Search results for: mean time between failures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17925

Search results for: mean time between failures

17865 Optimal Continuous Scheduled Time for a Cumulative Damage System with Age-Dependent Imperfect Maintenance

Authors: Chin-Chih Chang

Abstract:

Many manufacturing systems suffer failures due to complex degradation processes and various environment conditions such as random shocks. Consider an operating system is subject to random shocks and works at random times for successive jobs. When successive jobs often result in production losses and performance deterioration, it would be better to do maintenance or replacement at a planned time. A preventive replacement (PR) policy is presented to replace the system before a failure occurs at a continuous time T. In such a policy, the failure characteristics of the system are designed as follows. Each job would cause a random amount of additive damage to the system, and the system fails when the cumulative damage has exceeded a failure threshold. Suppose that the deteriorating system suffers one of the two types of shocks with age-dependent probabilities: type-I (minor) shock is rectified by a minimal repair, or type-II (catastrophic) shock causes the system to fail. A corrective replacement (CR) is performed immediately when the system fails. In summary, a generalized maintenance model to scheduling replacement plan for an operating system is presented below. PR is carried out at time T, whereas CR is carried out when any type-II shock occurs and the total damage exceeded a failure level. The main objective is to determine the optimal continuous schedule time of preventive replacement through minimizing the mean cost rate function. The existence and uniqueness of optimal replacement policy are derived analytically. It can be seen that the present model is a generalization of the previous models, and the policy with preventive replacement outperforms the one without preventive replacement.

Keywords: preventive replacement, working time, cumulative damage model, minimal repair, imperfect maintenance, optimization

Procedia PDF Downloads 330
17864 Extreme Value Theory Applied in Reliability Analysis: Case Study of Diesel Generator Fans

Authors: Jelena Vucicevic

Abstract:

Reliability analysis represents a very important task in different areas of work. In any industry, this is crucial for maintenance, efficiency, safety and monetary costs. There are ways to calculate reliability, unreliability, failure density and failure rate. In this paper, the results for the reliability of diesel generator fans were calculated through Extreme Value Theory. The Extreme Value Theory is not widely used in the engineering field. Its usage is well known in other areas such as hydrology, meteorology, finance. The significance of this theory is in the fact that unlike the other statistical methods it is focused on rare and extreme values, and not on average. It should be noted that this theory is not designed exclusively for extreme events, but for extreme values in any event. Therefore, this is a great opportunity to apply the theory and test if it could be applied in this situation. The significance of the work is the calculation of time to failure or reliability in a new way, using statistic. Another advantage of this calculation is that there is no need for technical details and it can be implemented in any part for which we need to know the time to fail in order to have appropriate maintenance, but also to maximize usage and minimize costs. In this case, calculations have been made on diesel generator fans but the same principle can be applied to any other part. The data for this paper came from a field engineering study of the time to failure of diesel generator fans. The ultimate goal was to decide whether or not to replace the working fans with a higher quality fan to prevent future failures. The results achieved in this method will show the approximation of time for which the fans will work as they should, and the percentage of probability of fans working more than certain estimated time. Extreme Value Theory can be applied not only for rare and extreme events, but for any event that has values which we can consider as extreme.

Keywords: extreme value theory, lifetime, reliability analysis, statistic, time to failure

Procedia PDF Downloads 305
17863 Prioritization of the Failure Factors of Rural Cooperatives in Iran: The Case of Isfahan Province

Authors: Maryam Najafi, Mahdi Rajabi

Abstract:

Although the rural cooperatives are an effective way for rural development in Iran, their potential is not applied effectively. The investigation of the failures of rural cooperatives helps the authorities to improve the routine procedures and eliminate the current barriers to the success of these cooperatives, and to remove the defects in order to have a more efficient policy. Therefore, this research aims to prioritize the failure factors of rural cooperatives in Isfahan province via the survey research method. For this purpose, the effective factors of these failures were investigated by the available research documents and then by the new information which was obtained from 20 questionnaires from the experts of Central Organization Rural Cooperatives in Isfahan province. The questionnaire results were analyzed by Analytical Hierarchy Process (AHP), Excel, and Expert Choice software. The results of this research showed that the most important failure factor of these cooperatives is the lack of the participation culture of cooperative members and then the performance of Central Organization Rural Cooperatives, and also loss of confidence of the members in the cooperation.

Keywords: cooperative, rural cooperatives, failure factors, analytical hierarchy process

Procedia PDF Downloads 98
17862 The Use of Piezocone Penetration Test Data for the Assessment of Iron Ore Tailings Liquefaction Susceptibility

Authors: Breno M. Castilho

Abstract:

The Iron Ore Quadrangle, located in the state of Minas Gerais, Brazil is responsible for most of the country’s iron ore production. As a result, some of the biggest tailings dams in the country are located in this area. In recent years, several major failure events have happened in Tailings Storage Facilities (TSF) located in the Iron Ore Quadrangle. Some of these failures were found to be caused by liquefaction flowslides. This paper presents Piezocone Penetration Test (CPTu) data that was used, by applying Olson and Peterson methods, for the liquefaction susceptibility assessment of the iron ore tailings that are typically found in most TSF in the area. Piezocone data was also used to determine the steady-state strength of the tailings so as to allow for comparison with its drained strength. Results have shown great susceptibility for liquefaction to occur in the studied tailings and, more importantly, a large reduction in its strength. These results are key to understanding the failures that took place over the last few years.

