Search results for: mechanical & durability properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10528

Search results for: mechanical & durability properties

10228 Experimental and Numerical Processes of Open Die Forging of Multimetallic Materials with the Usage of Different Lubricants

Authors: Isik Cetintav, Cenk Misirli, Yilmaz Can, Damla Gunel

Abstract:

This work investigates experimental and numerical analysis of open die forging of multimetallic materials. Multimetallic material production has recently become an interesting research field. The mechanical properties of the materials to be used for the formation of multimetallic materials and the mechanical properties of the multimetallic materials produced will be compared and the material flows of the use of different lubricants will be examined. Furthermore, in this work, the mechanical properties of multimetallic metallic materials produced using different materials will be examined by using different lubricants. The advantages and disadvantages of different lubricants will be approached with the bi-metallic material to be produced. Cylindrical specimens consisting of two different materials were used in the experiments. Specimens were prepared as aluminum sleeve and copper core and upset at different reduction. This metal combination present a material model of which chemical composition is different. ABAQUS software was used for the simulations. Simulation and experimental results have also shown reasonable agreement.

Keywords: multimetallic, forging, experimental, numerical

Procedia PDF Downloads 259
10227 Simulation of Non-Crimp 3D Orthogonal Carbon Fabric Composite for Aerospace Applications Using Finite Element Method

Authors: Sh. Minapoor, S. Ajeli, M. Javadi Toghchi

Abstract:

Non-crimp 3D orthogonal fabric composite is one of the textile-based composite materials that are rapidly developing light-weight engineering materials. The present paper focuses on geometric and micro mechanical modeling of non-crimp 3D orthogonal carbon fabric and composites reinforced with it for aerospace applications. In this research meso-finite element (FE) modeling employs for stress analysis in different load conditions. Since mechanical testing of expensive textile carbon composites with specific application isn't affordable, simulation composite in a virtual environment is a helpful way to investigate its mechanical properties in different conditions.

Keywords: woven composite, aerospace applications, finite element method, mechanical properties

Procedia PDF Downloads 438
10226 Prediction of Time to Crack Reinforced Concrete by Chloride Induced Corrosion

Authors: Anuruddha Jayasuriya, Thanakorn Pheeraphan

Abstract:

In this paper, a review of different mathematical models which can be used as prediction tools to assess the time to crack reinforced concrete (RC) due to corrosion is investigated. This investigation leads to an experimental study to validate a selected prediction model. Most of these mathematical models depend upon the mechanical behaviors, chemical behaviors, electrochemical behaviors or geometric aspects of the RC members during a corrosion process. The experimental program is designed to verify the accuracy of a well-selected mathematical model from a rigorous literature study. Fundamentally, the experimental program exemplifies both one-dimensional chloride diffusion using RC squared slab elements of 500 mm by 500 mm and two-dimensional chloride diffusion using RC squared column elements of 225 mm by 225 mm by 500 mm. Each set consists of three water-to-cement ratios (w/c); 0.4, 0.5, 0.6 and two cover depths; 25 mm and 50 mm. 12 mm bars are used for column elements and 16 mm bars are used for slab elements. All the samples are subjected to accelerated chloride corrosion in a chloride bath of 5% (w/w) sodium chloride (NaCl) solution. Based on a pre-screening of different models, it is clear that the well-selected mathematical model had included mechanical properties, chemical and electrochemical properties, nature of corrosion whether it is accelerated or natural, and the amount of porous area that rust products can accommodate before exerting expansive pressure on the surrounding concrete. The experimental results have shown that the selected model for both one-dimensional and two-dimensional chloride diffusion had ±20% and ±10% respective accuracies compared to the experimental output. The half-cell potential readings are also used to see the corrosion probability, and experimental results have shown that the mass loss is proportional to the negative half-cell potential readings that are obtained. Additionally, a statistical analysis is carried out in order to determine the most influential factor that affects the time to corrode the reinforcement in the concrete due to chloride diffusion. The factors considered for this analysis are w/c, bar diameter, and cover depth. The analysis is accomplished by using Minitab statistical software, and it showed that cover depth is the significant effect on the time to crack the concrete from chloride induced corrosion than other factors considered. Thus, the time predictions can be illustrated through the selected mathematical model as it covers a wide range of factors affecting the corrosion process, and it can be used to predetermine the durability concern of RC structures that are vulnerable to chloride exposure. And eventually, it is further concluded that cover thickness plays a vital role in durability in terms of chloride diffusion.

Keywords: accelerated corrosion, chloride diffusion, corrosion cracks, passivation layer, reinforcement corrosion

Procedia PDF Downloads 189
10225 The Use of Palm Kernel Shell and Ash for Concrete Production

Authors: J. E. Oti, J. M. Kinuthia, R. Robinson, P. Davies

Abstract:

This work reports the potential of using Palm Kernel (PK) ash and shell as a partial substitute for Portland Cement (PC) and coarse aggregate in the development of mortar and concrete. PK ash and shell are agro-waste materials from palm oil mills, the disposal of PK ash and shell is an environmental problem of concern. The PK ash has pozzolanic properties that enables it as a partial replacement for cement and also plays an important role in the strength and durability of concrete, its use in concrete will alleviate the increasing challenges of scarcity and high cost of cement. In order to investigate the PC replacement potential of PK ash, three types of PK ash were produced at varying temperature (350-750 degrees) and they were used to replace up to 50% PC. The PK shell was used to replace up to 100% coarse aggregate in order to study its aggregate replacement potential. The testing programme included material characterisation, the determination of compressive strength, tensile splitting strength and chemical durability in aggressive sulfate-bearing exposure conditions. The 90 day compressive results showed a significant strength gain (up to 26.2 N/mm2). The Portland cement and conventional coarse aggregate has significantly higher influence in the strength gain compared to the equivalent PK ash and PK shell. The chemical durability results demonstrated that after a prolonged period of exposure, significant strength losses in all the concretes were observed. This phenomenon is explained, due to lower change in concrete morphology and inhibition of reaction species and the final disruption of the aggregate cement paste matrix.

