Search results for: measurement uncertainty
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3464

Search results for: measurement uncertainty

3434 Decision Making under Strict Uncertainty: Case Study in Sewer Network Planning

Authors: Zhen Wu, David Lupien St-Pierre, Georges Abdul-Nour

Abstract:

In decision making under strict uncertainty, decision makers have to choose a decision without any information about the states of nature. The classic criteria of Laplace, Wald, Savage, Hurwicz and Starr are introduced and compared in a case study of sewer network planning. Furthermore, results from different criteria are discussed and analyzed. Moreover, this paper discusses the idea that decision making under strict uncertainty (DMUSU) can be viewed as a two-player game and thus be solved by a solution concept in game theory: Nash equilibrium.

Keywords: decision criteria, decision making, sewer network planning, decision making, strict uncertainty

Procedia PDF Downloads 518
3433 Competition and Cooperation of Prosumers in Cournot Games with Uncertainty

Authors: Yong-Heng Shi, Peng Hao, Bai-Chen Xie

Abstract:

Solar prosumers are playing increasingly prominent roles in the power system. However, its uncertainty affects the outcomes and functions of the power market, especially in the asymmetric information environment. Therefore, an important issue is how to take effective measures to reduce the impact of uncertainty on market equilibrium. We propose a two-level stochastic differential game model to explore the Cournot decision problem of prosumers. In particular, we study the impact of punishment and cooperation mechanisms on the efficiency of the Cournot game in which prosumers face uncertainty. The results show that under the penalty mechanism of fixed and variable rates, producers and consumers tend to take conservative actions to hedge risks, and the variable rates mechanism is more reasonable. Compared with non-cooperative situations, prosumers can improve the efficiency of the game through cooperation, which we attribute to the superposition of market power and uncertainty reduction. In addition, the market environment of asymmetric information intensifies the role of uncertainty. It reduces social welfare but increases the income of prosumers. For regulators, promoting alliances is an effective measure to realize the integration, optimization, and stable grid connection of producers and consumers.

Keywords: Cournot games, power market, uncertainty, prosumer cooperation

Procedia PDF Downloads 61
3432 A Simple Low-Cost 2-D Optical Measurement System for Linear Guideways

Authors: Wen-Yuh Jywe, Bor-Jeng Lin, Jing-Chung Shen, Jeng-Dao Lee, Hsueh-Liang Huang, Tung-Hsien Hsieh

Abstract:

In this study, a simple 2-D measurement system based on optical design was developed to measure the motion errors of the linear guideway. Compared with the transitional methods about the linear guideway for measuring the motion errors, our proposed 2-D optical measurement system can simultaneously measure horizontal and vertical running straightness errors for the linear guideway. The performance of the 2-D optical measurement system is verified by experimental results. The standard deviation of the 2-D optical measurement system is about 0.4 μm in the measurement range of 100 mm. The maximum measuring speed of the proposed automatic measurement instrument is 1 m/sec.

Keywords: 2-D measurement, linear guideway, motion errors, running straightness

Procedia PDF Downloads 457
3431 Uncertainty and Optimization Analysis Using PETREL RE

Authors: Ankur Sachan

Abstract:

The ability to make quick yet intelligent and value-added decisions to develop new fields has always been of great significance. In situations where the capital expenses and subsurface risk are high, carefully analyzing the inherent uncertainties in the reservoir and how they impact the predicted hydrocarbon accumulation and production becomes a daunting task. The problem is compounded in offshore environments, especially in the presence of heavy oils and disconnected sands where the margin for error is small. Uncertainty refers to the degree to which the data set may be in error or stray from the predicted values. To understand and quantify the uncertainties in reservoir model is important when estimating the reserves. Uncertainty parameters can be geophysical, geological, petrophysical etc. Identification of these parameters is necessary to carry out the uncertainty analysis. With so many uncertainties working at different scales, it becomes essential to have a consistent and efficient way of incorporating them into our analysis. Ranking the uncertainties based on their impact on reserves helps to prioritize/ guide future data gathering and uncertainty reduction efforts. Assigning probabilistic ranges to key uncertainties also enables the computation of probabilistic reserves. With this in mind, this paper, with the help the uncertainty and optimization process in petrel RE shows how the most influential uncertainties can be determined efficiently and how much impact so they have on the reservoir model thus helping in determining a cost effective and accurate model of the reservoir.