Keywords: Piezocone Penetration Test CPTu, iron ore tailings, mining, liquefaction susceptibility assessment

Procedia PDF Downloads 206
17861 Towards Reliable Mobile Cloud Computing

Authors: Khaled Darwish, Islam El Madahh, Hoda Mohamed, Hadia El Hennawy

Abstract:

Cloud computing has been one of the fastest growing parts in IT industry mainly in the context of the future of the web where computing, communication, and storage services are main services provided for Internet users. Mobile Cloud Computing (MCC) is gaining stream which can be used to extend cloud computing functions, services and results to the world of future mobile applications and enables delivery of a large variety of cloud application to billions of smartphones and wearable devices. This paper describes reliability for MCC by determining the ability of a system or component to function correctly under stated conditions for a specified period of time to be able to deal with the estimation and management of high levels of lifetime engineering uncertainty and risks of failure. The assessment procedures consists of determine Mean Time between Failures (MTBF), Mean Time to Failure (MTTF), and availability percentages for main components in both cloud computing and MCC structures applied on single node OpenStack installation to analyze its performance with different settings governing the behavior of participants. Additionally, we presented several factors have a significant impact on rates of change overall cloud system reliability should be taken into account in order to deliver highly available cloud computing services for mobile consumers.

Keywords: cloud computing, mobile cloud computing, reliability, availability, OpenStack

Procedia PDF Downloads 372
17860 Progressive Type-I Interval Censoring with Binomial Removal-Estimation and Its Properties

Authors: Sonal Budhiraja, Biswabrata Pradhan

Abstract:

This work considers statistical inference based on progressive Type-I interval censored data with random removal. The scheme of progressive Type-I interval censoring with random removal can be described as follows. Suppose n identical items are placed on a test at time T0 = 0 under k pre-fixed inspection times at pre-specified times T1 < T2 < . . . < Tk, where Tk is the scheduled termination time of the experiment. At inspection time Ti, Ri of the remaining surviving units Si, are randomly removed from the experiment. The removal follows a binomial distribution with parameters Si and pi for i = 1, . . . , k, with pk = 1. In this censoring scheme, the number of failures in different inspection intervals and the number of randomly removed items at pre-specified inspection times are observed. Asymptotic properties of the maximum likelihood estimators (MLEs) are established under some regularity conditions. A β-content γ-level tolerance interval (TI) is determined for two parameters Weibull lifetime model using the asymptotic properties of MLEs. The minimum sample size required to achieve the desired β-content γ-level TI is determined. The performance of the MLEs and TI is studied via simulation.

Keywords: asymptotic normality, consistency, regularity conditions, simulation study, tolerance interval

Procedia PDF Downloads 216
17859 Optimal Sequential Scheduling of Imperfect Maintenance Last Policy for a System Subject to Shocks

Authors: Yen-Luan Chen

Abstract:

Maintenance has a great impact on the capacity of production and on the quality of the products, and therefore, it deserves continuous improvement. Maintenance procedure done before a failure is called preventive maintenance (PM). Sequential PM, which specifies that a system should be maintained at a sequence of intervals with unequal lengths, is one of the commonly used PM policies. This article proposes a generalized sequential PM policy for a system subject to shocks with imperfect maintenance and random working time. The shocks arrive according to a non-homogeneous Poisson process (NHPP) with varied intensity function in each maintenance interval. As a shock occurs, the system suffers two types of failures with number-dependent probabilities: type-I (minor) failure, which is rectified by a minimal repair, and type-II (catastrophic) failure, which is removed by a corrective maintenance (CM). The imperfect maintenance is carried out to improve the system failure characteristic due to the altered shock process. The sequential preventive maintenance-last (PML) policy is defined as that the system is maintained before any CM occurs at a planned time Ti or at the completion of a working time in the i-th maintenance interval, whichever occurs last. At the N-th maintenance, the system is replaced rather than maintained. This article first takes up the sequential PML policy with random working time and imperfect maintenance in reliability engineering. The optimal preventive maintenance schedule that minimizes the mean cost rate of a replacement cycle is derived analytically and determined in terms of its existence and uniqueness. The proposed models provide a general framework for analyzing the maintenance policies in reliability theory.

Keywords: optimization, preventive maintenance, random working time, minimal repair, replacement, reliability

Procedia PDF Downloads 241
17858 Identifying and Understand Pragmatic Failures in Portuguese Foreign Language by Chinese Learners in Macau

Authors: Carla Lopes

Abstract:

It is clear nowadays that the proper performance of different speech acts is one of the most difficult obstacles that a foreign language learner has to overcome to be considered communicatively competent. This communication presents the results of an investigation on the pragmatic performance of Portuguese Language students at the University of Macau. The research discussed herein is based on a survey consisting of fourteen speaking situations to which the participants must respond in writing, and that includes different types of speech acts: apology, response to a compliment, refusal, complaint, disagreement and the understanding of the illocutionary force of indirect speech acts. The responses were classified in a five levels Likert scale (quantified from 1 to 5) according to their suitability for the particular situation. In general terms, we can summarize that about 45% of the respondents' answers were pragmatically competent, 10 % were acceptable and 45 % showed weaknesses at socio-pragmatic competence level. Given that the linguistic deviations were not taken into account, we can conclude that the faults are of cultural origin. It is natural that in the presence of orthogonal cultures, such as Chinese and Portuguese, there are failures of this type, barely solved in the four years of the undergraduate program. The target population, native speakers of Cantonese or Mandarin, make their first contact with the English language before joining the Bachelor of Portuguese Language. An analysis of the socio - pragmatic failures in the respondents’ answers suggests the conclusion that many of them are due to the lack of cultural knowledge. They try to compensate for this either using their native culture or resorting to a Western culture that they consider close to the Portuguese, that is the English or US culture, previously studied, and also widely present in the media and on the internet. This phenomenon, known as 'pragmatic transfer', can result in a linguistic behavior that may be considered inauthentic or pragmatically awkward. The resulting speech act is grammatically correct but is not pragmatically feasible, since it is not suitable to the culture of the target language, either because it does not exist or because the conditions of its use are in fact different. Analysis of the responses also supports the conclusion that these students present large deviations from the expected and stereotyped behavior of Chinese students. We can speculate while this linguistic behavior is the consequence of the Macao globalization that culturally casts the students, makes them more open, and distinguishes them from the typical Chinese students.

