Search results for: marginal likelihood evidence
4624 Comparison of Methods of Estimation for Use in Goodness of Fit Tests for Binary Multilevel Models
Authors: I. V. Pinto, M. R. Sooriyarachchi
Abstract:
It can be frequently observed that the data arising in our environment have a hierarchical or a nested structure attached with the data. Multilevel modelling is a modern approach to handle this kind of data. When multilevel modelling is combined with a binary response, the estimation methods get complex in nature and the usual techniques are derived from quasi-likelihood method. The estimation methods which are compared in this study are, marginal quasi-likelihood (order 1 & order 2) (MQL1, MQL2) and penalized quasi-likelihood (order 1 & order 2) (PQL1, PQL2). A statistical model is of no use if it does not reflect the given dataset. Therefore, checking the adequacy of the fitted model through a goodness-of-fit (GOF) test is an essential stage in any modelling procedure. However, prior to usage, it is also equally important to confirm that the GOF test performs well and is suitable for the given model. This study assesses the suitability of the GOF test developed for binary response multilevel models with respect to the method used in model estimation. An extensive set of simulations was conducted using MLwiN (v 2.19) with varying number of clusters, cluster sizes and intra cluster correlations. The test maintained the desirable Type-I error for models estimated using PQL2 and it failed for almost all the combinations of MQL. Power of the test was adequate for most of the combinations in all estimation methods except MQL1. Moreover, models were fitted using the four methods to a real-life dataset and performance of the test was compared for each model.Keywords: goodness-of-fit test, marginal quasi-likelihood, multilevel modelling, penalized quasi-likelihood, power, quasi-likelihood, type-I error
Procedia PDF Downloads 1424623 A Survey on Quasi-Likelihood Estimation Approaches for Longitudinal Set-ups
Authors: Naushad Mamode Khan
Abstract:
The Com-Poisson (CMP) model is one of the most popular discrete generalized linear models (GLMS) that handles both equi-, over- and under-dispersed data. In longitudinal context, an integer-valued autoregressive (INAR(1)) process that incorporates covariate specification has been developed to model longitudinal CMP counts. However, the joint likelihood CMP function is difficult to specify and thus restricts the likelihood based estimating methodology. The joint generalized quasilikelihood approach (GQL-I) was instead considered but is rather computationally intensive and may not even estimate the regression effects due to a complex and frequently ill conditioned covariance structure. This paper proposes a new GQL approach for estimating the regression parameters (GQLIII) that are based on a single score vector representation. The performance of GQL-III is compared with GQL-I and separate marginal GQLs (GQL-II) through some simulation experiments and is proved to yield equally efficient estimates as GQL-I and is far more computationally stable.Keywords: longitudinal, com-Poisson, ill-conditioned, INAR(1), GLMS, GQL
Procedia PDF Downloads 3534622 Soil Degradation Processes in Marginal Uplands of Samar Island, Philippines
Authors: Dernie Taganna Olguera
Abstract:
Marginal uplands are fragile ecosystems in the tropics that need to be evaluated for sustainable utilization and land degradation mitigation. Thus, this study evaluated the dominant soil degradation processes in selected marginal uplands of Samar Island, Philippines; evaluated the important factors influencing soil degradation in the selected sites and identified the indicators of soil degradation in marginal uplands of the tropical landscape of Samar Island, Philippines. Two (2) sites were selected (Sta. Rita, Samar and Salcedo, Eastern, Samar) representing the western and eastern sides of Samar Island respectively. These marginal uplands represent different agro-climatic zones suitable for the study. Soil erosion is the major soil degradation process in the marginal uplands studied. It resulted in not only considerable soil losses but nutrient losses as well. Soil erosion varied with vegetation cover and site. It was much higher in the sweetpotato, cassava, and gabi crops than under natural vegetation. In addition, soil erosion was higher in Salcedo than in Sta. Rita, which is related to climatic and soil characteristics. Bulk density, porosity, aggregate stability, soil pH, organic matter, and carbon dioxide evolution are good indicators of soil degradation. The dominance of Saccharum spontaneum Linn., Imperata cylindrica Linn, Melastoma malabathricum Linn. and Psidium guajava Linn indicated degraded soil condition. Farmer’s practices particularly clean culture and organic fertilizer application influenced the degree of soil degradation in the marginal uplands of Samar Island, Philippines.Keywords: soil degradation, soil erosion, marginal uplands, Samar island, Philippines
Procedia PDF Downloads 4174621 Robust Inference with a Skew T Distribution
Authors: M. Qamarul Islam, Ergun Dogan, Mehmet Yazici
Abstract:
There is a growing body of evidence that non-normal data is more prevalent in nature than the normal one. Examples can be quoted from, but not restricted to, the areas of Economics, Finance and Actuarial Science. The non-normality considered here is expressed in terms of fat-tailedness and asymmetry of the relevant distribution. In this study a skew t distribution that can be used to model a data that exhibit inherent non-normal behavior is considered. This distribution has tails fatter than a normal distribution and it also exhibits skewness. Although maximum likelihood estimates can be obtained by solving iteratively the likelihood equations that are non-linear in form, this can be problematic in terms of convergence and in many other respects as well. Therefore, it is preferred to use the method of modified maximum likelihood in which the likelihood estimates are derived by expressing the intractable non-linear likelihood equations in terms of standardized ordered variates and replacing the intractable terms by their linear approximations obtained from the first two terms of a Taylor series expansion about the quantiles of the distribution. These estimates, called modified maximum likelihood estimates, are obtained in closed form. Hence, they are easy to compute and to manipulate analytically. In fact the modified maximum likelihood estimates are equivalent to maximum likelihood estimates, asymptotically. Even in small samples the modified maximum likelihood estimates are found to be approximately the same as maximum likelihood estimates that are obtained iteratively. It is shown in this study that the modified maximum likelihood estimates are not only unbiased but substantially more efficient than the commonly used moment estimates or the least square estimates that are known to be biased and inefficient in such cases. Furthermore, in conventional regression analysis, it is assumed that the error terms are distributed normally and, hence, the well-known least square method is considered to be a suitable and preferred method for making the relevant statistical inferences. However, a number of empirical researches have shown that non-normal errors are more prevalent. Even transforming and/or filtering techniques may not produce normally distributed residuals. Here, a study is done for multiple linear regression models with random error having non-normal pattern. Through an extensive simulation it is shown that the modified maximum likelihood estimates of regression parameters are plausibly robust to the distributional assumptions and to various data anomalies as compared to the widely used least square estimates. Relevant tests of hypothesis are developed and are explored for desirable properties in terms of their size and power. The tests based upon modified maximum likelihood estimates are found to be substantially more powerful than the tests based upon least square estimates. Several examples are provided from the areas of Economics and Finance where such distributions are interpretable in terms of efficient market hypothesis with respect to asset pricing, portfolio selection, risk measurement and capital allocation, etc.Keywords: least square estimates, linear regression, maximum likelihood estimates, modified maximum likelihood method, non-normality, robustness
Procedia PDF Downloads 3974620 Multinomial Dirichlet Gaussian Process Model for Classification of Multidimensional Data
Authors: Wanhyun Cho, Soonja Kang, Sanggoon Kim, Soonyoung Park
Abstract:
We present probabilistic multinomial Dirichlet classification model for multidimensional data and Gaussian process priors. Here, we have considered an efficient computational method that can be used to obtain the approximate posteriors for latent variables and parameters needed to define the multiclass Gaussian process classification model. We first investigated the process of inducing a posterior distribution for various parameters and latent function by using the variational Bayesian approximations and important sampling method, and next we derived a predictive distribution of latent function needed to classify new samples. The proposed model is applied to classify the synthetic multivariate dataset in order to verify the performance of our model. Experiment result shows that our model is more accurate than the other approximation methods.Keywords: multinomial dirichlet classification model, Gaussian process priors, variational Bayesian approximation, importance sampling, approximate posterior distribution, marginal likelihood evidence
Procedia PDF Downloads 4424619 Analysis of Cross-Sectional and Retrograde Data on the Prevalence of Marginal Gingivitis
Authors: Ilma Robo, Saimir Heta, Nedja Hysi, Vera Ostreni
Abstract:
Introduction: Marginal gingivitis is a disease with considerable frequency among patients who present routinely for periodontal control and treatment. In fact, this disease may not have alarming symptoms in patients and may go unnoticed by themselves when personal hygiene conditions are optimal. The aim of this study was to collect retrograde data on the prevalence of marginal gingiva in the respective group of patients, evaluated according to specific periodontal diagnostic tools. Materials and methods: The study was conducted in two patient groups. The first group was with 34 patients, during December 2019-January 2020, and the second group was with 64 patients during 2010-2018 (each year in the mentioned monthly period). Bacterial plaque index, hemorrhage index, amount of gingival fluid, presence of xerostomia and candidiasis were recorded in patients. Results: Analysis of the collected data showed that susceptibility to marginal gingivitis shows higher values according to retrograde data, compared to cross-sectional ones. Susceptibility to candidiasis and the occurrence of xerostomia, even in the combination of both pathologies, as risk factors for the occurrence of marginal gingivitis, show higher values according to retrograde data. The female are presented with a reduced bacterial plaque index than the males, but more importantly, this index in the females is also associated with a reduced index of gingival hemorrhage, in contrast to the males. Conclusions: Cross-sectional data show that the prevalence of marginal gingivitis is more reduced, compared to retrograde data, based on the hemorrhage index and the bacterial plaque index together. Changes in production in the amount of gingival fluid show a higher prevalence of marginal gingivitis in cross-sectional data than in retrograde data; this is based on the sophistication of the way data are recorded, which evolves over time and also based on professional sensitivity to this phenomenon.Keywords: marginal gingivitis, cross-sectional, retrograde, prevalence
Procedia PDF Downloads 1604618 Effect of Marginal Quality Groundwater on Yield of Cotton Crop and Soil Salinity Status
Authors: A. L. Qureshi, A. A. Mahessar, R. K. Dashti, S. M. Yasin