Keywords: uncertainty, reservoir model, parameters, optimization analysis

Procedia PDF Downloads 576
3430 A Comparative Study of Sampling-Based Uncertainty Propagation with First Order Error Analysis and Percentile-Based Optimization

Authors: M. Gulam Kibria, Shourav Ahmed, Kais Zaman

Abstract:

In system analysis, the information on the uncertain input variables cause uncertainty in the system responses. Different probabilistic approaches for uncertainty representation and propagation in such cases exist in the literature. Different uncertainty representation approaches result in different outputs. Some of the approaches might result in a better estimation of system response than the other approaches. The NASA Langley Multidisciplinary Uncertainty Quantification Challenge (MUQC) has posed challenges about uncertainty quantification. Subproblem A, the uncertainty characterization subproblem, of the challenge posed is addressed in this study. In this subproblem, the challenge is to gather knowledge about unknown model inputs which have inherent aleatory and epistemic uncertainties in them with responses (output) of the given computational model. We use two different methodologies to approach the problem. In the first methodology we use sampling-based uncertainty propagation with first order error analysis. In the other approach we place emphasis on the use of Percentile-Based Optimization (PBO). The NASA Langley MUQC’s subproblem A is developed in such a way that both aleatory and epistemic uncertainties need to be managed. The challenge problem classifies each uncertain parameter as belonging to one the following three types: (i) An aleatory uncertainty modeled as a random variable. It has a fixed functional form and known coefficients. This uncertainty cannot be reduced. (ii) An epistemic uncertainty modeled as a fixed but poorly known physical quantity that lies within a given interval. This uncertainty is reducible. (iii) A parameter might be aleatory but sufficient data might not be available to adequately model it as a single random variable. For example, the parameters of a normal variable, e.g., the mean and standard deviation, might not be precisely known but could be assumed to lie within some intervals. It results in a distributional p-box having the physical parameter with an aleatory uncertainty, but the parameters prescribing its mathematical model are subjected to epistemic uncertainties. Each of the parameters of the random variable is an unknown element of a known interval. This uncertainty is reducible. From the study, it is observed that due to practical limitations or computational expense, the sampling is not exhaustive in sampling-based methodology. That is why the sampling-based methodology has high probability of underestimating the output bounds. Therefore, an optimization-based strategy to convert uncertainty described by interval data into a probabilistic framework is necessary. This is achieved in this study by using PBO.

Keywords: aleatory uncertainty, epistemic uncertainty, first order error analysis, uncertainty quantification, percentile-based optimization

Procedia PDF Downloads 208
3429 A Comparative Study of Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) for Airflow Measurement

Authors: Sijie Fu, Pascal-Henry Biwolé, Christian Mathis

Abstract:

Among modern airflow measurement methods, Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV), as visualized and non-instructive measurement techniques, are playing more important role. This paper conducts a comparative experimental study for airflow measurement employing both techniques with the same condition. Velocity vector fields, velocity contour fields, voticity profiles and turbulence profiles are selected as the comparison indexes. The results show that the performance of both PIV and PTV techniques for airflow measurement is satisfied, but some differences between the both techniques are existed, it suggests that selecting the measurement technique should be based on a comprehensive consideration.

Keywords: airflow measurement, comparison, PIV, PTV

Procedia PDF Downloads 389
3428 Temporal Myopia in Sustainable Behavior under Uncertainty

Authors: Arianne Van Der Wal, Femke Van Horen, Amir Grinstein

Abstract:

Consumers in today’s world are confronted with the alarming consequences of unsustainable behavior such as pollution and resource degradation. In addition, they are facing an increase in uncertainty due to, for instance, economic instability and terror attacks. Although these two problems are central to consumers’ lives, occur on a global scale, and have significant impact on the world’s political, economic, environmental, and social landscapes, they have not been systematically studied in tandem before. Contributing to research on persuasion and pro-social behavior, this paper shows in five studies (three experimental studies and one field study) that the two problems are intertwined. We demonstrate that uncertainty leads to lower sustainable behavior in comparison to certainty (Studies 1 and 2) and that this is due to consumers displaying higher levels of temporal discounting (i.e., adopting a more immediate orientation; Study 2). Finally, providing valuable implications for policy makers and responsible marketers, we show that emphasizing the immediate benefits of sustainable behavior during uncertainty buffers the negative effect (Studies 3 and 4).

