Search results for: manila clam shells
230 Utilization of Manila Clam Shells (Venerupis Philippinarum) and Raffia Palm Fiber (Raphia Farinifera) as an Additive in Producing Concrete Roof Tiles
Authors: Sofina Faith C. Navarro, Luke V. Subala, Rica H. Gatus, Alfonzo Ramon DG. Burguete
Abstract:
Roof tiles, as integral components of buildings, play a crucial role in protecting structures from many things. The study focuses on the production of sustainable roof tiles that address the waste disposal challenges associated with Manila clam shells and mitigate the environmental impact of conventional roof tile materials. Various concentrations of roof tiles are developed, incorporating different proportions of powdered clam shell that contains calcium carbonate and shredded raffia palm fiber. Subsequently, the roof tiles are cast using standard methods and transported to the University of the Philippines Institute of Civil Engineering (UP-ICE) for flexural strength testing. In conclusion, the research aimed to assess the flexural durability of concrete roof tiles with varying concentrations of Raffia Palm Fiber and Manila Clam Shells additives. The findings indicate notable differences in maximum load capacities among the specimens, with C3.1 emerging as the concentration with the highest load-bearing capacity at 313.59729 N. This concentration, with a flexural strength of 2.15214, is identified as the most durable option, with a slightly heavier weight of 1.10 kg. On the other hand, C2.2, with a flexural strength of 0.366 and a weight of 0.80 kg, is highlighted for its impressive durability performance while maintaining a lighter composition. Therefore, for the production of concrete roof tile, C3.1 is recommended for optimal durability, while C2.2 is suggested as a preferable option considering both durability and lightweight characteristics.Keywords: raffia palm fiber, flexural strength, lightweightness, Manila Clam Shells
Procedia PDF Downloads 60229 Utilization of Manila Clam Shells (Venerupis Philippinarum) and Raffia Palm Fiber (Raphia Farinifera) as an Additive in Producing Concrete Roof Tiles
Authors: Alfonzo Ramon Burguete, Rica Gatus, Sofina Faith Navarro, Luke Subala
Abstract:
Roof tiles, as integral components of buildings, play a crucial role in protecting structures from many things. The study focuses on the production of sustainable roof tiles that address the waste disposal challenges associated with Manila clam shells and mitigate the environmental impact of conventional roof tile materials. Various concentrations of roof tiles are developed, incorporating different proportions of powdered clam shell that contains calcium carbonate and shredded raffia palm fiber. Subsequently, the roof tiles are cast using standard methods and transported to the University of the Philippines Institute of Civil Engineering (UP-ICE) for flexural strength testing. In conclusion, the research aimed to assess the flexural durability of concrete roof tiles with varying concentrations of Raffia Palm Fiber and Manila Clam Shells additives. The findings indicate notable differences in maximum load capacities among the specimens, with C3.1 emerging as the concentration with the highest load-bearing capacity at 313.59729 N. This concentration, with a flexural strength of 2.15214, is identified as the most durable option, with a slightly heavier weight of 1.10 kg. On the other hand, C2.2, with a flexural strength of 0.366 and a weight of 0.80 kg, is highlighted for its impressive durability performance while maintaining a lighter composition. Therefore, for the production of concrete roof tile C3.1 is recommended for optimal durability, while C2.2 is suggested as a preferable option considering both durability and lightweight characteristics.Keywords: manila clam shells, raffia palm fiber, flexural strength, lightweightness
Procedia PDF Downloads 61228 Revitalizing Coastal Ecosystems: Evaluating the Costs and Benefits of Restoring Clam Gardens for Indigenous Communities in British Columbia
Authors: Daniel Chen, Chengyi Li, Naifu Xu, Shangxuan Yang
Abstract:
Climate change has led to substantial changes in coastal ecosystems, including elevated ocean temperatures, increased acidity, and disrupted marine habitats. These environmental impacts have also resulted in the decline of traditional Indigenous food sources on the coast of British Columbia, including clams and salmon, which have been essential to the diet and cultural practices of the coastal Indigenous communities. This research evaluates and analyzes the costs and benefits of restoring and building clam gardens, an ancestral Indigenous mariculture technique in the Pacific Northwest. Clam gardens, which involve the construction of intertidal rock walls to enhance clam production, have been shown to more than triple clam yields compared to non-walled beaches. This research analyzes the costs and benefits to Indigenous individuals, including factors such as travel, equipment, time, food supply, and cultural engagement; then it discusses the potential of clam gardens as a significant food resource with additional environmental co-benefits, given the prevalence of clam gardens and coastlines in British Columbia. Moreover, the study concludes with policy recommendations to support the restoration and preservation of clam gardens, highlighting their potential to provide sustainable seafood production, environmental co-benefits, and social-environmental educational opportunities for Indigenous communities and the wider public.Keywords: British Columbia coastline, clam garden, coastal resource management, Indigenous communities