Abstract:
In this paper, effect of marginal quality groundwater on yield of cotton crop and soil salinity was studied. In this connection, three irrigation treatments each with four replications were applied. These treatments were use of canal water, use of marginal quality groundwater from tube well, and conjunctive use by mixing with the ratio of 1:1 of canal water and marginal quality tubewell water. Water was applied to the crop cultivated in Kharif season 2011; its quantity has been measured using cut-throat flume. Total 11 watering each of 50 mm depth have been applied from 20th April to 20th July, 2011. Further, irrigations were stopped from last week of July, 2011 due to monsoon rainfall. Maximum crop yield (seed cotton) was observed under T1 which was 1,516.8 kg/ha followed by T3 (mixed canal and tube well water) having 1009 kg/ha and 709 kg/ha for T2 i.e. marginal quality groundwater. This concludes that crop yield in T2 and T3 with in comparison to T1was reduced by about 53 and 30% respectively. It has been observed that yield of cotton crop is below potential limit for three treatments due to unexpected rainfall at the time of full flowering season; thus the yield was adversely affected. However, salt deposition in soil profiles was not observed that is due to leaching effect of heavy rainfall occurred during monsoon season.Keywords: conjunctive use, cotton crop, groundwater, soil salinity status, water use efficiency
Procedia PDF Downloads 4474617 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.Keywords: deregulated energy market, forecasting, machine learning, system marginal price
Procedia PDF Downloads 2144616 Survival and Hazard Maximum Likelihood Estimator with Covariate Based on Right Censored Data of Weibull Distribution
Authors: Al Omari Mohammed Ahmed
Abstract:
This paper focuses on Maximum Likelihood Estimator with Covariate. Covariates are incorporated into the Weibull model. Under this regression model with regards to maximum likelihood estimator, the parameters of the covariate, shape parameter, survival function and hazard rate of the Weibull regression distribution with right censored data are estimated. The mean square error (MSE) and absolute bias are used to compare the performance of Weibull regression distribution. For the simulation comparison, the study used various sample sizes and several specific values of the Weibull shape parameter.Keywords: weibull regression distribution, maximum likelihood estimator, survival function, hazard rate, right censoring
Procedia PDF Downloads 4404615 Evidence-Based Approaches and Effective Practices for Preventing Bullying
Authors: Nato Asatiani
Abstract:
The research underscores the critical role of a positive school climate in combating bullying. The results can be generalized and assumed that bullying behavior occurs when there is a victim, and the environment allows the realization of aggression; school culture is a strong predictor of bullying behavior; the probability of becoming a victim (victimhood) is high among those teenagers who experience high levels of stress in the environment; when a teenager experiences a sense of threat, such physical, psychological, or social symptoms are developed that makes teenagers vulnerable to bullying; the school culture that is oriented to adherence to the rules of communication and mutual respect in the group reduces the likelihood of a teenager to become a victim; consequently, when a teenager has a sense of wellness even in combination with aggression, this sense reduces the likelihood of a teenager to become a victim.Keywords: bullying, adolescence, aggression, school climate
Procedia PDF Downloads 294614 Review on Quaternion Gradient Operator with Marginal and Vector Approaches for Colour Edge Detection
Authors: Nadia Ben Youssef, Aicha Bouzid
Abstract:
Gradient estimation is one of the most fundamental tasks in the field of image processing in general, and more particularly for color images since that the research in color image gradient remains limited. The widely used gradient method is Di Zenzo’s gradient operator, which is based on the measure of squared local contrast of color images. The proposed gradient mechanism, presented in this paper, is based on the principle of the Di Zenzo’s approach using quaternion representation. This edge detector is compared to a marginal approach based on multiscale product of wavelet transform and another vector approach based on quaternion convolution and vector gradient approach. The experimental results indicate that the proposed color gradient operator outperforms marginal approach, however, it is less efficient then the second vector approach.Keywords: gradient, edge detection, color image, quaternion
Procedia PDF Downloads 2334613 The Reproducibility and Repeatability of Modified Likelihood Ratio for Forensics Handwriting Examination
Authors: O. Abiodun Adeyinka, B. Adeyemo Adesesan
Abstract:
The forensic use of handwriting depends on the analysis, comparison, and evaluation decisions made by forensic document examiners. When using biometric technology in forensic applications, it is necessary to compute Likelihood Ratio (LR) for quantifying strength of evidence under two competing hypotheses, namely the prosecution and the defense hypotheses wherein a set of assumptions and methods for a given data set will be made. It is therefore important to know how repeatable and reproducible our estimated LR is. This paper evaluated the accuracy and reproducibility of examiners' decisions. Confidence interval for the estimated LR were presented so as not get an incorrect estimate that will be used to deliver wrong judgment in the court of Law. The estimate of LR is fundamentally a Bayesian concept and we used two LR estimators, namely Logistic Regression (LoR) and Kernel Density Estimator (KDE) for this paper. The repeatability evaluation was carried out by retesting the initial experiment after an interval of six months to observe whether examiners would repeat their decisions for the estimated LR. The experimental results, which are based on handwriting dataset, show that LR has different confidence intervals which therefore implies that LR cannot be estimated with the same certainty everywhere. Though the LoR performed better than the KDE when tested using the same dataset, the two LR estimators investigated showed a consistent region in which LR value can be estimated confidently. These two findings advance our understanding of LR when used in computing the strength of evidence in handwriting using forensics.Keywords: confidence interval, handwriting, kernel density estimator, KDE, logistic regression LoR, repeatability, reproducibility