Keywords: sustainable behavior, uncertainty, temporal discounting, framing

Procedia PDF Downloads 288
3427 Parameter Estimation with Uncertainty and Sensitivity Analysis for the SARS Outbreak in Hong Kong

Authors: Afia Naheed, Manmohan Singh, David Lucy

Abstract:

This work is based on a mathematical as well as statistical study of an SEIJTR deterministic model for the interpretation of transmission of severe acute respiratory syndrome (SARS). Based on the SARS epidemic in 2003, the parameters are estimated using Runge-Kutta (Dormand-Prince pairs) and least squares methods. Possible graphical and numerical techniques are used to validate the estimates. Then effect of the model parameters on the dynamics of the disease is examined using sensitivity and uncertainty analysis. Sensitivity and uncertainty analytical techniques are used in order to analyze the affect of the uncertainty in the obtained parameter estimates and to determine which parameters have the largest impact on controlling the disease dynamics.

Keywords: infectious disease, severe acute respiratory syndrome (SARS), parameter estimation, sensitivity analysis, uncertainty analysis, Runge-Kutta methods, Levenberg-Marquardt method

Procedia PDF Downloads 332
3426 Asymmetries in Monetary Policy Response: The Role of Uncertainty in the Case of Nigeria

Authors: Elias Udeaja, Elijah Udoh

Abstract:

Exploring an extended SVAR model (SVAR-X), we use the case of Nigeria to hypothesize for the role of uncertainty as the underlying source of asymmetries in the response of monetary policy to output and inflation. Deciphered the empirical finding is the potential of monetary policy exhibiting greater sensitive to shocks due to output growth than they do to shocks due to inflation in recession periods, while the reverse appears to be the case for a contractionary monetary policy. We also find the asymmetric preference in the response of monetary policy to changes in output and inflation as relatively more pronounced when we control for uncertainty as the underlying source of asymmetries.

Keywords: asymmetry response, developing economies, monetary policy shocks, uncertainty

Procedia PDF Downloads 120
3425 Artificial Neural Network to Predict the Optimum Performance of Air Conditioners under Environmental Conditions in Saudi Arabia

Authors: Amr Sadek, Abdelrahaman Al-Qahtany, Turkey Salem Al-Qahtany

Abstract:

In this study, a backpropagation artificial neural network (ANN) model has been used to predict the cooling and heating capacities of air conditioners (AC) under different conditions. Sufficiently large measurement results were obtained from the national energy-efficiency laboratories in Saudi Arabia and were used for the learning process of the ANN model. The parameters affecting the performance of the AC, including temperature, humidity level, specific heat enthalpy indoors and outdoors, and the air volume flow rate of indoor units, have been considered. These parameters were used as inputs for the ANN model, while the cooling and heating capacity values were set as the targets. A backpropagation ANN model with two hidden layers and one output layer could successfully correlate the input parameters with the targets. The characteristics of the ANN model including the input-processing, transfer, neurons-distance, topology, and training functions have been discussed. The performance of the ANN model was monitored over the training epochs and assessed using the mean squared error function. The model was then used to predict the performance of the AC under conditions that were not included in the measurement results. The optimum performance of the AC was also predicted under the different environmental conditions in Saudi Arabia. The uncertainty of the ANN model predictions has been evaluated taking into account the randomness of the data and lack of learning.

Keywords: artificial neural network, uncertainty of model predictions, efficiency of air conditioners, cooling and heating capacities

Procedia PDF Downloads 40
3424 A Measuring Industrial Resiliency by Using Data Envelopment Analysis Approach

Authors: Ida Bagus Made Putra Jandhana, Teuku Yuri M. Zagloel, Rahmat Nurchayo

Abstract:

Having several crises that affect industrial sector performance in the past decades, decision makers should utilize measurement application that enables them to measure industrial resiliency more precisely. It provides not only a framework for the development of resilience measurement application, but also several theories for the concept building blocks, such as performance measurement management, and resilience engineering in real world environment. This research is a continuation of previously published paper on performance measurement in the industrial sector. Finally, this paper contributes an alternative performance measurement method in industrial sector based on resilience concept. Moreover, this research demonstrates how applicable the concept of resilience engineering is and its method of measurement.