Keywords: Portuguese foreign language, pragmatic failures, pragmatic transfer, pragmatic competence

Procedia PDF Downloads 188
17857 Determining the Most Efficient Test Available in Software Testing

Authors: Qasim Zafar, Matthew Anderson, Esteban Garcia, Steven Drager

Abstract:

Software failures can present an enormous detriment to people's lives and cost millions of dollars to repair when they are unexpectedly encountered in the wild. Despite a significant portion of the software development lifecycle and resources are dedicated to testing, software failures are a relatively frequent occurrence. Nevertheless, the evaluation of testing effectiveness remains at the forefront of ensuring high-quality software and software metrics play a critical role in providing valuable insights into quantifiable objectives to assess the level of assurance and confidence in the system. As the selection of appropriate metrics can be an arduous process, the goal of this paper is to shed light on the significance of software metrics by examining a range of testing techniques and metrics as well as identifying key areas for improvement. Additionally, through this investigation, readers will gain a deeper understanding of how metrics can help to drive informed decision-making on delivering high-quality software and facilitate continuous improvement in testing practices.

Keywords: software testing, software metrics, testing effectiveness, black box testing, random testing, adaptive random testing, combinatorial testing, fuzz testing, equivalence partition, boundary value analysis, white box testing

Procedia PDF Downloads 48
17856 A Case Study of Determining the Times of Overhauls and the Number of Spare Parts for Repairable Items in Rolling Stocks with Simulation

Authors: Ji Young Lee, Jong Woon Kim

Abstract:

It is essential to secure high availability of railway vehicles to realize high quality and efficiency of railway service. Once the availability decreased, planned railway service could not be provided or more cars need to be reserved. additional cars need to be purchased or the frequency of railway service could be decreased. Such situation would be a big loss in terms of quality and cost related to railway service. Therefore, we make various efforts to get high availability of railway vehicles. Because it is a big loss to operators, we make various efforts to get high availability of railway vehicles. To secure high availability, the idle time of the vehicle needs to be reduced and the following methods are applied to railway vehicles. First, through modularization design, exchange time for line replaceable units is reduced which makes railway vehicles could be put into the service quickly. Second, to reduce periodic preventive maintenance time, preventive maintenance with short period would be proceeded test oriented to minimize the maintenance time, and reliability is secured through overhauls for each main component. With such design changes for railway vehicles, modularized components are exchanged first at the time of vehicle failure or overhaul so that vehicles could be put into the service quickly and exchanged components are repaired or overhauled. Therefore, spare components are required for any future failures or overhauls. And, as components are modularized and costs for components are high, it is considerably important to get reasonable quantities of spare components. Especially, when a number of railway vehicles were put into the service simultaneously, the time of overhauls come almost at the same time. Thus, for some vehicles, components need to be exchanged and overhauled before appointed overhaul period so that these components could be secured as spare parts for the next vehicle’s component overhaul. For this reason, components overhaul time and spare parts quantities should be decided at the same time. This study deals with the time of overhauls for repairable components of railway vehicles and the calculation of spare parts quantities in consideration of future failure/overhauls. However, as railway vehicles are used according to the service schedule, maintenance work cannot be proceeded after the service was closed thus it is quite difficult to resolve this situation mathematically. In this study, Simulation software system is used in this study for analyzing the time of overhauls for repairable components of railway vehicles and the spare parts for the railway systems.

Keywords: overhaul time, rolling stocks, simulation, spare parts

Procedia PDF Downloads 308
17855 PD Test in Gas Insulated Substation Using UHF Method

Authors: T. Prabakaran

Abstract:

Gas Insulated Substations (GIS) are widely used as important switchgear equipment because of its high reliability, low space requirement, low risk factor and easy maintenance, yet some failures have been reported. Some of the failures are due to presence of metallic particles inside the GIS compartment. The defect can be generated in GIS during production, maintenance, installation and can be due to ageing of the component. The Ultra-High Frequency (UHF) method is used to diagnose the insulation condition of GIS by detecting the PD signals in GIS. This paper identifies PD patterns for free moving particle defect and particle fixed on cone using UHF method. As insulation failure usually starts with PD activity, this paper investigates the differences in PD characteristics in SF6 gas with different types of defects. Experimental results show that correct identification of defects can be achieved based on considered PD characteristics. The method can be applied to prove the quality of assembly work at commissioning, also on a regular basis after many years in service to detect aged and conducting particles as a part of the condition based maintenance.

Keywords: gas insulated substation, partial discharge, free moving particle defect, particle fixed on cone defect, ultra high frequency method

Procedia PDF Downloads 207
17854 Hybrid versus Cemented Fixation in Total Knee Arthroplasty: Mid-Term Follow-Up

Authors: Pedro Gomes, Luís Sá Castelo, António Lopes, Marta Maio, Pedro Mota, Adélia Avelar, António Marques Dias

Abstract:

Introduction: Total Knee Arthroplasty (TKA) has contributed to improvement of patient`s quality of life, although it has been associated with some complications including component loosening and polyethylene wear. To prevent these complications various fixation techniques have been employed. Hybrid TKA with cemented tibial and cementless femoral components have shown favourable outcomes, although it still lack of consensus in the literature. Objectives: To evaluate the clinical and radiographic results of hybrid versus cemented TKA with an average 5 years follow-up and analyse the survival rates. Methods: A retrospective study of 125 TKAs performed in 92 patients at our institution, between 2006 to 2008, with a minimum follow-up of 2 years. The same prosthesis was used in all knees. Hybrid TKA fixation was performed in 96 knees, with a mean follow-up of 4,8±1,7 years (range, 2–8,3 years) and 29 TKAs received fully cemented fixation with a mean follow-up of 4,9±1,9 years (range, 2-8,3 years). Selection for hybrid fixation was nonrandomized and based on femoral component fit. The Oxford Knee Score (OKS 0-48) was evaluated for clinical assessment and Knee Society Roentgenographic Evaluation Scoring System was used for radiographic outcome. The survival rate was calculated using the Kaplan-Meier method, with failures defined as revision of either the tibial or femoral component for aseptic failures and all-causes (aseptic and infection). Analysis of survivorship data was performed using the log-rank test. SPSS (v22) was the computer program used for statistical analysis. Results: The hybrid group consisted of 72 females (75%) and 24 males (25%), with mean age 64±7 years (range, 50-78 years). The preoperative diagnosis was osteoarthritis (OA) in 94 knees (98%), rheumatoid arthritis (RA) in 1 knee (1%) and Posttraumatic arthritis (PTA) in 1 Knee (1%). The fully cemented group consisted of 23 females (79%) and 6 males (21%), with mean age 65±7 years (range, 47-78 years). The preoperative diagnosis was OA in 27 knees (93%), PTA in 2 knees (7%). The Oxford Knee Scores were similar between the 2 groups (hybrid 40,3±2,8 versus cemented 40,2±3). The percentage of radiolucencies seen on the femoral side was slightly higher in the cemented group 20,7% than the hybrid group 11,5% p0.223. In the cemented group there were significantly more Zone 4 radiolucencies compared to the hybrid group (13,8% versus 2,1% p0,026). Revisions for all causes were performed in 4 of the 96 hybrid TKAs (4,2%) and 1 of the 29 cemented TKAs (3,5%). The reason for revision was aseptic loosening in 3 hybrid TKAs and 1 of the cemented TKAs. Revision was performed for infection in 1 hybrid TKA. The hybrid group demonstrated a 7 years survival rate of 93% for all-cause failures and 94% for aseptic loosening. No significant difference in survivorship was seen between the groups for all-cause failures or aseptic failures. Conclusions: Hybrid TKA yields similar intermediate-term results and survival rates as fully cemented total knee arthroplasty and remains a viable option in knee joint replacement surgery.

Keywords: hybrid, survival rate, total knee arthroplasty, orthopaedic surgery

Procedia PDF Downloads 564
17853 Evaluation of the Impact of Community Based Disaster Risk Management Applied In Landslide Prone Area; Reference to Badulla District

Authors: S. B. D. Samarasinghe, Malini Herath

Abstract:

Participatory planning is a very important process for decision making and choosing the best alternative options for community welfare, development of the society and its interactions among community and professionals. People’s involvement is considered as the key guidance in participatory planning. Presently, Participatory planning is being used in many fields. It's not only limited to planning but also to disaster management, poverty, housing, etc. In the past, Disaster management practice was a top-down approach, but it raised many issues as it was converted to a bottom-up approach. There are several approaches that can aid disaster management. Community-Based Disaster Risk Management (CBDRM) is a very successful participatory approach to risk management that is often successfully applied by other disaster-prone countries. In the local context, CBDRM has been applied to prevent Diseases as well as to prevent disasters such as landslides, tsunamis and floods. From three years before, Sri Lanka has initiated the CBDRM approach to minimize landslide vulnerability. Hence, this study mainly focuses on the impact of CBDRM approaches on landslide hazards. Also to identify their successes and failures from both implementing parties and community. This research is carried out based on a qualitative method combined with a descriptive research approach. A successful framework was prepared via a literature review. Case studies were selected considering landslide CBDRM programs which were implemented by Disaster Management Center and National Building Research Organization in Badulla. Their processes were evaluated. Data collection is done through interviews and informal discussions. Then their ideas were quantified by using the Relative Effectiveness index. The resulting numerical value was used to rank the program effectiveness and their success, failures and impacting factors. Results show that there are several failures among implementing parties and the community. Overcoming those factors can make way for better conduction of future CBDRM programs.

Keywords: community-based disaster risk management, disaster management, preparedness, landslide

Procedia PDF Downloads 116
17852 Integrated Grey Rational Analysis-Standard Deviation Method for Handover in Heterogeneous Networks

Authors: Mohanad Alhabo, Naveed Nawaz, Mahmoud Al-Faris

Abstract:

The dense deployment of small cells is a promising solution to enhance the coverage and capacity of the heterogeneous networks (HetNets). However, the unplanned deployment could bring new challenges to the network ranging from interference, unnecessary handovers and handover failures. This will cause a degradation in the quality of service (QoS) delivered to the end user. In this paper, we propose an integrated Grey Rational Analysis Standard Deviation based handover method (GRA-SD) for HetNet. The proposed method integrates the Standard Deviation (SD) technique to acquire the weight of the handover metrics and the GRA method to select the best handover base station. The performance of the GRA-SD method is evaluated and compared with the traditional Multiple Attribute Decision Making (MADM) methods including Simple Additive Weighting (SAW) and VIKOR methods. Results reveal that the proposed method has outperformed the other methods in terms of minimizing the number of frequent unnecessary handovers and handover failures, in addition to improving the energy efficiency.

Keywords: energy efficiency, handover, HetNets, MADM, small cells

Procedia PDF Downloads 89
17851 Approximate-Based Estimation of Single Event Upset Effect on Statistic Random-Access Memory-Based Field-Programmable Gate Arrays

Authors: Mahsa Mousavi, Hamid Reza Pourshaghaghi, Mohammad Tahghighi, Henk Corporaal

Abstract:

Recently, Statistic Random-Access Memory-based (SRAM-based) Field-Programmable Gate Arrays (FPGAs) are widely used in aeronautics and space systems where high dependability is demanded and considered as a mandatory requirement. Since design’s circuit is stored in configuration memory in SRAM-based FPGAs; they are very sensitive to Single Event Upsets (SEUs). In addition, the adverse effects of SEUs on the electronics used in space are much higher than in the Earth. Thus, developing fault tolerant techniques play crucial roles for the use of SRAM-based FPGAs in space. However, fault tolerance techniques introduce additional penalties in system parameters, e.g., area, power, performance and design time. In this paper, an accurate estimation of configuration memory vulnerability to SEUs is proposed for approximate-tolerant applications. This vulnerability estimation is highly required for compromising between the overhead introduced by fault tolerance techniques and system robustness. In this paper, we study applications in which the exact final output value is not necessarily always a concern meaning that some of the SEU-induced changes in output values are negligible. We therefore define and propose Approximate-based Configuration Memory Vulnerability Factor (ACMVF) estimation to avoid overestimating configuration memory vulnerability to SEUs. In this paper, we assess the vulnerability of configuration memory by injecting SEUs in configuration memory bits and comparing the output values of a given circuit in presence of SEUs with expected correct output. In spite of conventional vulnerability factor calculation methods, which accounts any deviations from the expected value as failures, in our proposed method a threshold margin is considered depending on user-case applications. Given the proposed threshold margin in our model, a failure occurs only when the difference between the erroneous output value and the expected output value is more than this margin. The ACMVF is subsequently calculated by acquiring the ratio of failures with respect to the total number of SEU injections. In our paper, a test-bench for emulating SEUs and calculating ACMVF is implemented on Zynq-7000 FPGA platform. This system makes use of the Single Event Mitigation (SEM) IP core to inject SEUs into configuration memory bits of the target design implemented in Zynq-7000 FPGA. Experimental results for 32-bit adder show that, when 1% to 10% deviation from correct output is considered, the counted failures number is reduced 41% to 59% compared with the failures number counted by conventional vulnerability factor calculation. It means that estimation accuracy of the configuration memory vulnerability to SEUs is improved up to 58% in the case that 10% deviation is acceptable in output results. Note that less than 10% deviation in addition result is reasonably tolerable for many applications in approximate computing domain such as Convolutional Neural Network (CNN).

Keywords: fault tolerance, FPGA, single event upset, approximate computing

Procedia PDF Downloads 159
17850 Analysis of an High Voltage Direct Current (HVDC) Connection Using a Real-Time Simulator Under Various Disturbances

Authors: Mankour Mohamed, Miloudi Mohamed

Abstract:

A thorough and accurate simulation is necessary for the study of a High Voltage Direct Current (HVDC) link system during various types of disturbances, including internal faults on both converters, either on the rectifier or on the inverter, as well as external faults, such as AC or DC faults on both converter sides inside the DC link party. In this study, we examine how an HVDC inverter responds to three different types of failures, including faults at the inverter valve, system control faults, and single-phase-to-ground AC faults at the sending end of the inverter side. As this phenomenon represents the most frequent problem that may affect inverter valves, particularly those based on thyristor valves (LCC (line-Commutated converter)), it is more precise to explore which circumstance generates and raises the commutation failure on inverter valves. Because of the techniques used to accelerate the simulation, digital real-time simulators are now the most potent tools that provide simulation results. The real-time-lab RT-LAB platform HYPERSIM OP-5600 is used to implement the Simulation in the Loop (SIL) technique, which is used to validate the results. It is demonstrated how to recover from both the internal faults and the AC problem. The simulation findings show how crucial a role the control system plays in fault recovery.

Keywords: hypersim simulator, HVDC systems, mono-polar link, AC faults, misfiring faults

Procedia PDF Downloads 62
17849 The Adaptive Role of Negative Emotions in Optimal Functioning

Authors: Brianne Nichols, John A. Parkinson

Abstract:

Positive Psychology has provided a rich understanding of the beneficial effects of positive emotions in relation to optimal functioning, and research has been devoted to promote states of positive feeling and thinking. While this is a worthwhile pursuit, positive emotions are not useful in all contexts - some situations may require the individual to make use of their negative emotions to reach a desired end state. To account for the potential value of a wider range of emotional experiences that are common to the human condition, Positive Psychology needs to expand its horizons and investigate how individuals achieve positive outcomes using varied means. The current research seeks to understand the positive psychology of fear of failure (FF), which is a commonly experienced negative emotion relevant to most life domains. On the one hand, this emotion has been linked with avoidance motivation and self-handicap behaviours, on the other; FF has been shown to act as a drive to move the individual forward. To fully capture the depth of this highly subjective emotional experience and understand the circumstances under which FF may be adaptive, this study adopted a mixed methods design using SenseMaker; a web-based tool that combines the richness of narratives with the objectivity of numerical data. Two hundred participants consisting mostly of undergraduate university students shared a story of a time in the recent past when they feared failure of achieving a valued goal. To avoid researcher bias in the interpretation of narratives, participants self-signified their stories in a tagging system that was based on researchers’ aim to explore the role of past failures, the cognitive, emotional and behavioural profile of individuals high and low in FF, and the relationship between these factors. In addition, the role of perceived personal control and self-esteem were investigated in relation to FF using self-report questionnaires. Results from quantitative analyses indicated that individuals with high levels of FF, compared to low, were strongly influenced by past failures and preoccupied with their thoughts and emotions relating to the fear. This group also reported an unwillingness to accept their internal experiences, which in turn was associated with withdrawal from goal pursuit. Furthermore, self-esteem was found to mediate the relationship between perceived control and FF, suggesting that self-esteem, with or without control beliefs, may have the potential to buffer against high FF. It is hoped that the insights provided by the current study will inspire future research to explore the ways in which ‘acceptance’ may help individuals keep moving towards a goal despite the presence of FF, and whether cultivating a non-contingent self-esteem is the key to resilience in the face of failures.