Procedia PDF Downloads 1224612 Racial Bias by Prosecutors: Evidence from Random Assignment
Authors: CarlyWill Sloan
Abstract:
Racial disparities in criminal justice outcomes are well-documented. However, there is little evidence on the extent to which racial bias by prosecutors is responsible for these disparities. This paper tests for racial bias in conviction by prosecutors. To identify effects, this paper leverages as good as random variation in prosecutor race using detailed administrative data on the case assignment process and case outcomes in New York County, New York. This paper shows that the assignment of an opposite-race prosecutor leads to a 5 percentage point (~ 8 percent) increase in the likelihood of conviction for property crimes. There is no evidence of effects for other types of crimes. Additional results indicate decreased dismissals by opposite-race prosecutors likely drive my property crime estimates.Keywords: criminal justice, discrimination, prosecutors, racial disparities
Procedia PDF Downloads 1914611 Linkages between Innovation Policies and SMEs' Innovation Activities: Empirical Evidence from 15 Transition Countries
Authors: Anita Richter
Abstract:
Innovation is one of the key foundations of competitive advantage, generating growth and welfare worldwide. Consequently, all firms should innovate to bring new ideas to the market. Innovation is a vital growth driver, particularly for transition countries to move towards knowledge-based, high-income economies. However, numerous barriers, such as financial, regulatory or infrastructural constraints prevent, in particular, new and small firms in transition countries from innovating. Thus SMEs’ innovation output may benefit substantially from government support. This research paper aims to assess the effect of government interventions on innovation activities in SMEs in emerging countries. Until now academic research related to the innovation policies focused either on single country and/or high-income countries assessments and less on cross-country and/or low and middle-income countries. Therefore the paper seeks to close the research gap by providing empirical evidence from 8,500 firms in 15 transition countries (Eastern Europe, South Caucasus, South East Europe, Middle East and North Africa). Using firm-level data from the Business Environment and Enterprise Performance Survey of the World Bank and EBRD and policy data from the SME Policy Index of the OECD, the paper investigates how government interventions affect SME’s likelihood of investing in any technological and non-technological innovation. Using the Standard Linear Regression, the impact of government interventions on SMEs’ innovation output and R&D activities is measured. The empirical analysis suggests that a firm’s decision to invest into innovative activities is sensitive to government interventions. A firm’s likelihood to invest into innovative activities increases by 3% to 8%, if the innovation eco-system noticeably improves (measured by an increase of 1 level in the SME Policy Index). At the same time, a better eco-system encourages SMEs to invest more in R&D. Government reforms in establishing a dedicated policy framework (IP legislation), institutional infrastructure (science and technology parks, incubators) and financial support (public R&D grants, innovation vouchers) are particularly relevant to stimulate innovation performance in SMEs. Particular segments of the SME population, namely micro and manufacturing firms, are more likely to benefit from an increased innovation framework conditions. The marginal effects are particularly strong on product innovation, process innovation, and marketing innovation, but less on management innovation. In conclusion, government interventions supporting innovation will likely lead to higher innovation performance of SMEs. They increase productivity at both firm and country level, which is a vital step in transitioning towards knowledge-based market economies.Keywords: innovation, research and development, government interventions, economic development, small and medium-sized enterprises, transition countries
Procedia PDF Downloads 3244610 Efficient Estimation for the Cox Proportional Hazards Cure Model
Authors: Khandoker Akib Mohammad
Abstract:
While analyzing time-to-event data, it is possible that a certain fraction of subjects will never experience the event of interest, and they are said to be cured. When this feature of survival models is taken into account, the models are commonly referred to as cure models. In the presence of covariates, the conditional survival function of the population can be modelled by using the cure model, which depends on the probability of being uncured (incidence) and the conditional survival function of the uncured subjects (latency), and a combination of logistic regression and Cox proportional hazards (PH) regression is used to model the incidence and latency respectively. In this paper, we have shown the asymptotic normality of the profile likelihood estimator via asymptotic expansion of the profile likelihood and obtain the explicit form of the variance estimator with an implicit function in the profile likelihood. We have also shown the efficient score function based on projection theory and the profile likelihood score function are equal. Our contribution in this paper is that we have expressed the efficient information matrix as the variance of the profile likelihood score function. A simulation study suggests that the estimated standard errors from bootstrap samples (SMCURE package) and the profile likelihood score function (our approach) are providing similar and comparable results. The numerical result of our proposed method is also shown by using the melanoma data from SMCURE R-package, and we compare the results with the output obtained from the SMCURE package.Keywords: Cox PH model, cure model, efficient score function, EM algorithm, implicit function, profile likelihood