Keywords: industrial, measurement, resilience, sector

Procedia PDF Downloads 243
3423 Feasibility Study of Measurement of Turning Based-Surfaces Using Perthometer, Optical Profiler and Confocal Sensor

Authors: Khavieya Anandhan, Soundarapandian Santhanakrishnan, Vijayaraghavan Laxmanan

Abstract:

In general, measurement of surfaces is carried out by using traditional methods such as contact type stylus instruments. This prevalent approach is challenged by using non-contact instruments such as optical profiler, co-ordinate measuring machine, laser triangulation sensors, machine vision system, etc. Recently, confocal sensor is trying to be used in the surface metrology field. This sensor, such as a confocal sensor, is explored in this study to determine the surface roughness value for various turned surfaces. Turning is a crucial machining process to manufacture products such as grooves, tapered domes, threads, tapers, etc. The roughness value of turned surfaces are in the range of range 0.4-12.5 µm, were taken for analysis. Three instruments were used, namely, perthometer, optical profiler, and confocal sensor. Among these, in fact, a confocal sensor is least explored, despite its good resolution about 5 nm. Thus, such a high-precision sensor was used in this study to explore the possibility of measuring turned surfaces. Further, using this data, measurement uncertainty was also studied.

Keywords: confocal sensor, optical profiler, surface roughness, turned surfaces

Procedia PDF Downloads 111
3422 Parameter Estimation of False Dynamic EIV Model with Additive Uncertainty

Authors: Dalvinder Kaur Mangal

Abstract:

For the past decade, noise corrupted output measurements have been a fundamental research problem to be investigated. On the other hand, the estimation of the parameters for linear dynamic systems when also the input is affected by noise is recognized as more difficult problem which only recently has received increasing attention. Representations where errors or measurement noises/disturbances are present on both the inputs and outputs are usually called errors-in-variables (EIV) models. These disturbances may also have additive effects which are also considered in this paper. Parameter estimation of false EIV problem using equation error, output error and iterative prefiltering identification schemes with and without additive uncertainty, when only the output observation is corrupted by noise has been dealt in this paper. The comparative study of these three schemes has also been carried out.

Keywords: errors-in-variable (EIV), false EIV, equation error, output error, iterative prefiltering, Gaussian noise

Procedia PDF Downloads 458
3421 Uncertainty Analysis of a Hardware in Loop Setup for Testing Products Related to Building Technology

Authors: Balasundaram Prasaant, Ploix Stephane, Delinchant Benoit, Muresan Cristian

Abstract:

Hardware in Loop (HIL) testing is done to test and validate a particular product especially in building technology. When it comes to building technology, it is more important to test the products for their efficiency. The test rig in the HIL simulator may contribute to some uncertainties on measured efficiency. The uncertainties include physical uncertainties and scenario-based uncertainties. In this paper, a simple uncertainty analysis framework for an HIL setup is shown considering only the physical uncertainties. The entire modeling of the HIL setup is done in Dymola. The uncertain sources are considered based on available knowledge of the components and also on expert knowledge. For the propagation of uncertainty, Monte Carlo Simulation is used since it is the most reliable and easy to use. In this article it is shown how an HIL setup can be modeled and how uncertainty propagation can be performed on it. Such an approach is not common in building energy analysis.

Keywords: energy in buildings, hardware in loop testing, modelica modelling, Monte Carlo simulation, uncertainty propagation

Procedia PDF Downloads 106
3420 Success Measurement in Corporate Venturing: Integrating Three Decades of Research

Authors: Maurice Steinhoff, Lucas Costantino, Dominik Kanbach

Abstract:

Measurement approaches to corporate venturing (CV) success are highly diverse in the extant literature. Furthermore, these approaches rarely build on each other, making it difficult to derive comparable conclusions about CV outcomes. Employing a systematic literature review of three decades of research, the objective of this study is to provide transparency and structure in the broad field of CV research. Subsequently, the paper examines 28 studies in detail, resulting in two main contributions to the research field. First, three structural dimensions of measurement approaches are derived from the studies in the sample, namely, “level of analysis” (parent, program, and venture levels), “measurement perspective” (objective, subjective, and mixed measurement), and “locus of opportunity” (internal, external, and general CV activities). Second, an integrated overview of nine unique clusters structures the different measurement approaches. These clusters allow to encapsulate measurement approaches, but also make visible the approaches’ heterogeneity, as well as specific measurement items. Thereby, the study contributes to CV research by revealing and reconciling the variety of CV success-measurement approaches. The study also provides relevant insights for practitioners, by making transparent the various approaches to measuring the success of CV activities and presenting a list of 114 concrete and distinct measurement items.