Keywords: sustainability, concrete, mortar, palm kernel shell, compressive strength, consistency

Procedia PDF Downloads 366
10224 Mechanical Properties of Hybrid Ti6Al4V Part with Wrought Alloy to Powder-Bed Additive Manufactured Interface

Authors: Amnon Shirizly, Ohad Dolev

Abstract:

In recent years, the implementation and use of Metal Additive Manufacturing (AM) parts increase. As a result, the demand for bigger parts rises along with the desire to reduce it’s the production cost. Generally, in powder bed Additive Manufacturing technology the part size is limited by the machine build volume. In order to overcome this limitation, the parts can be built in one or more machine operations and mechanically joint or weld them together. An alternative option could be a production of wrought part and built on it the AM structure (mainly to reduce costs). In both cases, the mechanical properties of the interface have to be defined and recognized. In the current study, the authors introduce guidelines on how to examine the interface between wrought alloy and powder-bed AM. The mechanical and metallurgical properties of the Ti6Al4V materials (wrought alloy and powder-bed AM) and their hybrid interface were examined. The mechanical properties gain from tensile test bars in the built direction and fracture toughness samples in various orientations. The hybrid specimens were built onto a wrought Ti6Al4V start-plate. The standard fracture toughness (CT25 samples) and hybrid tensile specimens' were heat treated and milled as a post process to final diminutions. In this Study, the mechanical tensile tests and fracture toughness properties supported by metallurgical observation will be introduced and discussed. It will show that the hybrid approach of utilizing powder bed AM onto wrought material expanding the current limitation of the future manufacturing technology.

Keywords: additive manufacturing, hybrid, fracture-toughness, powder bed

Procedia PDF Downloads 85
10223 Influence of UV Aging on the Mechanical Properties of Polycarbonate

Authors: S. Redjala, N. Ait Hocine, M. Gratton, N. Poirot, R. Ferhoum, S. Azem

Abstract:

Polycarbonate (PC) is a promising polymer with high transparency in the range of the visible spectrum and is used in various fields, for example medical, electronic, automotive. Its low weight, chemical inertia, high impact resistance and relatively low cost are of major importance. In recent decades, some materials such as metals and ceramics have been replaced by polymers because of their superior advantages. However, some characteristics of the polymers are highly modified under the effect of ultraviolet (UV) radiation and temperature. The changes induced in the material by such aging depend on the exposure time, the wavelength of the UV radiation and the temperature level. The UV energy is sufficient to break the chemical bonds leading to a cleavage of the molecular chains. This causes changes in the mechanical, thermal, optical and morphological properties of the material. The present work is focused on the study of the effects of aging under ultraviolet (UV) radiation and under different temperature values on the physical-chemical and mechanical properties of a PC. Thus, various investigations, such as FTIR and XRD analyses, SEM and optical microscopy observations, micro-hardness measurements and monotonic and cyclic tensile tests, were carried out on the PC in the initial state and after aging. Results have shown the impact of aging on the properties of the PC studied. In fact, the MEB highlighted changes in the superficial morphology of the material by the presence of cracks and material de-bonding in the form of debris. The FTIR spectra reveal an attenuation of the peaks like the hydroxyl (OH) groups located at 3520 cm-1. The XRD lines shift towards a larger angle, reaching a maximum of 3°. In addition, Vickers micro-hardness measurements show that aging affects the surface and the core of the material, which results in different mechanical behaviours under monotonic and cyclic tensile tests. This study pointed out effects of aging on the macroscopic properties of the PC studied, in relationship with its microstructural changes.

Keywords: mechanical properties, physical-chemical properties, polycarbonate, UV aging, temperature aging

Procedia PDF Downloads 120
10222 Mechanical Properties of Carbon Nanofiber Reinforced Polymer Composites-Molecular Dynamics Approach

Authors: Sumit Sharma, Rakesh Chandra, Pramod Kumar, Navin Kumar

Abstract:

Molecular dynamics (MD) simulation has been used to study the effect of carbon nanofiber (CNF) volume fraction (Vf) and aspect ratio (l/d) on mechanical properties of CNF reinforced polypropylene (PP) composites. Materials Studio 5.5 has been used as a tool for finding the modulus and damping in composites. CNF composition in PP was varied by volume from 0 to 16%. Aspect ratio of CNF was varied from l/d=5 to l/d=100. To the best of the knowledge of the authors, till date there is no study, either experimental or analytical, which predict damping for CNF-PP composites at the nanoscale. Hence, this will be a valuable addition in the area of nanocomposites. Results show that with only 2% addition by volume of CNF in PP, E11 increases 748%. Increase in E22 is very less in comparison to the increase in E11. With increase in CNF aspect ratio (l/d) till l/d=60, the longitudinal loss factor (η11) decreases rapidly. Results of this study have been compared with those available in literature.

