained from these sensitivity studies can be used for a simplified fatigue analysis of spread mooring line as the reference.

Keywords: mooring system, fatigue analysis, time domain, non-linear dynamic characteristics

Procedia PDF Downloads 313
5566 Development of Deep Neural Network-Based Strain Values Prediction Models for Full-Scale Reinforced Concrete Frames Using Highly Flexible Sensing Sheets

Authors: Hui Zhang, Sherif Beskhyroun

Abstract:

Structural Health monitoring systems (SHM) are commonly used to identify and assess structural damage. In terms of damage detection, SHM needs to periodically collect data from sensors placed in the structure as damage-sensitive features. This includes abnormal changes caused by the strain field and abnormal symptoms of the structure, such as damage and deterioration. Currently, deploying sensors on a large scale in a building structure is a challenge. In this study, a highly stretchable strain sensors are used in this study to collect data sets of strain generated on the surface of full-size reinforced concrete (RC) frames under extreme cyclic load application. This sensing sheet can be switched freely between the test bending strain and the axial strain to achieve two different configurations. On this basis, the deep neural network prediction model of the frame beam and frame column is established. The training results show that the method can accurately predict the strain value and has good generalization ability. The two deep neural network prediction models will also be deployed in the SHM system in the future as part of the intelligent strain sensor system.

Keywords: strain sensing sheets, deep neural networks, strain measurement, SHM system, RC frames

Procedia PDF Downloads 62
5565 Computational Fluid Dynamics Study of the Effects of Mechanical Forces in Cerebral Aneurysms

Authors: Hashem Al Argha

Abstract:

Cerebral Aneurysms are the ballooning and defect that occurs in the arteries of the brain. This ballooning might enlarge in size due to mechanical forces and could lead to rupture and death. Computational Fluid Dynamics has been used in the recent years in creating a link between engineering sciences and medical sciences. In this paper, the effects of mechanical forces on cerebral aneurysms will be studied. Results of this study show that mechanical forces could lead to rupture of the aneurysm and could lead to death. High mechanical forces including stresses up to 1.7 MPa could pop aneurysms and lead to a brain hemorrhage.

Keywords: computational fluid dynamics, numerical, aneurysm, mechanical forces

Procedia PDF Downloads 227
5564 Safety Risks of Gaseous Toxic Compounds Released from Li Batteries

Authors: Jan Karl, Ondrej Suchy, Eliska Fiserova, Milan Ruzicka

Abstract:

The evolving electromobility and all the electronics also bring an increase of danger with used Li-batteries. Li-batteries have been used in many industries, and currently many types of the batteries are available. Batteries have different compositions that affect their behavior. In the field of Li-battery safety, there are some areas of little discussion, such as extinguishing of fires caused by Li-batteries as well as toxicity of gaseous compounds released from Li batteries, transport or storage. Technical Institute of Fire Protection, which is a part of Fire Brigades of the Czech Republic, is dealing with the safety of Li batteries. That is the reason why we are dealing with toxicity of gaseous compounds released under conditions of fire, mechanical damage, overcharging and other emergencies that may occur. This is necessary for protection of intervening of fire brigade units, people in the vicinity and other envirnomental consequences. In this work, different types of batteries (Li-ion, Li-Po, LTO, LFP) with different kind of damage were tested, and the toxicity and total amount of released gases were studied. These values were evaluated according to their environmental hazard. FTIR spectroscopy was used for the evaluation of toxicity. We used a FTIR gas cell for continuous measurement. The total amount of released gases was determined by collecting the total gas phase through the absorbers and then determining the toxicants absorbed into the solutions. Based on the obtained results, it is possible to determine the protective equipment necessary for the event of an emergency with a Li-battery, to define the environmental load and the immediate danger in an emergency.