Keywords: corporate venturing, measurement items, success measurement, structured literature review

Procedia PDF Downloads 132
3419 Improving Load Frequency Control of Multi-Area Power System by Considering Uncertainty by Using Optimized Type 2 Fuzzy Pid Controller with the Harmony Search Algorithm

Authors: Mehrdad Mahmudizad, Roya Ahmadi Ahangar

Abstract:

This paper presents the method of designing the type 2 fuzzy PID controllers in order to solve the problem of Load Frequency Control (LFC). The Harmony Search (HS) algorithm is used to regulate the measurement factors and the effect of uncertainty of membership functions of Interval Type 2 Fuzzy Proportional Integral Differential (IT2FPID) controllers in order to reduce the frequency deviation resulted from the load oscillations. The simulation results implicitly show that the performance of the proposed IT2FPID LFC in terms of error, settling time and resistance against different load oscillations is more appropriate and preferred than PID and Type 1 Fuzzy Proportional Integral Differential (T1FPID) controllers.

Keywords: load frequency control, fuzzy-pid controller, type 2 fuzzy system, harmony search algorithm

Procedia PDF Downloads 238
3418 The European Research and Development Project Improved Nuclear Site Characterization for Waste Minimization in Decommissioning under Constrained Environment: Focus on Performance Analysis and Overall Uncertainty

Authors: M. Crozet, D. Roudil, T. Branger, S. Boden, P. Peerani, B. Russell, M. Herranz, L. Aldave de la Heras

Abstract:

The EURATOM work program project INSIDER (Improved Nuclear Site Characterization for Waste minimization in Decommissioning under Constrained Environment) was launched in June 2017. This 4-year project has 18 partners and aims at improving the management of contaminated materials arising from decommissioning and dismantling (D&D) operations by proposing an integrated methodology of characterization. This methodology is based on advanced statistical processing and modelling, coupled with adapted and innovative analytical and measurement methods, with respect to sustainability and economic objectives. In order to achieve these objectives, the approaches will be then applied to common case studies in the form of Inter-laboratory comparisons on matrix representative reference samples and benchmarking. Work Package 6 (WP6) ‘Performance analysis and overall uncertainty’ is in charge of the analysis of the benchmarking on real samples, the organisation of inter-laboratory comparison on synthetic certified reference materials and the establishment of overall uncertainty budget. Assessment of the outcome will be used for providing recommendations and guidance resulting in pre-standardization tests.

Keywords: decommissioning, sampling strategy, research and development, characterization, European project

Procedia PDF Downloads 334
3417 Risk and Uncertainty in Aviation: A Thorough Analysis of System Vulnerabilities

Authors: C. V. Pietreanu, S. E. Zaharia, C. Dinu

Abstract:

Hazard assessment and risks quantification are key components for estimating the impact of existing regulations. But since regulatory compliance cannot cover all risks in aviation, the authors point out that by studying causal factors and eliminating uncertainty, an accurate analysis can be outlined. The research debuts by making delimitations on notions, as confusion on the terms over time has reflected in less rigorous analysis. Throughout this paper, it will be emphasized the fact that the variation in human performance and organizational factors represent the biggest threat from an operational perspective. Therefore, advanced risk assessment methods analyzed by the authors aim to understand vulnerabilities of the system given by a nonlinear behavior. Ultimately, the mathematical modeling of existing hazards and risks by eliminating uncertainty implies establishing an optimal solution (i.e. risk minimization).

Keywords: control, human factor, optimization, risk management, uncertainty

Procedia PDF Downloads 226
3416 A Robust Optimization for Multi-Period Lost-Sales Inventory Control Problem

Authors: Shunichi Ohmori, Sirawadee Arunyanart, Kazuho Yoshimoto

Abstract:

We consider a periodic review inventory control problem of minimizing production cost, inventory cost, and lost-sales under demand uncertainty, in which product demands are not specified exactly and it is only known to belong to a given uncertainty set, yet the constraints must hold for possible values of the data from the uncertainty set. We propose a robust optimization formulation for obtaining lowest cost possible and guaranteeing the feasibility with respect to range of order quantity and inventory level under demand uncertainty. Our formulation is based on the adaptive robust counterpart, which suppose order quantity is affine function of past demands. We derive certainty equivalent problem via second-order cone programming, which gives 'not too pessimistic' worst-case.