Keywords: fear of failure, goal-pursuit, negative emotions, optimal functioning, resilience

Procedia PDF Downloads 176
17848 Automatic Tuning for a Systemic Model of Banking Originated Losses (SYMBOL) Tool on Multicore

Authors: Ronal Muresano, Andrea Pagano

Abstract:

Nowadays, the mathematical/statistical applications are developed with more complexity and accuracy. However, these precisions and complexities have brought as result that applications need more computational power in order to be executed faster. In this sense, the multicore environments are playing an important role to improve and to optimize the execution time of these applications. These environments allow us the inclusion of more parallelism inside the node. However, to take advantage of this parallelism is not an easy task, because we have to deal with some problems such as: cores communications, data locality, memory sizes (cache and RAM), synchronizations, data dependencies on the model, etc. These issues are becoming more important when we wish to improve the application’s performance and scalability. Hence, this paper describes an optimization method developed for Systemic Model of Banking Originated Losses (SYMBOL) tool developed by the European Commission, which is based on analyzing the application's weakness in order to exploit the advantages of the multicore. All these improvements are done in an automatic and transparent manner with the aim of improving the performance metrics of our tool. Finally, experimental evaluations show the effectiveness of our new optimized version, in which we have achieved a considerable improvement on the execution time. The time has been reduced around 96% for the best case tested, between the original serial version and the automatic parallel version.

Keywords: algorithm optimization, bank failures, OpenMP, parallel techniques, statistical tool

Procedia PDF Downloads 344
17847 Execution Time Optimization of Workflow Network with Activity Lead-Time

Authors: Xiaoping Qiu, Binci You, Yue Hu

Abstract:

The executive time of the workflow network has an important effect on the efficiency of the business process. In this paper, the activity executive time is divided into the service time and the waiting time, then the lead time can be extracted from the waiting time. The executive time formulas of the three basic structures in the workflow network are deduced based on the activity lead time. Taken the process of e-commerce logistics as an example, insert appropriate lead time for key activities by using Petri net, and the executive time optimization model is built to minimize the waiting time with the time-cost constraints. Then the solution program-using VC++6.0 is compiled to get the optimal solution, which reduces the waiting time of key activities in the workflow, and verifies the role of lead time in the timeliness of e-commerce logistics.

Keywords: electronic business, execution time, lead time, optimization model, petri net, time workflow network

Procedia PDF Downloads 145
17846 Anomaly Detection Based on System Log Data

Authors: M. Kamel, A. Hoayek, M. Batton-Hubert

Abstract:

With the increase of network virtualization and the disparity of vendors, the continuous monitoring and detection of anomalies cannot rely on static rules. An advanced analytical methodology is needed to discriminate between ordinary events and unusual anomalies. In this paper, we focus on log data (textual data), which is a crucial source of information for network performance. Then, we introduce an algorithm used as a pipeline to help with the pretreatment of such data, group it into patterns, and dynamically label each pattern as an anomaly or not. Such tools will provide users and experts with continuous real-time logs monitoring capability to detect anomalies and failures in the underlying system that can affect performance. An application of real-world data illustrates the algorithm.

Keywords: logs, anomaly detection, ML, scoring, NLP

Procedia PDF Downloads 61
17845 The Use of PD and Tanδ Characteristics as Diagnostic Technique for the Insulation Integrity of XLPE Insulated Cable Joints

Authors: Mazen Al-Bulaihed, Nissar Wani, Abdulrahman Al-Arainy, Yasin Khan

Abstract:

Partial Discharge (PD) measurements are widely used for diagnostic purposes in electrical equipment used in power systems. The main cause of these measurements is to prevent large power failures as cables are prone to aging, which usually results in embrittlement, cracking and eventual failure of the insulating and sheathing materials, exposing the conductor and risking a potential short circuit, a likely cause of the electrical fire. Many distribution networks rely heavily on medium voltage (MV) power cables. The presence of joints in these networks is a vital part of serving the consumer demand for electricity continuously. Such measurements become even more important when the extent of dependence increases. Moreover, it is known that the partial discharge in joints and termination are difficult to track and are the most crucial point of failures in large power systems. This paper discusses the diagnostic techniques of four samples of XLPE insulated cable joints, each included with a different type of defect. Experiments were carried out by measuring PD and tanδ at very low frequency applied high voltage. The results show the importance of combining PD and tanδ for effective cable assessment.

Keywords: partial discharge, tan delta, very low frequency, XLPE cable

Procedia PDF Downloads 128
17844 Binary Decision Diagram Based Methods to Evaluate the Reliability of Systems Considering Failure Dependencies

Authors: Siqi Qiu, Yijian Zheng, Xin Guo Ming

Abstract:

In many reliability and risk analysis, failures of components are supposed to be independent. However, in reality, the ignorance of failure dependencies among components may render the results of reliability and risk analysis incorrect. There are two principal ways to incorporate failure dependencies in system reliability and risk analysis: implicit and explicit methods. In the implicit method, failure dependencies can be modeled by joint probabilities, correlation values or conditional probabilities. In the explicit method, certain types of dependencies can be modeled in a fault tree as mutually independent basic events for specific component failures. In this paper, explicit and implicit methods based on BDD will be proposed to evaluate the reliability of systems considering failure dependencies. The obtained results prove the equivalence of the proposed implicit and explicit methods. It is found that the consideration of failure dependencies decreases the reliability of systems. This observation is intuitive, because more components fail due to failure dependencies. The consideration of failure dependencies helps designers to reduce the dependencies between components during the design phase to make the system more reliable.