Keywords: carbon nanofiber, elasticity, mechanical properties, molecular dynamics

Procedia PDF Downloads 459
10221 Use of EPR in Experimental Mechanics

Authors: M. Sikoń, E. Bidzińska

Abstract:

An attempt to apply EPR (Electron Paramagnetic Resonance) spectroscopy to experimental analysis of the mechanical state of the loaded material is considered in this work. Theory concerns the participation of electrons in transfer of mechanical action. The model of measurement is shown by applying classical mechanics and quantum mechanics. Theoretical analysis is verified using EPR spectroscopy twice, once for the free spacemen and once for the mechanical loaded spacemen. Positive results in the form of different spectra for free and loaded materials are used to describe the mechanical state in continuum based on statistical mechanics. Perturbation of the optical electrons in the field of the mechanical interactions inspires us to propose new optical properties of the materials with mechanical stresses.

Keywords: Cosserat medium, EPR spectroscopy, optical active electrons, optical activity

Procedia PDF Downloads 349
10220 Effect of Tool Geometry and Welding Parameters on Macrostructure and Weld Strength in Friction Stir Welded of High Density Polyethylene Sheets

Authors: Mustafa Kemal Bilici, Memduh Kurtulmuş, İlyas Kartal, Ahmet İrfan Yükler

Abstract:

Friction stir welding is a solid-state joining process that has gained acceptable progress in recent years. This method which was first used for welding of aluminum and its alloys is now employed for welding of other materials such as polymers and composites. The aim of the present work is to investigate the mechanical properties of butt joints produced by friction stir welding (FSW) in high density polyethylene sheets of 4 mm thickness. The effects of critical welding parameters and tool design have affected on mechanical properties, weld surface and macrostructure of friction stir welded polyethylene. Experiments were performed at tool rotational speeds of 600, 900, 1200 and 1500 r/min and traverse speeds of 30, 45 and 60 mm/min, tool diameters (d) of 4, 5, 6 mm and tool shoulder diameters (D) 20, 25, 30 mm. A strength value of 80 % of the base material was achieved at the isolated optimum welding condition. According to the tool design, the welding parameters and the mechanical properties changed to a great extent. The highest tensile strength was achieved at low feed rates, high tool rotation speeds and shoulder diameters/pin diameters ratio.

Keywords: friction stir welding, mechanical properties, polyethylene, high density polyethylene, tool design

Procedia PDF Downloads 364
10219 Study of the Green Composite Jute/Epoxy

Authors: A. Mir, C. Aribi, B. Bezzazi

Abstract:

Work presented is interested in the characterization of the quasistatic mechanical properties and in fatigue of a composite laminated in jute/epoxy. The natural fibers offer promising prospects thanks to their interesting specific properties, because of their low density, but also with their bio deterioration. Several scientific studies highlighted the good mechanical resistance of the vegetable fiber composites reinforced, even after several recycling. Because of the environmental standards which become increasingly severe, one attends the emergence of eco-materials at the base of natural fibers such as flax, bamboo, hemp, sisal, jute. The fatigue tests on elementary vegetable fibers show an increase of about 60% of the rigidity of elementary fibers of hemp subjected to cyclic loading. In this study, the test-tubes manufactured by the method infusion have sequences of stacking of 0/90° and ± 45° for the shearing and tensile tests. The quasistatic tests reveal a variability of the mechanical properties of about 8%. The tensile fatigue tests were carried out for levels of constraints equivalent to half of the ultimate values of the composite. Once the fatigue tests carried out for well-defined values of cycles, a series of static tests of traction type highlights the influence of the number of cycles on the quasi static mechanical behavior of the laminate jute/epoxy.

Keywords: jute, epoxy resin, mechanical, static, dynamic behavior

Procedia PDF Downloads 220
10218 The Mechanical Properties of a Small-Size Seismic Isolation Rubber Bearing for Bridges

Authors: Yi F. Wu, Ai Q. Li, Hao Wang

Abstract:

Taking a novel type of bridge bearings with the diameter being 100mm as an example, the theoretical analysis, the experimental research as well as the numerical simulation of the bearing were conducted. Since the normal compression-shear machines cannot be applied to the small-size bearing, an improved device to test the properties of the bearing was proposed and fabricated. Besides, the simulation of the bearing was conducted on the basis of the explicit finite element software ANSYS/LS-DYNA, and some parameters of the bearing are modified in the finite element model to effectively reduce the computation cost. Results show that all the research methods are capable of revealing the fundamental properties of the small-size bearings, and a combined use of these methods can better catch both the integral properties and the inner detailed mechanical behaviors of the bearing.

Keywords: ANSYS/LS-DYNA, compression shear, contact analysis, explicit algorithm, small-size

Procedia PDF Downloads 158
10217 Improvement of Mechanical Properties of Saline Soils by Fly Ash: Effect of Freeze-Thaw Cycles

Authors: Zhuo Cheng, Gaohang Cui, Yang Zheng, Zhiqiang-Pan

Abstract:

To explore the effect of freeze-thaw cycles on saline soil mechanical properties of fly ash, this study examined the influence of different numbers of freezing and thawing cycles, fly ash content, and moisture content of saline soil in unconfined compression tests and triaxial shear tests. With increased fly ash content, the internal friction angle, cohesion, unconfined compressive strength, and shear strength of the improved soil increased at first and then decreased. Using the Desk-Expert 8.0 software and based on significance analysis theory, the number of freeze-thaw cycles, fly ash content, water content, and the interactions between various factors on the mechanical properties of saline soil were studied. The results showed that the number of freeze-thaw cycles had a significant effect on the mechanical properties of saline soil, while the fly ash content had a weakly significant effect. At the same time, interaction between the number of freeze-thaw cycles and the water content had a significant effect on the unconfined compressive strength and the cohesion of saline soil, and the interaction between fly ash content and the number of freeze-thaw cycles only had a significant effect on the unconfined compressive strength.