Keywords: robust optimization, inventory control, supply chain managment, second-order programming

Procedia PDF Downloads 379
3415 The Effect of Perceived Environmental Uncertainty on Corporate Entrepreneurship Performance: A Field Study in a Large Industrial Zone in Turkey

Authors: Adem Öğüt, M. Tahir Demirsel

Abstract:

Rapid changes and developments today, besides the opportunities and facilities they offer to the organization, may also be a source of danger and difficulties due to the uncertainty. In order to take advantage of opportunities and to take the necessary measures against possible uncertainties, organizations must always follow the changes and developments that occur in the business environment and develop flexible structures and strategies for the alternative cases. Perceived environmental uncertainty is an outcome of managers’ perceptions of the combined complexity, instability and unpredictability in the organizational environment. An environment that is perceived to be complex, changing rapidly, and difficult to predict creates high levels of uncertainty about the appropriate organizational responses to external circumstances. In an uncertain and complex environment, organizations experiencing cutthroat competition may be successful by developing their corporate entrepreneurial ability. Corporate entrepreneurship is a process that includes many elements such as innovation, creating new business, renewal, risk-taking and being predictive. Successful corporate entrepreneurship is a critical factor which has a significant contribution to gain a sustainable competitive advantage, to renew the organization and to adapt the environment. In this context, the objective of this study is to investigate the effect of perceived environmental uncertainty of managers on corporate entrepreneurship performance. The research was conducted on 222 business executives in one of the major industrial zones of Turkey, Konya Organized Industrial Zone (KOS). According to the results, it has been observed that there is a positive statistically significant relationship between perceived environmental uncertainty and corporate entrepreneurial activities.

Keywords: corporate entrepreneurship, entrepreneurship, industrial zone, perceived environmental uncertainty, uncertainty

Procedia PDF Downloads 291
3414 Electrodermal Activity Measurement Using Constant Current AC Source

Authors: Cristian Chacha, David Asiain, Jesús Ponce de León, José Ramón Beltrán

Abstract:

This work explores and characterizes the behavior of the AFE AD5941 in impedance measurement using an embedded algorithm with a constant current AC source. The main aim of this research is to improve the exact measurement of impedance values for their application in EDA-focused wearable devices. Through comprehensive study and characterization, it has been observed that employing a measurement sequence with a constant current source produces results with increased dispersion but higher accuracy. As a result, this approach leads to a more accurate system for impedance measurement.

Keywords: EDA, constant current AC source, wearable, precision, accuracy, impedance

Procedia PDF Downloads 65
3413 Study on Angle Measurement Interferometer around Any Axis Direction Selected by Transmissive Liquid Crystal Device

Authors: R. Furutani, G. Kikuchi

Abstract:

Generally, the optical interferometer system is too complicated and difficult to change the measurement items, pitch, yaw, and row, etc. In this article, the optical interferometer system using the transmissive Liquid Crystal Device (LCD) as the switch of the optical path was proposed. At first, the normal optical interferometer, Michelson interferometer, was constructed to measure the pitch angle and the yaw angle. In this optical interferometer, the ball lenses with the refractive indices of 2.0 were used as the retroreflectors. After that, the transmissive LCD was introduced as the switch to select the adequate optical path. In this article, these optical systems were constructed. Pitch measurement interferometer and yaw measurement interferometer were switched by the transmissive LCD. When the LCD was open for the yaw measurement, the yaw was sufficiently measured and optical path for the pitch measurement was blocked. On the other hand, when the LCD was open for the pitch measurement, the pitch was measured and the optical path for the yaw measurement was also blocked. In this article, the results of both of pitch measurement and yaw measurement were shown, and the result of blocked yaw measurement and pitch measurement were shown. As this measurement system was based on Michelson interferometer, the other measuring items, the deviation along the optical axis, the vertical deviation to the optical axis and row angle, could be measured by the additional ball lenses and the additional switching in future work.