Keywords: reliability assessment, risk assessment, failure dependencies, binary decision diagram

Procedia PDF Downloads 446
17843 Six Failure Points Innovators and Entrepreneurs Risk Falling into: An Exploratory Study of Underlying Emotions and Behaviors of Self- Perceived Failure

Authors: Katarzyna Niewiadomska

Abstract:

Many technology startups fail to achieve a worthwhile return on investment for their funders, founders, and employees. Failures in product development, to-market strategy, sales, and delivery are commonly recognized. Founder failures are not as obvious and harder to identify. This paper explores six critical failure points that entrepreneurs and innovators are susceptible to and aims to link their emotional intelligence and behavioral profile to the points at which they experienced self-perceived failure. A model of six failure points from the perspective of the technology entrepreneur ranging from pre-startup to maturity is provided. By analyzing emotional and behavioral profile data from entrepreneurs and recording in-person accounts, certain key emotional and behavioral clusters contributing to each failure point are determined, and several underlying factors are defined and discussed. Recommendations that support entrepreneurs and innovators stalling at each failure point are given. This work can enable stakeholders to evaluate founder emotional and behavioral profiles and to take risk-mitigating action, either through coaching or through more robust team creation, to avoid founder-related company failure. The paper will be of interest to investors funding startups, executives leading them and mentors supporting them.

Keywords: behavior, emotional intelligence, entrepreneur, failure

Procedia PDF Downloads 203
17842 Increasing the Capacity of Plant Bottlenecks by Using of Improving the Ratio of Mean Time between Failures to Mean Time to Repair

Authors: Jalal Soleimannejad, Mohammad Asadizeidabadi, Mahmoud Koorki, Mojtaba Azarpira

Abstract:

A significant percentage of production costs is the maintenance costs, and analysis of maintenance costs could to achieve greater productivity and competitiveness. With this is mind, the maintenance of machines and installations is considered as an essential part of organizational functions and applying effective strategies causes significant added value in manufacturing activities. Organizations are trying to achieve performance levels on a global scale with emphasis on creating competitive advantage by different methods consist of RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance) etc. In this study, increasing the capacity of Concentration Plant of Golgohar Iron Ore Mining & Industrial Company (GEG) was examined by using of reliability and maintainability analyses. The results of this research showed that instead of increasing the number of machines (in order to solve the bottleneck problems), the improving of reliability and maintainability would solve bottleneck problems in the best way. It should be mention that in the abovementioned study, the data set of Concentration Plant of GEG as a case study, was applied and analyzed.

Keywords: bottleneck, golgohar iron ore mining & industrial company, maintainability, maintenance costs, reliability

Procedia PDF Downloads 321
17841 A Partially Accelerated Life Test Planning with Competing Risks and Linear Degradation Path under Tampered Failure Rate Model

Authors: Fariba Azizi, Firoozeh Haghighi, Viliam Makis

Abstract:

In this paper, we propose a method to model the relationship between failure time and degradation for a simple step stress test where underlying degradation path is linear and different causes of failure are possible. It is assumed that the intensity function depends only on the degradation value. No assumptions are made about the distribution of the failure times. A simple step-stress test is used to shorten failure time of products and a tampered failure rate (TFR) model is proposed to describe the effect of the changing stress on the intensities. We assume that some of the products that fail during the test have a cause of failure that is only known to belong to a certain subset of all possible failures. This case is known as masking. In the presence of masking, the maximum likelihood estimates (MLEs) of the model parameters are obtained through an expectation-maximization (EM) algorithm by treating the causes of failure as missing values. The effect of incomplete information on the estimation of parameters is studied through a Monte-Carlo simulation. Finally, a real example is analyzed to illustrate the application of the proposed methods.

Keywords: cause of failure, linear degradation path, reliability function, expectation-maximization algorithm, intensity, masked data

Procedia PDF Downloads 306
17840 Pull-Out Analysis of Composite Loops Embedded in Steel Reinforced Concrete Retaining Wall Panels

Authors: Pierre van Tonder, Christoff Kruger

Abstract:

Modular concrete elements are used for retaining walls to provide lateral support. Depending on the retaining wall layout, these precast panels may be interlocking and may be tied into the soil backfill via geosynthetic strips. This study investigates the ultimate pull-out load increase, which is possible by adding varied diameter supplementary reinforcement through embedded anchor loops within concrete retaining wall panels. Full-scale panels used in practice have four embedded anchor points. However, only one anchor loop was embedded in the center of the experimental panels. The experimental panels had the same thickness but a smaller footprint (600mm x 600mm x 140mm) area than the full-sized panels to accommodate the space limitations of the laboratory and experimental setup. The experimental panels were also cast without any bending reinforcement as would typically be obtained in the full-scale panels. The exclusion of these reinforcements was purposefully neglected to evaluate the impact of a single bar reinforcement through the center of the anchor loops. The reinforcement bars had of 8 mm, 10 mm, 12 mm, and 12 mm. 30 samples of concrete panels with embedded anchor loops were tested. The panels were supported on the edges and the anchor loops were subjected to an increasing tensile force using an Instron piston. Failures that occurred were loop failures and panel failures and a mixture thereof. There was an increase in ultimate load vs. increasing diameter as expected, but this relationship persisted until the reinforcement diameter exceeded 10 mm. For diameters larger than 10 mm, the ultimate failure load starts to decrease due to the dependency of the reinforcement bond strength to the concrete matrix. Overall, the reinforced panels showed a 14 to 23% increase in the factor of safety. Using anchor loops of 66kN ultimate load together with Y10 steel reinforcement with bent ends had shown the most promising results in reducing concrete panel pull-out failure. The Y10 reinforcement had shown, on average, a 24% increase in ultimate load achieved. Previous research has investigated supplementary reinforcement around the anchor loops. This paper extends this investigation by evaluating supplementary reinforcement placed through the panel anchor loops.

Keywords: supplementary reinforcement, anchor loops, retaining panels, reinforced concrete, pull-out failure

Procedia PDF Downloads 155
17839 Stochastic Modeling and Productivity Analysis of a Flexible Manufacturing System

Authors: Mehmet Savsar, Majid Aldaihani

Abstract:

Flexible Manufacturing Systems (FMS) are used to produce a variety of parts on the same equipment. Therefore, their utilization is higher than traditional machining systems. Higher utilization, on the other hand, results in more frequent equipment failures and additional need for maintenance. Therefore, it is necessary to carefully analyze operational characteristics and productivity of FMS or Flexible Manufacturing Cells (FMC), which are smaller configuration of FMS, before installation or during their operation. Appropriate models should be developed to determine production rates based on operational conditions, including equipment reliability, availability, and repair capacity. In this paper, a stochastic model is developed for an automated FMC system, which consists of two machines served by two robots and a single repairman. The model is used to determine system productivity and equipment utilization under different operational conditions, including random machine failures, random repairs, and limited repair capacity. The results are compared to previous study results for FMC system with sufficient repair capacity assigned to each machine. The results show that the model will be useful for design engineers and operational managers to analyze performance of manufacturing systems at the design or operational stages.