Keywords: fly ash, saline soil, seasonally frozen area, significance analysis, qualitative analysis

Procedia PDF Downloads 121
10216 Experimental and Numerical Investigation on Delaminated Composite Plate

Authors: Sreekanth T. G., Kishorekumar S., Sowndhariya Kumar J., Karthick R., Shanmugasuriyan S.

Abstract:

Composites are increasingly being used in industries due to their unique properties, such as high specific stiffness and specific strength, higher fatigue and wear resistances, and higher damage tolerance capability. Composites are prone to failures or damages that are difficult to identify, locate, and characterize due to their complex design features and complicated loading conditions. The lack of understanding of the damage mechanism of the composites leads to the uncertainties in the structural integrity and durability. Delamination is one of the most critical failure mechanisms in laminated composites because it progressively affects the mechanical performance of fiber-reinforced polymer composite structures over time. The identification and severity characterization of delamination in engineering fields such as the aviation industry is critical for both safety and economic concerns. The presence of delamination alters the vibration properties of composites, such as natural frequencies, mode shapes, and so on. In this study, numerical analysis and experimental analysis were performed on delaminated and non-delaminated glass fiber reinforced polymer (GFRP) plate, and the numerical and experimental analysis results were compared, and error percentage has been found out.

Keywords: composites, delamination, natural frequency, mode shapes

Procedia PDF Downloads 81
10215 Effect of Leaks in Solid Oxide Electrolysis Cells Tested for Durability under Co-Electrolysis Conditions

Authors: Megha Rao, Søren H. Jensen, Xiufu Sun, Anke Hagen, Mogens B. Mogensen

Abstract:

Solid oxide electrolysis cells have an immense potential in converting CO2 and H2O into syngas during co-electrolysis operation. The produced syngas can be further converted into hydrocarbons. This kind of technology is called power-to-gas or power-to-liquid. To produce hydrocarbons via this route, durability of the cells is still a challenge, which needs to be further investigated in order to improve the cells. In this work, various nickel-yttria stabilized zirconia (Ni-YSZ) fuel electrode supported or YSZ electrolyte supported cells, cerium gadolinium oxide (CGO) barrier layer, and an oxygen electrode are investigated for durability under co-electrolysis conditions in both galvanostatic and potentiostatic conditions. While changing the gas on the oxygen electrode, keeping the fuel electrode gas composition constant, a change in the gas concentration arc was observed by impedance spectroscopy. Measurements of open circuit potential revealed the presence of leaks in the setup. It is speculated that the change in concentration impedance may be related to the leaks. Furthermore, the cells were also tested under pressurized conditions to find an inter-play between the leak rate and the pressure. A mathematical modeling together with electrochemical and microscopy analysis is presented.

Keywords: co-electrolysis, durability, leaks, gas concentration arc

Procedia PDF Downloads 123
10214 Evaluation of Mechanical Properties and Surface Roughness of Nanofilled and Microhybrid Composites

Authors: Solmaz Eskandarion, Haniyeh Eftekhar, Amin Fallahi

Abstract:

Introduction: Nowadays cosmetic dentistry has gained greater attention because of the changing demands of dentistry patients. Composite resin restorations play an important role in the field of esthetic restorations. Due to the variation between the resin composites, it is important to be aware of their mechanical properties and surface roughness. So, the aim of this study was to compare the mechanical properties (surface hardness, compressive strength, diametral tensile strength) and surface roughness of four kinds of resin composites after thermal aging process. Materials and Method: 10 samples of each composite resins (Gradia-direct (GC), Filtek Z250 (3M), G-ænial (GC), Filtek Z350 (3M- filtek supreme) prepared for evaluation of each properties (totally 120 samples). Thermocycling (with temperature 5 and 55 degree of centigrade and 10000 cycles) were applied. Then, the samples were tested about their compressive strength and diametral tensile strength using UTM. And surface hardness was evaluated with Microhardness testing machine. Either surface roughness was evaluated with Scanning electron microscope after surface polishing. Result: About compressive strength (CS), Filtek Z250 showed the highest value. But there were not any significant differences between 4 groups about CS. Either Filtek Z250 detected as a composite with highest value of diametral tensile strength (DTS) and after that highest to lowest DTS was related to: Filtek Z350, G-ænial and Gradia-direct. And about DTS all of the groups showed significant differences (P<0.05). Vickers Hardness Number (VHN) of Filtek Z250 was the greatest. After that Filtek Z350, G-ænial and Gradia-direct followed it. The surface roughness of nano-filled composites was less than Microhybrid composites. Either the surface roughness of GC Ganial was a little greater than Filtek Z250. Conclusion: This study indicates that there is not any evident significant difference between the groups amoung their mechanical properties. But it seems that Filtek Z250 showed slightly better mechanical properties. About surface roughness, nanofilled composites were better that Microhybrid.