Keywords: any direction angle, ball lens, laser interferometer, transmissive liquid crystal device

Procedia PDF Downloads 123
3412 A Joint Possibilistic-Probabilistic Tool for Load Flow Uncertainty Assessment-Part I: Formulation

Authors: Morteza Aien, Masoud Rashidinejad, Mahmud Fotuhi-Firuzabad

Abstract:

As energetic and environmental issues are getting more and more attention all around the world, the penetration of distributed energy resources (DERs) mainly those harvesting renewable energies (REs) ascends with an unprecedented rate. This matter causes more uncertainties to appear in the power system context; ergo, the uncertainty analysis of the system performance is an obligation. The uncertainties of any system can be represented probabilistically or possibilistically. Since sufficient historical data about all the system variables is not available, therefore, they do not have a probability density function (PDF) and must be represented possibilistiacally. When some of system uncertain variables are probabilistic and some are possibilistic, neither the conventional pure probabilistic nor pure possibilistic methods can be implemented. Hence, a combined solution is appealed. The first of this two-paper series formulates a new possibilistic-probabilistic tool for the load flow uncertainty assessment. The proposed methodology is based on the evidence theory and joint propagation of possibilistic and probabilistic uncertainties. This possibilistic- probabilistic formulation is solved in the second companion paper in an uncertain load flow (ULF) study problem.

Keywords: probabilistic uncertainty modeling, possibilistic uncertainty modeling, uncertain load flow, wind turbine generator

Procedia PDF Downloads 528
3411 Multi-Criteria Based Robust Markowitz Model under Box Uncertainty

Authors: Pulak Swain, A. K. Ojha

Abstract:

Portfolio optimization is based on dealing with the problems of efficient asset allocation. Risk and Expected return are two conflicting criteria in such problems, where the investor prefers the return to be high and the risk to be low. Using multi-objective approach we can solve those type of problems. However the information which we have for the input parameters are generally ambiguous and the input values can fluctuate around some nominal values. We can not ignore the uncertainty in input values, as they can affect the asset allocation drastically. So we use Robust Optimization approach to the problems where the input parameters comes under box uncertainty. In this paper, we solve the multi criteria robust problem with the help of  E- constraint method.

Keywords: portfolio optimization, multi-objective optimization, ϵ - constraint method, box uncertainty, robust optimization

Procedia PDF Downloads 110
3410 A Robust Optimization Model for Multi-Objective Closed-Loop Supply Chain

Authors: Mohammad Y. Badiee, Saeed Golestani, Mir Saman Pishvaee

Abstract:

In recent years consumers and governments have been pushing companies to design their activities in such a way as to reduce negative environmental impacts by producing renewable product or threat free disposal policy more and more. It is therefore important to focus more accurate to the optimization of various aspect of total supply chain. Modeling a supply chain can be a challenging process due to the fact that there are a large number of factors that need to be considered in the model. The use of multi-objective optimization can lead to overcome those problems since more information is used when designing the model. Uncertainty is inevitable in real world. Considering uncertainty on parameters in addition to use multi-objectives are ways to give more flexibility to the decision making process since the process can take into account much more constraints and requirements. In this paper we demonstrate a stochastic scenario based robust model to cope with uncertainty in a closed-loop multi-objective supply chain. By applying the proposed model in a real world case, the power of proposed model in handling data uncertainty is shown.

Keywords: supply chain management, closed-loop supply chain, multi-objective optimization, goal programming, uncertainty, robust optimization

Procedia PDF Downloads 377
3409 Theoretical Appraisal of Satisfactory Decision: Uncertainty, Evolutionary Ideas and Beliefs, Satisfactory Time Use

Authors: Okay Gunes

Abstract:

Unsatisfactory experiences due to an information shortage regarding the future pay-offs of actual choices, yield satisficing decision-making. This research will examine, for the first time in the literature, the motivation behind suboptimal decisions due to uncertainty by subjecting Adam Smith’s and Jeremy Bentham’s assumptions about the nature of the actions that lead to satisficing behavior, in order to clarify the theoretical background of a “consumption-based satisfactory time” concept. The contribution of this paper with respect to the existing literature is threefold: Firstly, it is showed in this paper that Adam Smith’s uncertainty is related to the problem of the constancy of ideas and not related directly to beliefs. Secondly, possessions, as in Jeremy Bentham’s oeuvre, are assumed to be just as pleasing, as protecting and improving the actual or expected quality of life, so long as they reduce any displeasure due to the undesired outcomes of uncertainty. Finally, each consumption decision incurs its own satisfactory time period, owed to not feeling hungry, being healthy, not having transportation…etc. This reveals that the level of satisfaction is indeed a behavioral phenomenon where its value would depend on the simultaneous satisfaction derived from all activities.