Keywords: flexible manufacturing, FMS, FMC, stochastic modeling, production rate, reliability, availability

Procedia PDF Downloads 491
17838 Reliability Qualification Test Plan Derivation Method for Weibull Distributed Products

Authors: Ping Jiang, Yunyan Xing, Dian Zhang, Bo Guo

Abstract:

The reliability qualification test (RQT) is widely used in product development to qualify whether the product meets predetermined reliability requirements, which are mainly described in terms of reliability indices, for example, MTBF (Mean Time Between Failures). It is widely exercised in product development. In engineering practices, RQT plans are mandatorily referred to standards, such as MIL-STD-781 or GJB899A-2009. But these conventional RQT plans in standards are not preferred, as the test plans often require long test times or have high risks for both producer and consumer due to the fact that the methods in the standards only use the test data of the product itself. And the standards usually assume that the product is exponentially distributed, which is not suitable for a complex product other than electronics. So it is desirable to develop an RQT plan derivation method that safely shortens test time while keeping the two risks under control. To meet this end, for the product whose lifetime follows Weibull distribution, an RQT plan derivation method is developed. The merit of the method is that expert judgment is taken into account. This is implemented by applying the Bayesian method, which translates the expert judgment into prior information on product reliability. Then producer’s risk and the consumer’s risk are calculated accordingly. The procedures to derive RQT plans are also proposed in this paper. As extra information and expert judgment are added to the derivation, the derived test plans have the potential to shorten the required test time and have satisfactory low risks for both producer and consumer, compared with conventional test plans. A case study is provided to prove that when using expert judgment in deriving product test plans, the proposed method is capable of finding ideal test plans that not only reduce the two risks but also shorten the required test time as well.

Keywords: expert judgment, reliability qualification test, test plan derivation, producer’s risk, consumer’s risk

Procedia PDF Downloads 92
17837 Solid State Drive End to End Reliability Prediction, Characterization and Control

Authors: Mohd Azman Abdul Latif, Erwan Basiron

Abstract:

A flaw or drift from expected operational performance in one component (NAND, PMIC, controller, DRAM, etc.) may affect the reliability of the entire Solid State Drive (SSD) system. Therefore, it is important to ensure the required quality of each individual component through qualification testing specified using standards or user requirements. Qualification testing is time-consuming and comes at a substantial cost for product manufacturers. A highly technical team, from all the eminent stakeholders is embarking on reliability prediction from beginning of new product development, identify critical to reliability parameters, perform full-blown characterization to embed margin into product reliability and establish control to ensure the product reliability is sustainable in the mass production. The paper will discuss a comprehensive development framework, comprehending SSD end to end from design to assembly, in-line inspection, in-line testing and will be able to predict and to validate the product reliability at the early stage of new product development. During the design stage, the SSD will go through intense reliability margin investigation with focus on assembly process attributes, process equipment control, in-process metrology and also comprehending forward looking product roadmap. Once these pillars are completed, the next step is to perform process characterization and build up reliability prediction modeling. Next, for the design validation process, the reliability prediction specifically solder joint simulator will be established. The SSD will be stratified into Non-Operating and Operating tests with focus on solder joint reliability and connectivity/component latent failures by prevention through design intervention and containment through Temperature Cycle Test (TCT). Some of the SSDs will be subjected to the physical solder joint analysis called Dye and Pry (DP) and Cross Section analysis. The result will be feedbacked to the simulation team for any corrective actions required to further improve the design. Once the SSD is validated and is proven working, it will be subjected to implementation of the monitor phase whereby Design for Assembly (DFA) rules will be updated. At this stage, the design change, process and equipment parameters are in control. Predictable product reliability at early product development will enable on-time sample qualification delivery to customer and will optimize product development validation, effective development resource and will avoid forced late investment to bandage the end-of-life product failures. Understanding the critical to reliability parameters earlier will allow focus on increasing the product margin that will increase customer confidence to product reliability.

Keywords: e2e reliability prediction, SSD, TCT, solder joint reliability, NUDD, connectivity issues, qualifications, characterization and control

Procedia PDF Downloads 145
17836 Field-Programmable Gate Array Based Tester for Protective Relay

Authors: H. Bentarzi, A. Zitouni

Abstract:

The reliability of the power grid depends on the successful operation of thousands of protective relays. The failure of one relay to operate as intended may lead the entire power grid to blackout. In fact, major power system failures during transient disturbances may be caused by unnecessary protective relay tripping rather than by the failure of a relay to operate. Adequate relay testing provides a first defense against false trips of the relay and hence improves power grid stability and prevents catastrophic bulk power system failures. The goal of this research project is to design and enhance the relay tester using a technology such as Field Programmable Gate Array (FPGA) card NI 7851. A PC based tester framework has been developed using Simulink power system model for generating signals under different conditions (faults or transient disturbances) and LabVIEW for developing the graphical user interface and configuring the FPGA. Besides, the interface system has been developed for outputting and amplifying the signals without distortion. These signals should be like the generated ones by the real power system and large enough for testing the relay’s functionality. The signals generated that have been displayed on the scope are satisfactory. Furthermore, the proposed testing system can be used for improving the performance of protective relay.

Keywords: amplifier class D, field-programmable gate array (FPGA), protective relay, tester

Procedia PDF Downloads 184