Keywords: mechanical properties, surface roughness, resin composite, compressive strength, thermal aging

Procedia PDF Downloads 330
10213 Quantum Statistical Mechanical Formulations of Three-Body Problems via Non-Local Potentials

Authors: A. Maghari, V. M. Maleki

Abstract:

In this paper, we present a quantum statistical mechanical formulation from our recently analytical expressions for partial-wave transition matrix of a three-particle system. We report the quantum reactive cross sections for three-body scattering processes 1 + (2,3)-> 1 + (2,3) as well as recombination 1 + (2,3) -> 2 + (3,1) between one atom and a weakly-bound dimer. The analytical expressions of three-particle transition matrices and their corresponding cross-sections were obtained from the three-dimensional Faddeev equations subjected to the rank-two non-local separable potentials of the generalized Yamaguchi form. The equilibrium quantum statistical mechanical properties such partition function and equation of state as well as non-equilibrium quantum statistical properties such as transport cross-sections and their corresponding transport collision integrals were formulated analytically. This leads to obtain the transport properties, such as viscosity and diffusion coefficient of a moderate dense gas.

Keywords: statistical mechanics, nonlocal separable potential, three-body interaction, faddeev equations

Procedia PDF Downloads 376
10212 Study on the Fabrication and Mechanical Characterization of Pineapple Fiber-Reinforced Unsaturated Polyester Resin Based Composites: Effect of Gamma Irradiation

Authors: Kamrun N. Keya, Nasrin A. Kona, Ruhul A. Khan

Abstract:

Pineapple leaf fiber (PALF) reinforced polypropylene (PP) based composites were fabricated by a conventional compression molding technique. In this investigation, PALF composites were manufactured using different percentages of fiber, which were varying from 25-50% on the total weight of the composites. To fabricate the PALF/PP composites, untreated and treated fibers were selected. A systematic study was done to observe the physical, mechanical and interfacial behavior of the composites. In this study, mechanical properties of the composites such as tensile, impact and bending properties were observed precisely. It was found that 45wt% of fiber composites showed better mechanical properties than others. Maximum tensile strength (TS) and bending strength (BS) was observed, 65 MPa and 50 MPa respectively, whereas the highest tensile modulus (TM) and bending modulus (BM) was examined, 1.7 GPa and 0.85 GPa respectively. The PALF/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (2.5 kGy to 10 kGy). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 5.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray ) gamma dose showed better mechanical properties than other doses. The values of TS, BS, TM, and BM of the irradiated (5.0 kGy) composites were found to improve by 19%, 23%, 17% and 25 % over non-irradiated composites. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated PALF/PP based composites showed better fiber-matrix adhesion and interfacial bonding than untreated PALF/PP based composites. Water uptake and soil degradation tests of untreated and treated composites were also investigated.

Keywords: PALF, polypropylene, compression molding technique, gamma radiation, mechanical properties, scanning electron microscope

Procedia PDF Downloads 125
10211 Mechanical and Microstructural Study of Photo-Aged Low Density Polyethylene (LDPE) Films

Authors: Meryem Imane Babaghayou, Abdelhafidi Asma

Abstract:

This study deals with the ageing of Blown extruded films of low-density polyethylene (LDPE), used for greenhouse covering. The LDPE have been subjected to climatic ageing in a sub-Saharan facility at Laghouat (Algeria) with direct exposure to sun. The microstructural changes in the films were analyzed by IRFT for different states of ageing. The mechanical characterization was performed on a uniaxial tensile apparatus. The mechanical properties such as Young's modulus, strain at break, and stress at break have been followed for different states of exposure time (0 to 6 months). The Climatic ageing of LDPE films shows the effect of ageing on the microstructural Plan which leads to: i) To an oxidation of the molecular chains. ii) To the formation of cross-linkings and breaking chains, which both of them are responsible for the mechanical behavior’s modifications of the material. Cross-links are in favor of strengthening of the mechanical properties at break (the increase of σr and εr). In other side, the chains breaking leads to a decrease of these properties. The increase in the Young's modulus also seems to be related to those structural changes since the cross-links increase the average molecular weight. Branchings and tangles are favorable pairs for the ductile nature of the material. And in other side, the chains breaking reduces the average molecular weight and therefore promotes the stiffening (following to morphological changes) so the material becomes fragile. The post-mortem analysis of the samples shows that the mechanical stress has an effect on the molecular structure of the material. Although if quantitatively the concentrations of different chemical species exchanges, from a quantitative point of view only the unsaturations raises the polemics of a possible microstructural modification induced by mechanical stress applied during the tensile test. Also, we recommend a more rigorous analysis with other means of investigation.

Keywords: low-density polyethylene, ageing, mechanical properties, IRTF

Procedia PDF Downloads 338
10210 Enhancement of Mechanical and Dissolution Properties of a Cast Magnesium Alloy via Equal Angular Channel Processing

Authors: Tim Dunne, Jiaxiang Ren, Lei Zhao, Peng Cheng, Yi Song, Yu Liu, Wenhan Yue, Xiongwen Yang

Abstract:

Two decades of the Shale Revolution has transforming transformed the global energy market, in part by the adaption of multi-stage dissolvable frac plugs. Magnesium has been favored for the bulk of plugs, requiring development of materials to suit specific field requirements. Herein, the mechanical and dissolution results from equal channel angular pressing (ECAP) of two cast dissolvable magnesium alloy are described. ECAP was selected as a route to increase the mechanical properties of two formulations of dissolvable magnesium, as solutionizing failed. In this study, 1” square cross section samples cast Mg alloys formulations containing rare earth were processed at temperatures ranging from 200 to 350 °C, at a rate of 0.005”/s, with a backpressure from 0 to 70 MPa, in a brass, or brass + graphite sheet. Generally, the yield and ultimate tensile strength (UTS) doubled for all. For formulation DM-2, the yield increased from 100 MPa to 250 MPa; UTS from 175 MPa to 325 MPa, but the strain fell from 2 to 1%. Formulation DM-3 yield increased from 75 MPa to 200 MPa, UTS from 150 MPa to 275 MPa, with strain increasing from 1 to 3%. Meanwhile, ECAP has also been found to reduce the dissolution rate significantly. A microstructural analysis showed grain refinement of the alloy and the movement of secondary phases away from the grain boundary. It is believed that reconfiguration of the grain boundary phases increased the mechanical properties and decreased the dissolution rate. ECAP processing of dissolvable high rare earth content magnesium is possible despite the brittleness of the material. ECAP is a possible processing route to increase mechanical properties for dissolvable aluminum alloys that do not extrude.