Keywords: Li-battery, toxicity, gaseous toxic compounds, FTIR spectroscopy

Procedia PDF Downloads 116
5563 A Simple Approach to Reliability Assessment of Structures via Anomaly Detection

Authors: Rims Janeliukstis, Deniss Mironovs, Andrejs Kovalovs

Abstract:

Operational Modal Analysis (OMA) is widely applied as a method for Structural Health Monitoring for structural damage identification and assessment by tracking the changes of the identified modal parameters over time. Unfortunately, modal parameters also depend on such external factors as temperature and loads. Any structural condition assessment using modal parameters should be done taking into consideration those external factors, otherwise there is a high chance of false positives. A method of structural reliability assessment based on anomaly detection technique called Machalanobis Squared Distance (MSD) is proposed. It requires a set of reference conditions to learn healthy state of a structure, which all future parameters are compared to. In this study, structural modal parameters (natural frequency and mode shape), as well as ambient temperature and loads acting on the structure are used as features. Numerical tests were performed on a finite element model of a carbon fibre reinforced polymer composite beam with delamination damage at various locations and of various severities. The advantages of the demonstrated approach include relatively few computational steps, ability to distinguish between healthy and damaged conditions and discriminate between different damage severities. It is anticipated to be promising in reliability assessment of massively produced structural parts.

Keywords: operational modal analysis, reliability assessment, anomaly detection, damage, mahalanobis squared distance

Procedia PDF Downloads 83
5562 Experimental and Numerical Investigation of Fracture Behavior of Foamed Concrete Based on Three-Point Bending Test of Beams with Initial Notch

Authors: M. Kozłowski, M. Kadela

Abstract:

Foamed concrete is known for its low self-weight and excellent thermal and acoustic properties. For many years, it has been used worldwide for insulation to foundations and roof tiles, as backfill to retaining walls, sound insulation, etc. However, in the last years it has become a promising material also for structural purposes e.g. for stabilization of weak soils. Due to favorable properties of foamed concrete, many interests and studies were involved to analyze its strength, mechanical, thermal and acoustic properties. However, these studies do not cover the investigation of fracture energy which is the core factor governing the damage and fracture mechanisms. Only limited number of publications can be found in literature. The paper presents the results of experimental investigation and numerical campaign of foamed concrete based on three-point bending test of beams with initial notch. First part of the paper presents the results of a series of static loading tests performed to investigate the fracture properties of foamed concrete of varying density. Beam specimens with dimensions of 100×100×840 mm with a central notch were tested in three-point bending. Subsequently, remaining halves of the specimens with dimensions of 100×100×420 mm were tested again as un-notched beams in the same set-up with reduced distance between supports. The tests were performed in a hydraulic displacement controlled testing machine with a load capacity of 5 kN. Apart from measuring the loading and mid-span displacement, a crack mouth opening displacement (CMOD) was monitored. Based on the load – displacement curves of notched beams the values of fracture energy and tensile stress at failure were calculated. The flexural tensile strength was obtained on un-notched beams with dimensions of 100×100×420 mm. Moreover, cube specimens 150×150×150 mm were tested in compression to determine the compressive strength. Second part of the paper deals with numerical investigation of the fracture behavior of beams with initial notch presented in the first part of the paper. Extended Finite Element Method (XFEM) was used to simulate and analyze the damage and fracture process. The influence of meshing and variation of mechanical properties on results was investigated. Numerical models simulate correctly the behavior of beams observed during three-point bending. The numerical results show that XFEM can be used to simulate different fracture toughness of foamed concrete and fracture types. Using the XFEM and computer simulation technology allow for reliable approximation of load–bearing capacity and damage mechanisms of beams made of foamed concrete, which provides some foundations for realistic structural applications.

Keywords: foamed concrete, fracture energy, three-point bending, XFEM

Procedia PDF Downloads 271
5561 Physical and Mechanical Phenomena Associated with Rock Failure in Brazilian Disc Specimens

Authors: Hamid Reza Nejati, Amin Nazerigivi, Ahmad Reza Sayadi

Abstract:

Failure mechanism of rocks is one of the fundamental aspects to study rock engineering stability. Rock is a material that contains flaws, initial damage, micro-cracks, etc. Failure of rock structure is largely due to tensile stress and was influenced by various parameters. In the present study, the effect of brittleness and loading rate on the physical and mechanical phenomena produced in rock during loading sequences is considered. For this purpose, Acoustic Emission (AE) technique is used to monitor fracturing process of three rock types (onyx marble, sandstone and soft limestone) with different brittleness and sandstone samples under different loading rate. The results of experimental tests revealed that brittleness and loading rate have a significant effect on the mode and number of induced fracture in rocks. An increase in rock brittleness increases the frequency of induced cracks, and the number of tensile fracture decreases when loading rate increases.