Procedia PDF Downloads 1424609 The Generalized Pareto Distribution as a Model for Sequential Order Statistics
Authors: Mahdy Esmailian, Mahdi Doostparast, Ahmad Parsian
Abstract:
In this article, sequential order statistics (SOS) censoring type II samples coming from the generalized Pareto distribution are considered. Maximum likelihood (ML) estimators of the unknown parameters are derived on the basis of the available multiple SOS data. Necessary conditions for existence and uniqueness of the derived ML estimates are given. Due to complexity in the proposed likelihood function, a useful re-parametrization is suggested. For illustrative purposes, a Monte Carlo simulation study is conducted and an illustrative example is analysed.Keywords: bayesian estimation, generalized pareto distribution, maximum likelihood estimation, sequential order statistics
Procedia PDF Downloads 5084608 Integrated Nested Laplace Approximations For Quantile Regression
Authors: Kajingulu Malandala, Ranganai Edmore
Abstract:
The asymmetric Laplace distribution (ADL) is commonly used as the likelihood function of the Bayesian quantile regression, and it offers different families of likelihood method for quantile regression. Notwithstanding their popularity and practicality, ADL is not smooth and thus making it difficult to maximize its likelihood. Furthermore, Bayesian inference is time consuming and the selection of likelihood may mislead the inference, as the Bayes theorem does not automatically establish the posterior inference. Furthermore, ADL does not account for greater skewness and Kurtosis. This paper develops a new aspect of quantile regression approach for count data based on inverse of the cumulative density function of the Poisson, binomial and Delaporte distributions using the integrated nested Laplace Approximations. Our result validates the benefit of using the integrated nested Laplace Approximations and support the approach for count data.Keywords: quantile regression, Delaporte distribution, count data, integrated nested Laplace approximation
Procedia PDF Downloads 1614607 Estimating Directional Shadow Prices of Air Pollutant Emissions by Transportation Modes
Authors: Huey-Kuo Chen
Abstract:
This paper applies directional marginal productivity model to study the shadow price of emissions by transportation modes in the years of 2011 and 2013 with the aim to provide a reference for policy makers to improve the emission of pollutants. One input variable (i.e., energy consumption), one desirable output variable (i.e., vehicle kilometers traveled) and three undesirable output variables (i.e., carbon dioxide, sulfur oxides and nitrogen oxides) generated by road transportation modes were used to evaluate directional marginal productivity and directional shadow price for 18 transportation modes. The results show that the directional shadow price (DSP) of SOx is much higher than CO2 and NOx. Nevertheless, the emission of CO2 is the largest among the three kinds of pollutants. To improve the air quality, the government should pay more attention to the emission of CO2 and apply the alternative solution such as promoting public transportation and subsidizing electric vehicles to reduce the use of private vehicles.Keywords: marginal productivity, road transportation modes, shadow price, undesirable outputs
Procedia PDF Downloads 1464606 The Non-Stationary BINARMA(1,1) Process with Poisson Innovations: An Application on Accident Data
Authors: Y. Sunecher, N. Mamode Khan, V. Jowaheer
Abstract:
This paper considers the modelling of a non-stationary bivariate integer-valued autoregressive moving average of order one (BINARMA(1,1)) with correlated Poisson innovations. The BINARMA(1,1) model is specified using the binomial thinning operator and by assuming that the cross-correlation between the two series is induced by the innovation terms only. Based on these assumptions, the non-stationary marginal and joint moments of the BINARMA(1,1) are derived iteratively by using some initial stationary moments. As regards to the estimation of parameters of the proposed model, the conditional maximum likelihood (CML) estimation method is derived based on thinning and convolution properties. The forecasting equations of the BINARMA(1,1) model are also derived. A simulation study is also proposed where BINARMA(1,1) count data are generated using a multivariate Poisson R code for the innovation terms. The performance of the BINARMA(1,1) model is then assessed through a simulation experiment and the mean estimates of the model parameters obtained are all efficient, based on their standard errors. The proposed model is then used to analyse a real-life accident data on the motorway in Mauritius, based on some covariates: policemen, daily patrol, speed cameras, traffic lights and roundabouts. The BINARMA(1,1) model is applied on the accident data and the CML estimates clearly indicate a significant impact of the covariates on the number of accidents on the motorway in Mauritius. The forecasting equations also provide reliable one-step ahead forecasts.Keywords: non-stationary, BINARMA(1, 1) model, Poisson innovations, conditional maximum likelihood, CML
Procedia PDF Downloads 1294605 Negative Self-Awareness and Its Effect on Crime
Authors: Guinevere Servis
Abstract:
This paper hypothesizes that withdrawal from positive self-awareness, and the increase of counterfactual-thinking and self-handicapping can help provide ample justification for an individual before, during and/or after committing a crime. The understanding of who someone is, one’s perspective on the world, and why they think the way they do is key to therapy in preventing recidivism. Developing habits to escape self-awareness, by using self-handicapping and counterfactual ideologies, may provide the necessary thinking patterns to decide disobeying the law is a worthy act to pursue. An increase in self-awareness is hypothesized to decrease the likelihood of recidivism, and ways of thinking that withdraw from self awareness can increase the likelihood of it. Especially for those who have been disadvantaged in life and disobeyed the law, self-handicapping and counterfactual thinking can also help to justify one's wrongdoing. The understanding of how a criminal views their disadvantages in the world, and one’s thinking patterns are hypothesized to help one better understand the entire scope on why a crime was committed and thus reduce the likelihood of recidivism. Utilizing therapy for prisoners to increase self-awareness of both thought and action can lead to a healthy, happier life and reduce the likelihood of reoffending. By discussing the terms associated with self-awareness theory and other psychological topics such as self-handicapping, counterfactual thinking, this paper argues the actions towards increasing positive self-awareness can help decrease likelihood of recidivism. Adversely, hypothesizing that increasing the ways of thinking that withdraw one from self-awareness, through counterfactual thinking and self-handicapping, can inherently increase the likelihood of recidivism. Evaluating these findings to further understand the needed changes in correctional institutions is fundamental to reducing crime, benefiting the criminal, the victim(s) and their family, and the state.Keywords: crime, self-awareness theory, correctional institutions, self-regulate, counterfactual thinking, recidivism
Procedia PDF Downloads 984604 Parametric Inference of Elliptical and Archimedean Family of Copulas
Authors: Alam Ali, Ashok Kumar Pathak
Abstract:
Nowadays, copulas have attracted significant attention for modeling multivariate observations, and the foremost feature of copula functions is that they give us the liberty to study the univariate marginal distributions and their joint behavior separately. The copula parameter apprehends the intrinsic dependence among the marginal variables, and it can be estimated using parametric, semiparametric, or nonparametric techniques. This work aims to compare the coverage rates between an Elliptical and an Archimedean family of copulas via a fully parametric estimation technique.Keywords: elliptical copula, archimedean copula, estimation, coverage rate
Procedia PDF Downloads 634603 Controversies Connected with the Admission of Illegally Gained Evidences in Polish Civil Proceedings
Authors: Aleksandra Czubak
Abstract:
The need to present evidence in civil proceedings is essential for getting the right result. It is for this reason that it is particularly important for the parties to present the most relevant and convincing evidence to the Court. Therefore, parties often try to gain evidence, even when the acquisition of such evidence is in breach of the law. Firstly, there will be discussed how evidence is applied in the Polish civil process and the Polish regulations of the evidence proceedings; with specific reference to evidence of major importance in the developing world. Further, it will be discussed the controversies connected with the admission of illegally gained evidence in civil proceedings. The credibility of the various measures is circumstantial and can only be determined by factors related to the recognized problem. For that reason, it is not the amount of evidence, but the value and relevance of this evidence that should be considered in determining the right result. This paper will also consider whether the end justifies the means? How far should parties go in order to achieve a favorable sentence or to create stronger evidence? Methods of persuasion of the court, as well as the acquisition of evidence, are not always fair and moral. It is on this area of controversy that this essay will focus. This paper concludes by considering the value of evidence and the possibility of using it to achieve a just sentence. Examples are based on Polish law; nevertheless, they encompass ideas common to most civil jurisdictions.Keywords: civil proceedings, Europe (Poland), evidence, law
Procedia PDF Downloads 2494602 Psychiatric/Psychological Issues in the Criminal Courts In Australia
Authors: Judge Paul Smith
Abstract:
Abstract—This paper addresses the use and admissibility of psychiatric/psychological evidence in Australia Courts. There have been different approaches in the Courts to the acceptance of such expert evidence. It details how such expert evidence is admissible at trial and sentence. The methodology used is an examination of the decided cases and relevant legislative provisions which relate to the admission of such evidence. The major findings are that the evidence can be admissible if it is relevant to issues in a trial or sentence. It concludes that psychiatric/psychological evidence can be very useful and indeed may be essential at sentence or trial.Keywords: criminal, law, psychological, evidence
Procedia PDF Downloads 524601 An Exploratory Approach of the Latin American Migrants’ Urban Space Transformation of Antofagasta City, Chile
Authors: Carolina Arriagada, Yasna Contreras
Abstract:
Since mid-2000, the migratory flows of Latin American migrants to Chile have been increasing constantly. There are two reasons that would explain why Chile is presented as an attractive country for the migrants. On the one hand, traditional centres of migrants’ attraction such as the United States and Europe have begun to close their borders. On the other hand, Chile exhibits relative economic and political stability, which offers greater job opportunities and better standard of living when compared to the migrants’ origin country. At the same time, the neoliberal economic model of Chile, developed under an extractive production of the natural resources, has privatized the urban space. The market regulates the growth of the fragmented and segregated cities. Then, the vulnerable population, most of the time, is located in the periphery and in the marginal areas of the urban space. In this aspect, the migrants have begun to occupy those degraded and depressed areas of the city. The problem raised is that the increase of the social spatial segregation could be also attributed to the migrants´ occupation of the marginal urban places of the city. The aim of this investigation is to carry out an analysis of the migrants’ housing strategies, which are transforming the marginal areas of the city. The methodology focused on the urban experience of the migrants, through the observation of spatial practices, ways of living and networks configuration in order to transform the marginal territory. The techniques applied in this study are semi–structured interviews in-depth interviews. The study reveals that the migrants housing strategies for living in the marginal areas of the city are built on a paradox way. On the one hand, the migrants choose proximity to their place of origin, maintaining their identity and customs. On the other hand, the migrants choose proximity to their social and familiar places, generating sense of belonging. In conclusion, the migration as international displacements under a globalized economic model increasing socio spatial segregation in cities is evidenced, but the transformation of the marginal areas is a fundamental resource of their integration migratory process. The importance of this research is that it is everybody´s responsibility not only the right to live in a city without any discrimination but also to integrate the citizens within the social urban space of a city.Keywords: migrations, marginal space, resignification, visibility
Procedia PDF Downloads 1424600 Filling the Gap of Extraction of Digital Evidence from Emerging Platforms Without Forensics Tools
Authors: Yi Anson Lam, Siu Ming Yiu, Kam Pui Chow
Abstract:
Digital evidence has been tendering to courts at an exponential rate in recent years. As an industrial practice, most digital evidence is extracted and preserved using specialized and well-accepted forensics tools. On the other hand, the advancement in technologies enables the creation of quite a few emerging platforms such as Telegram, Signal etc. Existing (well-accepted) forensics tools were not designed to extract evidence from these emerging platforms. While new forensics tools require a significant amount of time and effort to be developed and verified, this paper tries to address how to fill this gap using quick-fix alternative methods for digital evidence collection (e.g., based on APIs provided by Apps) and discuss issues related to the admissibility of this evidence to courts with support from international courts’ stance and the circumstances of accepting digital evidence using these proposed alternatives.Keywords: extraction, digital evidence, laws, investigation
Procedia PDF Downloads 664599 One vs. Rest and Error Correcting Output Codes Principled Rebalancing Schemes for Solving Imbalanced Multiclass Problems
Authors: Alvaro Callejas-Ramos, Lorena Alvarez-Perez, Alexander Benitez-Buenache, Anibal R. Figueiras-Vidal
Abstract:
This contribution presents a promising formulation which allows to extend the principled binary rebalancing procedures, also known as neutral re-balancing mechanisms in the sense that they do not alter the likelihood ratioKeywords: Bregman divergences, imbalanced multiclass classifi-cation, informed re-balancing, invariant likelihood ratio
Procedia PDF Downloads 2144598 How Polarization and Ideological Divisiveness Increase the Likelihood of Executive Action: Evidence from the Italian Case
Authors: Umberto Platini
Abstract:
This paper analyses the role of government fragmentation as predictor of the use of emergency decrees in parliamentary democracies. In particular, it focuses on the relationship between ideological divisiveness within cabinets and the choice by executives to issue emergency decrees rather initiating ordinary legislative procedures. A Bayesian multilevel analysis conducted on the population of government-initiated legislation in Italy between 1996 and 2018 finds significant evidence that those legislative proposals which are further away from the ideological centre of gravity of the executive are around three times more likely to be issued as emergency decrees. Likewise, legislative projects regulating more contentious policy areas are significantly more likely to be issued by decree. However, for more contentious issues the importance of ideological distance as a predictor diminishes. This evidence suggests that cabinets prefer decrees to ordinary legislative procedures when they expect that the bargaining environment in Parliament is more hostile. These results persist regardless of the fluctuations of the political-economic cycle. Their robustness is also tested against a battery of controls and against fixed effects both at the government level and at the legislature level.Keywords: Bayesian multilevel logit models, executive action, executive decrees, ideology, legislative studies, polarization
Procedia PDF Downloads 1034597 An Empirical Examination of Ethnic Differences in the Use and Experience of Child Healthcare Services in New Zealand
Authors: Terryann Clark, Kabir Dasgupta, Sonia Lewycka, Gail Pacheco, Alexander Plum
Abstract:
This paper focused on two main research aims using data from the Growing Up in New Zealand (GUINZ) birth cohort: 1. To examine ethnic differences in life-course trajectories in the use and experience of healthcare services in early childhood years (namely immunisation, dental checks and use of General Practitioners (GPs)) 2. To quantify the contribution of relevant explanatory factors to ethnic differences. Current policy in New Zealand indicates there should be, in terms of associated direct costs, equitable access by ethnicity for healthcare services. However, empirical evidence points to persistent ethnic gaps in several domains. For example, the data highlighted that Māori have the lowest immunisation rates, across a number of time points in early childhood – despite having a higher antenatal intention to immunise relative to NZ European. Further to that, NZ European are much more likely to have their first-choice lead maternity caregiver (LMC) and use child dental services compared to all ethnicities. Method: This research explored the underlying mechanisms behind ethnic differences in the use and experience of child healthcare services. First, a multivariate regression analysis was used to adjust raw ethnic gaps in child health care utilisation by relevant covariates. This included a range of factors, encompassing mobility, socio-economic status, mother and child characteristics, household characteristics and other social aspects. Second, a decomposition analysis was used to assess the proportion of each ethnic gap that can be explained, as well as the main drivers behind the explained component. The analysis for both econometric approaches was repeated for each data time point available, which included antenatal, 9 months, 2 years and 4 years post-birth. Results: The following findings emerged: There is consistent evidence that Asian and Pacific peoples have a higher likelihood of child immunisation relative to NZ Europeans and Māori. This was evident at all time points except one. Pacific peoples had a lower rate relative to NZ European for receiving all first-year immunisations on time. For a number of potential individual and household predictors of healthcare service utilisation, the association is time-variant across early childhood. For example, socio-economic status appears highly relevant for timely immunisations in a child’s first year, but is then insignificant for the 15 month immunisations and those at age 4. Social factors play a key role. This included discouragement or encouragement regarding child immunisation. When broken down by source, discouragement by family has the largest marginal effect, followed by health professionals; whereas for encouragement, medical professionals have the largest positive influence. Perceived ethnically motivated discrimination by a health professional was significant with respect to both reducing the likelihood of achieving first choice LMC, and also satisfaction levels with child’s GP. Some ethnic gaps were largely unexplained, despite the wealth of factors employed as independent variables in our analysis. This included understanding why Pacific mothers are much less likely to achieve their first choice LMC compared to NZ Europeans; and also the ethnic gaps for both Māori and Pacific peoples relative to NZ Europeans concerning dental service use.Keywords: child health, cohort analysis, ethnic disparities, primary healthcare
Procedia PDF Downloads 1474596 Inference for Compound Truncated Poisson Lognormal Model with Application to Maximum Precipitation Data
Authors: M. Z. Raqab, Debasis Kundu, M. A. Meraou
Abstract:
In this paper, we have analyzed maximum precipitation data during a particular period of time obtained from different stations in the Global Historical Climatological Network of the USA. One important point to mention is that some stations are shut down on certain days for some reason or the other. Hence, the maximum values are recorded by excluding those readings. It is assumed that the number of stations that operate follows zero-truncated Poisson random variables, and the daily precipitation follows a lognormal random variable. We call this model a compound truncated Poisson lognormal model. The proposed model has three unknown parameters, and it can take a variety of shapes. The maximum likelihood estimators can be obtained quite conveniently using Expectation-Maximization (EM) algorithm. Approximate maximum likelihood estimators are also derived. The associated confidence intervals also can be obtained from the observed Fisher information matrix. Simulation results have been performed to check the performance of the EM algorithm, and it is observed that the EM algorithm works quite well in this case. When we analyze the precipitation data set using the proposed model, it is observed that the proposed model provides a better fit than some of the existing models.Keywords: compound Poisson lognormal distribution, EM algorithm, maximum likelihood estimation, approximate maximum likelihood estimation, Fisher information, skew distribution
Procedia PDF Downloads 1084595 Fund Seekers’ Deception in Peer-to-Peer Lending in Times of COVID
Authors: Olivier Mesly
Abstract:
This article examines the likelihood of deception on the part of borrowers wishing to obtain credit from institutional or private lenders. In our first study, we identify five explanatory variables that account for nearly forty percent of the propensity to act deceitfully: a poor credit history, debt, risky behavior, and to a much lesser degree, irrational behavior and disconnection from the bundle of needs, goals, and preferences. For the second study, we remodeled the initial questionnaire to adapt it to the needs of institutional bankers and borrowers, especially those that engage in money on-line peer-to-peer lending, a growing business fueled by the COVID pandemic. We find that the three key psychological variables that help to indirectly predict the likelihood of deceitful behaviors and possible default on loan reimbursement, i.e., risky behaviors, ir-rationality, and dis-connection, interact with each other to form a loop. This study presents two benefits: first, we provide evidence that it is to some degree possible to tighten control over lending practices. Second, we offer a pragmatic tool: a questionnaire, that lenders can use or adapt to gauge potential borrowers’ deceit, notably by combining their results with standard hard-data measures of risk.Keywords: bundle of needs, default, debt, deception, risk, peer-to-peer lending
Procedia PDF Downloads 130