Keywords: equal channel angular processing, dissolvable magnesium, frac plug, mechanical properties

Procedia PDF Downloads 94
10209 Experimental Study on Mechanical Properties of Commercially Pure Copper Processed by Severe Plastic Deformation Technique-Equal Channel Angular Extrusion

Authors: Krishnaiah Arkanti, Ramulu Malothu

Abstract:

The experiments have been conducted to study the mechanical properties of commercially pure copper processing at room temperature by severe plastic deformation using equal channel angular extrusion (ECAE) through a die of 90oangle up to 3 passes by route BC i.e. rotating the sample in the same direction by 90o after each pass. ECAE is used to produce from existing coarse grains to ultra-fine, equiaxed grains structure with high angle grain boundaries in submicron level by introducing a large amount of shear strain in the presence of hydrostatic pressure into the material without changing billet shape or dimension. Mechanical testing plays an important role in evaluating fundamental properties of engineering materials as well as in developing new materials and in controlling the quality of materials for use in design and construction. Yield stress, ultimate tensile stress and ductility are structure sensitive properties and vary with the structure of the material. Microhardness and tensile tests were carried out to evaluate the hardness, strength and ductility of the ECAE processed materials. The results reveal that the strength and hardness of commercially pure copper samples improved significantly without losing much ductility after each pass.

Keywords: equal channel angular extrusion, severe plastic deformation, copper, mechanical properties

Procedia PDF Downloads 156
10208 Investigation of Electrical, Thermal and Structural Properties on Polyacrylonitrile Nano-Fiber

Authors: N. Demirsoy, N. Uçar, A. Önen, N. Kızıldağ, Ö. F. Vurur, O. Eren, İ. Karacan

Abstract:

Polymer composite nano-fibers including (1, 3 wt %) silver nano-particles have been produced by electrospinning method. Polyacrylonitrile/N,N-dimethylformamide (PAN/DMF) solution has been prepared and the amount of silver nitrate has been adjusted to PAN weight. Silver nano-particles were obtained from reduction of silver ions into silver nano-particles by chemical reduction by hydrazine hydroxide (N2H5OH). The different amount of silver salt was loaded into polymer matrix to obtain polyacrylonitrile composite nano-fiber containing silver nano-particles. The effect of the amount of silver nano-particles on the properties of composite nano-fiber web was investigated. Electrical conductivity, mechanical properties, thermal properties were examined by Microtest LCR Meter 6370 (0.01 mΩ-100 MΩ), tensile tester, differential scanning calorimeter DSC (Q10) and SEM, respectively. Also, antimicrobial efficiency test (ASTM E2149-10) was done against Staphylococcus aureus bacteria. It has been seen that breaking strength, conductivity, antimicrobial effect, enthalpy during cyclization increase by use of silver nano-particles while the diameter of nano-fiber decreases.

Keywords: composite polyacrylonitrile nanofiber, electrical conductivity, electrospinning, mechanical properties, thermal properties, silver nanoparticles

Procedia PDF Downloads 385
10207 Extraction of Cellulose Nanofibrils from Pulp Using Enzymatic Pretreatment and Evaluation of Their Papermaking Potential

Authors: Ajay Kumar Singh, Arvind Kumar, S. P. Singh

Abstract:

Cellulose nanofibrils (CNF) have shown potential of their extensive use in various fields, including papermaking, due to their unique characteristics. In this study, CNF’s were prepared by fibrillating the pulp obtained from raw materials e.g. bagasse, hardwood and softwood using enzymatic pretreatment followed by mechanical refining. These nanofibrils, when examined under FE-SEM, show that partial fibrillation on fiber surface has resulted in production of nanofibers. Mixing these nanofibers with the unrefined and normally refined fibers show their reinforcing effect. This effect is manifested in observing the improvement in the physical and mechanical properties e.g. tensile index and burst index of paper. Tear index, however, was observed to decrease on blending with nanofibers. The optical properties of paper sheets made from blended fibers showed no significant change in comparison to those made from only mechanically refined pulp. Mixing of normal pulp fibers with nanofibers show increase in ºSR and consequent decrease in drainage rate. These changes observed in mechanical, optical and other physical properties of the paper sheets made from nanofibrils blended pulp have been tried to explain considering the distribution of the nanofibrils alongside microfibrils in the fibrous network. Since usually, paper/boards with higher strength are observed to have diminished optical properties which is a drawback in their quality, the present work has the potential for developing paper/boards having improved strength alongwith undiminished optical properties utilising the concepts of nanoscience and nanotechnology.