Keywords: decision-making, idea and belief, satisficing, uncertainty

Procedia PDF Downloads 255
3408 Sensitivity and Uncertainty Analysis of One Dimensional Shape Memory Alloy Constitutive Models

Authors: A. B. M. Rezaul Islam, Ernur Karadogan

Abstract:

Shape memory alloys (SMAs) are known for their shape memory effect and pseudoelasticity behavior. Their thermomechanical behaviors are modeled by numerous researchers using microscopic thermodynamic and macroscopic phenomenological point of view. Tanaka, Liang-Rogers and Ivshin-Pence models are some of the most popular SMA macroscopic phenomenological constitutive models. They describe SMA behavior in terms of stress, strain and temperature. These models involve material parameters and they have associated uncertainty present in them. At different operating temperatures, the uncertainty propagates to the output when the material is subjected to loading followed by unloading. The propagation of uncertainty while utilizing these models in real-life application can result in performance discrepancies or failure at extreme conditions. To resolve this, we used probabilistic approach to perform the sensitivity and uncertainty analysis of Tanaka, Liang-Rogers, and Ivshin-Pence models. Sobol and extended Fourier Amplitude Sensitivity Testing (eFAST) methods have been used to perform the sensitivity analysis for simulated isothermal loading/unloading at various operating temperatures. As per the results, it is evident that the models vary due to the change in operating temperature and loading condition. The average and stress-dependent sensitivity indices present the most significant parameters at several temperatures. This work highlights the sensitivity and uncertainty analysis results and shows comparison of them at different temperatures and loading conditions for all these models. The analysis presented will aid in designing engineering applications by eliminating the probability of model failure due to the uncertainty in the input parameters. Thus, it is recommended to have a proper understanding of sensitive parameters and the uncertainty propagation at several operating temperatures and loading conditions as per Tanaka, Liang-Rogers, and Ivshin-Pence model.

Keywords: constitutive models, FAST sensitivity analysis, sensitivity analysis, sobol, shape memory alloy, uncertainty analysis

Procedia PDF Downloads 109
3407 A Simple and Efficient Method for Accurate Measurement and Control of Power Frequency Deviation

Authors: S. J. Arif

Abstract:

In the presented technique, a simple method is given for accurate measurement and control of power frequency deviation. The sinusoidal signal for which the frequency deviation measurement is required is transformed to a low voltage level and passed through a zero crossing detector to convert it into a pulse train. Another stable square wave signal of 10 KHz is obtained using a crystal oscillator and decade dividing assemblies (DDA). These signals are combined digitally and then passed through decade counters to give a unique combination of pulses or levels, which are further encoded to make them equally suitable for both control applications and display units. The developed circuit using discrete components has a resolution of 0.5 Hz and completes measurement within 20 ms. The realized circuit is simulated and synthesized using Verilog HDL and subsequently implemented on FPGA. The results of measurement on FPGA are observed on a very high resolution logic analyzer. These results accurately match the simulation results as well as the results of same circuit implemented with discrete components. The proposed system is suitable for accurate measurement and control of power frequency deviation.

Keywords: digital encoder for frequency measurement, frequency deviation measurement, measurement and control systems, power systems

Procedia PDF Downloads 347
3406 Wind Power Forecast Error Simulation Model

Authors: Josip Vasilj, Petar Sarajcev, Damir Jakus

Abstract:

One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds.

Keywords: wind power, uncertainty, stochastic process, Monte Carlo simulation

Procedia PDF Downloads 451
3405 Software Quality Measurement System for Telecommunication Industry in Malaysia

Authors: Nor Fazlina Iryani Abdul Hamid, Mohamad Khatim Hasan

Abstract:

Evolution of software quality measurement has been started since McCall introduced his quality model in year 1977. Starting from there, several software quality models and software quality measurement methods had emerged but none of them focused on telecommunication industry. In this paper, the implementation of software quality measurement system for telecommunication industry was compulsory to accommodate the rapid growth of telecommunication industry. The quality value of the telecommunication related software could be calculated using this system by entering the required parameters. The system would calculate the quality value of the measured system based on predefined quality metrics and aggregated by referring to the quality model. It would classify the quality level of the software based on Net Satisfaction Index (NSI). Thus, software quality measurement system was important to both developers and users in order to produce high quality software product for telecommunication industry.

Keywords: software quality, quality measurement, quality model, quality metric, net satisfaction index

Procedia PDF Downloads 556