Keywords: brittleness, loading rate, acoustic emission, tensile fracture, shear fracture

Procedia PDF Downloads 428
5560 Melanoma Antigen Proteins Are Involved in DNA Damage Response

Authors: Olivier de Backer, Alexis Khelfi, Olivier Svensek, Axelle Nolmans, Dominique Desnoeck

Abstract:

The SMC5-SMC6 complex helps replication and repair of DNA double-strand breaks. Nse1, Nse3 and Nse4 are non-SMC components of the complex in which Nse3 stimulates the E3 ubiquitin ligase activity of Nse1 and is required for recruiting the complex on DNA. In most eukaryotes, Nse3 is a single protein, but in eutherians (placental mammals), it belongs to a large family of proteins called MAGE (Melanoma antigen) that share a conserved domain of about 200 aa known as MHD (Mage homology domain). MAGE assembles specific RING and HECT ubiquitin ligases and determines new substrates for ubiquitination. The MHD is required for the interaction with the cognate E3 ligase. Some MAGEs (referred to as Type I) are exclusively expressed in germ cells of the testis but are often expressed ectopically in cancer cells as the result of epigenetic modifications. The 12 MAGE-A genes belong to this category. Serval MAGE-A proteins could promote tumorigenesis by targeting tumor suppressor proteins (including p53) for ubiquitination and degradation. We showed that depletion of MAGE-A proteins in melanoma cells results in impaired DNA damage response and increased double-strand breaks after exposure to camptothecin. Moreover, it was shown that other actors of the DNA Damage Response were impacted when cells were depleted of MAGEA proteins.

Keywords: DNA damage response, melanoma, camptothecin, new role, MAGEA

Procedia PDF Downloads 62
5559 Rapid Monitoring of Earthquake Damages Using Optical and SAR Data

Authors: Saeid Gharechelou, Ryutaro Tateishi

Abstract:

Earthquake is an inevitable catastrophic natural disaster. The damages of buildings and man-made structures, where most of the human activities occur are the major cause of casualties from earthquakes. A comparison of optical and SAR data is presented in the case of Kathmandu valley which was hardly shaken by 2015-Nepal Earthquake. Though many existing researchers have conducted optical data based estimated or suggested combined use of optical and SAR data for improved accuracy, however finding cloud-free optical images when urgently needed are not assured. Therefore, this research is specializd in developing SAR based technique with the target of rapid and accurate geospatial reporting. Should considers that limited time available in post-disaster situation offering quick computation exclusively based on two pairs of pre-seismic and co-seismic single look complex (SLC) images. The InSAR coherence pre-seismic, co-seismic and post-seismic was used to detect the change in damaged area. In addition, the ground truth data from field applied to optical data by random forest classification for detection of damaged area. The ground truth data collected in the field were used to assess the accuracy of supervised classification approach. Though a higher accuracy obtained from the optical data then integration by optical-SAR data. Limitation of cloud-free images when urgently needed for earthquak evevent are and is not assured, thus further research on improving the SAR based damage detection is suggested. Availability of very accurate damage information is expected for channelling the rescue and emergency operations. It is expected that the quick reporting of the post-disaster damage situation quantified by the rapid earthquake assessment should assist in channeling the rescue and emergency operations, and in informing the public about the scale of damage.

Keywords: Sentinel-1A data, Landsat-8, earthquake damage, InSAR, rapid damage monitoring, 2015-Nepal earthquake

Procedia PDF Downloads 140
5558 An Integrated Label Propagation Network for Structural Condition Assessment

Authors: Qingsong Xiong, Cheng Yuan, Qingzhao Kong, Haibei Xiong

Abstract:

Deep-learning-driven approaches based on vibration responses have attracted larger attention in rapid structural condition assessment while obtaining sufficient measured training data with corresponding labels is relevantly costly and even inaccessible in practical engineering. This study proposes an integrated label propagation network for structural condition assessment, which is able to diffuse the labels from continuously-generating measurements by intact structure to those of missing labels of damage scenarios. The integrated network is embedded with damage-sensitive features extraction by deep autoencoder and pseudo-labels propagation by optimized fuzzy clustering, the architecture and mechanism which are elaborated. With a sophisticated network design and specified strategies for improving performance, the present network achieves to extends the superiority of self-supervised representation learning, unsupervised fuzzy clustering and supervised classification algorithms into an integration aiming at assessing damage conditions. Both numerical simulations and full-scale laboratory shaking table tests of a two-story building structure were conducted to validate its capability of detecting post-earthquake damage. The identifying accuracy of a present network was 0.95 in numerical validations and an average 0.86 in laboratory case studies, respectively. It should be noted that the whole training procedure of all involved models in the network stringently doesn’t rely upon any labeled data of damage scenarios but only several samples of intact structure, which indicates a significant superiority in model adaptability and feasible applicability in practice.

Keywords: autoencoder, condition assessment, fuzzy clustering, label propagation

Procedia PDF Downloads 73
5557 Constitutive Model for Analysis of Long-Term Municipal Solid Waste Landfill Settlement

Authors: Irena Basaric Ikodinovic, Dragoslav Rakic, Mirjana Vukicevic, Sanja Jockovic, Jovana Jankovic Pantic

Abstract:

Large long-term settlement occurs at the municipal solid waste landfills over an extended period of time which may lead to breakage of the geomembrane, damage of the cover systems, other protective systems or facilities constructed on top of a landfill. Also, municipal solid waste is an extremely heterogeneous material and its properties vary over location and time within a landfill. These material characteristics require the formulation of a new constitutive model to predict the long-term settlement of municipal solid waste. The paper presents a new constitutive model which is formulated to describe the mechanical behavior of municipal solid waste. Model is based on Modified Cam Clay model and the critical state soil mechanics framework incorporating time-dependent components: mechanical creep and biodegradation of municipal solid waste. The formulated constitutive model is optimized and defined with eight input parameters: five Modified Cam Clay parameters, one parameter for mechanical creep and two parameters for biodegradation of municipal solid waste. Thereafter, the constitutive model is implemented in the software suite for finite element analysis (ABAQUS) and numerical analysis of the experimental landfill settlement is performed. The proposed model predicts the total settlement which is in good agreement with field measured settlement at the experimental landfill.

Keywords: constitutive model, finite element analysis, municipal solid waste, settlement

Procedia PDF Downloads 200
5556 The Quantitative Analysis of the Influence of the Superficial Abrasion on the Lifetime of the Frog Rail

Authors: Dong Jiang

Abstract:

Turnout is the essential equipment on the railway, which also belongs to one of the strongest demanded infrastructural facilities of railway on account of the more seriously frog rail failures. In cooperation with Germany Company (DB Systemtechnik AG), our research team focuses on the quantitative analysis about the frog rails to predict their lifetimes. Moreover, the suggestions for the timely and effective maintenances are made to improve the economy of the frog rails. The lifetime of the frog rail depends strongly on the internal damage of the running surface until the breakages occur. On the basis of Hertzian theory of the contact mechanics, the dynamic loads of the running surface are calculated in form of the contact pressures on the running surface and the equivalent tensile stress inside the running surface. According to material mechanics, the strength of the frog rail is determined quantitatively in form of the Stress-cycle (S-N) curve. Under the interaction between the dynamic loads and the strength, the internal damage of the running surface is calculated by means of the linear damage hypothesis of the Miner’s rule. The emergence of the first Breakage on the running surface is to be defined as the failure criterion that the damage degree equals 1.0. From the microscopic perspective, the running surface of the frog rail is divided into numerous segments for the detailed analysis. The internal damage of the segment grows slowly in the beginning and disproportionately quickly in the end until the emergence of the breakage. From the macroscopic perspective, the internal damage of the running surface develops simply always linear along the lifetime. With this linear growth of the internal damages, the lifetime of the frog rail could be predicted simply through the immediate introduction of the slope of the linearity. However, the superficial abrasion plays an essential role in the results of the internal damages from the both perspectives. The influences of the superficial abrasion on the lifetime are described in form of the abrasion rate. It has two contradictory effects. On the one hand, the insufficient abrasion rate causes the concentration of the damage accumulation on the same position below the running surface to accelerate the rail failure. On the other hand, the excessive abrasion rate advances the disappearance of the head hardened surface of the frog rail to result in the untimely breakage on the surface. Thus, the relationship between the abrasion rate and the lifetime is subdivided into an initial phase of the increased lifetime and a subsequent phase of the more rapid decreasing lifetime with the continuous growth of the abrasion rate. Through the compensation of these two effects, the critical abrasion rate is discussed to reach the optimal lifetime.