Keywords: enzymatic pretreatment, mechanical refining, nanofibrils, paper properties

Procedia PDF Downloads 330
10206 Effect of the Mould Rotational Speed on the Quality of Centrifugal Castings

Authors: M. A. El-Sayed, S. A. Aziz

Abstract:

Centrifugal casting is a standard casting technique for the manufacture of hollow, intricate and sound castings without the use of cores. The molten metal or alloy poured into the rotating mold forms a hollow casting as the centrifugal forces lift the liquid along the mold inner surface. The rotational speed of the die was suggested to greatly affect the manner in which the molten metal flows within the mould and consequently the probability of the formation of a uniform cylinder. In this work the flow of the liquid metal at various speeds and its effect during casting were studied. The results suggested that there was a critical range for the speed, within which the produced castings exhibited best uniformity and maximum mechanical properties. When a mould was rotated at speeds below or beyond the critical range defects were found in the final castings, which affected the uniformity and significantly lowered the mechanical properties.

Keywords: centrifugal casting, rotational speed, critical speed range, mechanical properties

Procedia PDF Downloads 418
10205 Index and Mechanical Geotechnical Properties and Their Control on the Strength and Durability of the Cainozoic Calcarenites in KwaZulu-Natal, South Africa

Authors: Luvuno N. Jele, Warwick W. Hastie, Andrew Green

Abstract:

Calcarenite is a clastic sedimentary beach rock composed of more than 50% sand sized (0.0625 – 2 mm) carbonate grains. In South Africa, these rocks occur as a narrow belt along most of the coast of KwaZulu-Natal and sporadically along the coast of the Eastern Cape. Calcarenites contain a high percentage of calcium carbonate, and due to a number of its physical and structural features, like porosity, cementing material, sedimentary structures, grain shape, and grain size; they are more prone to chemical and mechanical weathering. The objective of the research is to study the strength and compressibility characteristics of the calcarenites along the coast of KwaZulu-Natal to be able to better understand the geotechnical behaviour of these rocks, which may help to predict areas along the coast which may be potentially susceptible to failure/differential settling resulting in damage to property. A total of 148 cores were prepared and analyzed. Cores were analyzed perpendicular and parallel to bedding. Tests were carried out in accordance with the relevant codes and recommendations of the International Society for Rock Mechanics, American Standard Testing Methods, and Committee of Land and Transport Standard Specifications for Road and Bridge Works for State Road Authorities. Test carried out included: x-ray diffraction, petrography, shape preferred orientation (SPO), 3-D Tomography, rock porosity, rock permeability, ethylene glycol, slake durability, rock water absorption, Duncan swelling index, triaxial compressive strength, Brazilian tensile strength and uniaxial compression test with elastic modulus. The beach-rocks have a uniaxial compressive strength (UCS) ranging from 17,84Mpa to 287,35Mpa and exhibit three types of failure; (1) single sliding shear failure, (2) complete cone development, and (3) splitting failure. Brazilian tensile strength of the rocks ranges from 2.56 Mpa to 12,40 Ma, with those tested perpendicular to bedding showing lower tensile strength. Triaxial compressive tests indicate calcarenites have strength ranging from 86,10 Mpa to 371,85 Mpa. Common failure mode in the triaxial test is a single sliding shear failure. Porosity of the rocks varies from 1.25 % to 26.52 %. Rock tests indicate that the direction of loading, whether it be parallel to bedding or perpendicular to bedding, plays no significantrole in the strength and durability of the calcarenites. Porosity, cement type, and grain texture play major roles.UCS results indicate that saturated cores are weaker in strength compared to dry samples. Thus, water or moisture content plays a significant role in the strength and durability of the beach-rock. Loosely packed, highly porous and low magnesian-calcite bearing calcarenites show a decrease in strength compared to the densely packed, low porosity and high magnesian-calcite bearing calcarenites.

Keywords: beach-rock, calcarenite, cement, compressive, failure, porosity, strength, tensile, grains

Procedia PDF Downloads 73
10204 Surface Integration Effect on Mechanical and Piezoelectric Properties of ZnO

Authors: A. Khan, M. Hussain, S. Afgun

Abstract:

In the present work, the effect of the surface integration on the piezoelectric properties of zinc oxide (ZnO) nanorods has been investigated. ZnO nanorods were grown by using aqueous chemical growth method on two samples of graphene coated pet plastic substrate. First substrate’s surface was integrated with ZnO nanoparticles while the other substrate was used without ZnO nanoparticles. Various important parameters were analyzed, the growth density and morphological analysis were taken into account through surface scanning electron microscopy; it was observed that the growth density of nanorods on the integrated surface was much higher than the nonintegrated substrate. The crystal quality of growth orientation was analyzed by X-ray diffraction technique. Mechanical stability of ZnO nanorods on an integrated substrate was more appropriate than the nonintegrated substrate. The generated amount of piezoelectric potential from the integrated substrate was two times higher than the nonintegrated substrate. This shows that the layer of nanoparticles plays a crucial role in the enhancement of piezoelectric potential. Besides this, it also improves the performance of fabricated devices like its mechanical stability and piezoelectric properties. Additionally, the obtained results were compared with the other two samples used for the growth of ZnO nanorods on silver coated glass substrates for similar measurement. The consistency of the results verified the importance of surface integration effect. This study will help us to fabricate improved performance devices by using surface integrated substrates.

Keywords: ZnO nanorods, surface integration, mechanical properties, harvesting piezoelectricity

Procedia PDF Downloads 111
10203 Mechanical Properties of CNT Reinforced Composite Using Berkovich Nanoindentation Analysis

Authors: Khondaker Sakil Ahmed, Ang Kok Keng, Shah Md Muniruzzaman

Abstract:

Spherical and Berkovich indentation tests are carried out numerically using finite element method for uniformly dispersed Carbon Nanotube (CNT) in the polymer matrix in which perfectly bonded CNT/matrix interface is considered. The Large strain elasto-plastic analysis is performed to investigate the actual scenario of nanoindentation test. This study investigates how the addition of CNT in polymer matrix influences the mechanical properties like hardness, elastic modulus of the nanocomposite. Since the wall thickness to radius ratio (t/r) is significantly small for SWCNT there is a huge possibility of lateral buckling which is a function of the location of indentation tip as well as the mechanical properties of matrix. Separate finite element models are constructed to compare the result with Berkovich indentation. This study also investigates the buckling behavior of different nanotube in a different polymer matrix.

Keywords: carbon nanotube, elasto-plastic, finite element model, nano-indentation

Procedia PDF Downloads 365
10202 Effect of Mineral Additives on Improving the Geotechnical Properties of Soils in Chief

Authors: Rabah Younes

Abstract:

The reduction of available land resources and the increased cout associated with the use of high quality materials have led to the need for local soils to be used in geotechnical construction, however; poor engineering properties of these soils pose difficulties for constructions project and need to be stabilized to improve their properties in other works unsuitable soils with low bearing capacity , high plasticity coupled with high instability are frequently encountered hence, there is a need to improve the physical and mechanical characteristics of these soils to make theme more suitable for construction this can be done by using different mechanical and chemical methods clayey soil stabilization has been practiced for sometime but mixing additives, such us cement, lime and fly ash to the soil to increase its strength.

Keywords: clay, soil stabilization, naturaln pozzolana, atterberg limits, compaction, compressive strength shear strength, curing

Procedia PDF Downloads 280
10201 Nanomechanical Characterization of Titanium Alloy Modified by Nitrogen Ion Implantation

Authors: Josef Sepitka, Petr Vlcak, Tomas Horazdovsky, Vratislav Perina

Abstract:

An ion implantation technique was used for designing the surface area of a titanium alloy and for irradiation-enhanced hardening of the surface. The Ti6Al4V alloy was treated by nitrogen ion implantation at fluences of 2·1017 and 4·1017 cm-2 and at ion energy 90 keV. The depth distribution of the nitrogen was investigated by Rutherford Backscattering Spectroscopy. The gradient of mechanical properties was investigated by nanoindentation. The continuous measurement mode was used to obtain depth profiles of the indentation hardness and the reduced storage modulus of the modified surface area. The reduced storage modulus and the hardness increase with increasing fluence. Increased fluence shifts the peak of the mechanical properties as well as the peak of nitrogen concentration towards to the surface. This effect suggests a direct relationship between mechanical properties and nitrogen distribution.

Keywords: nitrogen ion implantation, titanium-based nanolayer, storage modulus, hardness, microstructure

Procedia PDF Downloads 312
10200 Surface Integrity Improvement for Selective Laser Melting (SLM) Additive Manufacturing of C300 Parts Using Ball Burnishing

Authors: Adrian Travieso Disotuar, J. Antonio Travieso Rodriguez, Ramon Jerez Mesa, Montserrat Vilaseca

Abstract:

The effect of the non-vibration-assisted and vibration-assisted ball burnishing on both the surface and mechanical properties of C300 obtained by Selective Laser Melting additive manufacturing technology is studied in this paper. Different vibration amplitudes preloads, and burnishing strategies were tested. A topographical analysis was performed to determine the surface roughness of the different conditions. Besides, micro tensile tests were carried out in situ on Scanning Electron Microscopy to elucidate the post-treatment effects on damaging mechanisms. Experiments show that vibration-assisted ball burnishing significantly enhances mechanical properties compared to the non-vibration-assisted method. Moreover, it was found that the surface roughness was significantly improved with respect to the reference surface.

Keywords: additive manufacturing, ball burnishing, mechanical properties, metals, surface roughness

Procedia PDF Downloads 46
10199 Effect of Print Orientation on the Mechanical Properties of Multi Jet Fusion Additively Manufactured Polyamide-12

Authors: Tyler Palma, Praveen Damasus, Michael Munther, Mehrdad Mohsenizadeh, Keivan Davami

Abstract:

The advancement of additive manufacturing, in both research and commercial realms, is highly dependent upon continuing innovations and creativity in materials and designs. Additive manufacturing shows great promise towards revolutionizing various industries, due largely to the fact that design data can be used to create complex products and components, on demand and from the raw materials, for the end user at the point of use. However, it will be critical that the material properties of additively-made parts for engineering purposes be fully understood. As it is a relatively new additive manufacturing method, the response of properties of Multi Jet Fusion (MJF) produced parts to different printing parameters has not been well studied. In this work, testing of mechanical and tribological properties MJF-printed Polyamide 12 parts was performed to determine whether printing orientation in this method results in significantly different part performances. Material properties were studied at macro- and nanoscales. Tensile tests, in combination with tribology tests including steady-state wear, were performed. Results showed a significant difference in resultant part characteristics based on whether they were printed in a vertical or horizontal orientation. Tensile performance of vertically and horizontally printed samples varied, both in ultimate strength and strain. Tribology tests showed that printing orientation has notable effects on the resulting mechanical and wear properties of tested surfaces, due largely to layer orientation and the presence of unfused fused powder grain inclusions. This research advances the understanding of how print orientation affects the mechanical properties of additively manufactured structures, and also how print orientation can be exploited in future engineering design.

Keywords: additive manufacturing, indentation, nano mechanical characterization, print orientation

Procedia PDF Downloads 123