Keywords: breakage, critical abrasion rate, frog rail, internal damage, optimal lifetime

Procedia PDF Downloads 172
5555 Enhancing Flood Modeling: Unveiling the Role of Hazard Parameters in Building Vulnerability

Authors: Mohammad Shoraka, Raulina Wojtkiewicz, Karthik Ramanathan

Abstract:

Following the devastating summer 2021 floods in Germany, catastrophe modelers realized that hazard parameters, such as flow velocity, flood duration, and debris flow, play a significant role in capturing the overall damage potential of such events. Accounting for the location-specific static depth as the only hazard intensity metric may lead to a substantial underestimation of the vulnerability of building stock and, eventually, the loss potential of such catastrophic events. As the flow velocity increases, the hydrodynamic forces acting on various building components are amplified. Longer flood duration leads to water permeating porous components, incurring additional cleanup costs that contribute to an overall increase in damage. Debris flow possesses the power to erode extensive sections of buildings, thus substantially augmenting the extent of losses. This paper introduces four flow velocity classes, ranging from no flow velocity to major velocity, along with two flood duration classes: short and long, in estimating the vulnerability of the building stock. Additionally, the study examines the impact of the presence of debris flow and its role in exacerbating flood damage. The paper delves into the effects of each of these parameters on building component damageability and their collective impact on the overall building vulnerability.

Keywords: catastrophe modeling, building vulnerability, hazard parameters, component damage function

Procedia PDF Downloads 37
5554 Using Fly Ash as a Reinforcement to Increase Wear Resistance of Pure Magnesium

Authors: E. Karakulak, R. Yamanoğlu, M. Zeren

Abstract:

In the current study, fly ash obtained from a thermal power plant was used as reinforcement in pure magnesium. The composite materials with different fly ash contents were produced with powder metallurgical methods. Powder mixtures were sintered at 540oC under 30 MPa pressure for 15 minutes in a vacuum assisted hot press. Results showed that increasing ash content continuously increases hardness of the composite. On the other hand, minimum wear damage was obtained at 2 wt. % ash content. Addition of higher level of fly ash results with formation of cracks in the matrix and increases wear damage of the material.

Keywords: Mg composite, fly ash, wear, powder metallurgy

Procedia PDF Downloads 337
5553 Genistein Suppresses Doxorubicin Associated Genotoxicity in Human Lymphocytes

Authors: Tanveer Beg, Yasir H. Siddique, Gulshan Ara, Asfar S. Azmi, Mohammad Afzal

Abstract:

Doxorubicin is a well-known DNA intercalating chemotherapy drug that is widely used for treatment of different cancers. Its clinical utility is limited due to the observed genotoxic side effects on healthy cells suggesting that newer combination and genoprotective regimens are urgently needed for the management of doxorubicin chemotherapy. Some dietary phytochemicals are well known for their protective mechanism of action and genistein from soy is recognized as an anti-oxidant with similar properties. Therefore, the present study investigates the effect of genistein against the genotoxic doses of doxorubicin by assessing chromosomal aberrations, sister chromatid exchanges, cell cycle kinetics, cell viability, apoptosis, and DNA damage markers in cultured human lymphocytes. Our results reveal that genistein treatment significantly suppresses genotoxic damage induced by doxorubicin. It is concluded that genistein has the potential to reduce the genotoxicity induced by anti-cancer drugs, thereby reducing the chances of developing secondary tumors during the therapy.

Keywords: apoptosis, DNA damage markers, doxorubicin, genistein, genotoxicity, human lymphocyte culture

Procedia PDF Downloads 336