Procedia PDF Downloads 19227 Characterization of Candlenut Shells and Its Application to Remove Oil and Fine Solids of Produced Water in Nutshell Filters of Water Cleaning Plant
Authors: Annur Suhadi, Haris B. Harahap, Zaim Arrosyidi, Epan, Darmapala
Abstract:
Oilfields under waterflood often face the problem of plugging injectors either by internal filtration or external filter cake built up inside pore throats. The content of suspended solids shall be reduced to required level of filtration since corrective action of plugging is costly expensive. The performance of nutshell filters, where filtration takes place, is good using pecan and walnut shells. Candlenut shells were used instead of pecan and walnut shells since they were abundant in Indonesia, Malaysia, and East Africa. Physical and chemical properties of walnut, pecan, and candlenut shells were tested and the results were compared. Testing, using full-scale nutshell filters, was conducted to determine the oil content, turbidity, and suspended solid removal, which was based on designed flux rate. The performance of candlenut shells, which were deeply bedded in nutshell filters for filtration process, was monitored. Cleaned water outgoing nutshell filters had total suspended solids of 17 ppm, while oil content could be reduced to 15.1 ppm. Turbidity, using candlenut shells, was below the specification for injection water, which was less than 10 Nephelometric Turbidity Unit (NTU). Turbidity of water, outgoing nutshell filter, was ranged from 1.7-5.0 NTU at various dates of operation. Walnut, pecan, and candlenut shells had moisture content of 8.98 wt%, 10.95 wt%, and 9.95 wt%, respectively. The porosity of walnut, pecan, and candlenut shells was significantly affected by moisture content. Candlenut shells had property of toluene solubility of 7.68 wt%, which was much higher than walnut shells, reflecting more crude oil adsorption. The hardness of candlenut shells was 2.5-3 Mohs, which was close to walnut shells’ hardness. It was advantage to guarantee the cleaning filter cake by fluidization process during backwashing.Keywords: candlenut shells, filtration, nutshell filter, pecan shells, walnut shells
Procedia PDF Downloads 110226 Parametric Study of the Structures: Influence of the Shells
Authors: Serikma Mourad, Mezidi Amar
Abstract:
The conception (design) of an earthquake-resistant structure is a complex problem seen the necessity of meeting the requirements of security been imperative by the regulations, and of economy been imperative by the increasing costs of the structures. The resistance of a building in the horizontal actions (shares) is mainly ensured by a mixed brace system; for a concrete building, this system is constituted by frame or shells; or both at the same time. After the earthquake of Boumerdes (May 23; 2003) in Algeria, the studies made by experts, ended in modifications of the Algerian Earthquake-resistant Regulation (AER 99). One of these modifications was to widen the use of shells for the brace system. This modification has create a conflict on the quantities, the positions and the type of the shells at adopt. In the present project, we suggest seeing the effect of the variation of the dimensions, the localization and the conditions of rigidity in extremities of shells. The study will be led on a building (F+5) implanted in zone of seismicity average. To do it, we shall proceed to a classic dynamic study of a structure by using 4 alternatives for shells by varying the lengths and number in order to compare the cost of the structure for 4 dispositions of the shells with a technical-economic study of the brace system by the use of different dispositions of shells and to estimate the quantities of necessary materials (concrete and steel).Keywords: reinforced concrete, mixed brace system, dynamic analysis, beams, shells
Procedia PDF Downloads 325225 Optimization of the Flexural Strength of Biocomposites Samples Reinforced with Resin for Engineering Applications
Authors: Stephen Akong Takim
Abstract:
This study focused on the optimization of the flexural strength of bio-composite samples of palm kernel, whelks, clams, periwinkles shells and bamboo fiber reinforced with resin for engineering applications. The aim of the study was to formulate different samples of bio-composite reinforced with resin for engineering applications and to evaluate the flexural strength of the fabricated composite. The hand lay-up technique was used for the composites produced by incorporating different percentage compositions of the shells/fiber (10%, 15%, 20%, 25% and 30%) into varied proportions of epoxy resin and catalyst. The cured samples, after 24 hours, were subjected to tensile, impact, flexural and water absorption tests. The experiments were conducted using the Taguchi optimization method L25 (5x5) with five design parameters and five level combinations in Minitab 18 statistical software. The results showed that the average value of flexural was 114.87MPa when compared to the unreinforced 72.33MPa bio-composite. The study recommended that agricultural waste, like palm kernel shells, whelk shells, clams, periwinkle shells and bamboo fiber, should be converted into important engineering applications.Keywords: bio-composite, resin, palm kernel shells, welk shells, periwinkle shells, bamboo fiber, Taguchi techniques and engineering application
Procedia PDF Downloads 74224 Modeling Revolution Shell Structures by MATLAB Programming-Axisymmetric and Nonaxisymmetric Shells
Authors: Hamadi Djamal, Labiodh Bachir, Ounis Abdelhafid, Chaalane Mourad
Abstract:
The objective of this work is setting numerically operational finite element CAXI_L for the axisymmetric and nonaxisymmetric shells. This element is based on the Reissner-Mindlin theory and mixed model formulation. The MATLAB language is used for the programming. In order to test the elaborated program, some applications are carried out.Keywords: axisymmetric shells, nonaxisymmetric behaviour, finite element, MATLAB programming
Procedia PDF Downloads 314223 Conversion of Jatropha curcas Oil to Ester Biolubricant Using Solid Catalyst Derived from Saltwater Clam Shell Waste (SCSW)
Authors: Said Nurdin, Fatimah A. Misebah, Rosli M. Yunus, Mohd S. Mahmud, Ahmad Z. Sulaiman
Abstract:
The discarded clam shell waste, fossil and edible oil as biolubricant feedstocks create environmental impacts and food chain dilemma, thus this work aims to circumvent these issues by using activated saltwater clam shell waste (SCSW) as solid catalyst for conversion of Jatropha curcas oil as non-edible sources to ester biolubricant. The characterization of solid catalyst was done by Differential Thermal Analysis-Thermo Gravimetric Analysis (DTA-TGA), X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. The calcined catalyst was used in the transesterification of Jatropha oil to methyl ester as the first step, and the second stage was involved the reaction of Jatropha methyl ester (JME) with trimethylolpropane (TMP) based on the various process parameters. The formated biolubricant was analyzed using the capillary column (DB-5HT) equipped Gas Chromatography (GC). The conversion results of Jatropha oil to ester biolubricant can be found nearly 96.66%, and the maximum distribution composition mainly contains 72.3% of triester (TE).Keywords: conversion, Jatropha curcas oil, ester biolubricant, solid catalyst
Procedia PDF Downloads 368222 Hybrid Nano Material of Ground Egg Shells with Metal Oxide for Lead Removal
Authors: A. Threepanich, S. Youngme, P. Praipipat
Abstract:
Although ground egg shells had the ability to eliminate lead in water, their efficiency may decrease in a case of contaminating of other cations such as Na⁺, Ca²⁺ in the water. The development of ground egg shells may solve this problem in which metal oxides are a good choice for this case since they have the ability to remove any heavy metals including lead in the water. Therefore, this study attempts to use this advantage for improving ground egg shells for the specific lead removal efficiency in the water. X-ray fluorescence (XRF) technique was used for the chemical element contents analysis of ground egg shells (GES) and ground egg shells with metal oxide (GESM), and Transmission electron microscope (TEM) technique was used to examine the material sizes. The batch test studies were designed to investigate the factor effects on dose (5, 10, 15 grams), pH (5, 7, 9), and settling time (1, 3, 5 hours) for the lead removal efficiency in the water. The XRF analysis results showed GES contained calcium (Ca) 91.41% and Silicon (Si) 4.03% and GESM contained calcium (Ca) 91.41%, Silicon (Si) 4.03%, and Iron (Fe) 3.05%. TEM results confirmed the sizes of GES and GESM in the range of 1-20 nm. The batch test studies showed the best optimum conditions for the lead removal in the water of GES and GESM in dose, pH, and settling time were 10 grams, pH 9, 5 hours and 5 grams, pH 9, 3 hours, respectively. The competing ions (Na⁺ and Ca²⁺) study reported GESM had the higher % lead removal efficiency than GES at 90% and 60%, respectively. Therefore, this result can confirm that adding of metal oxide to ground egg shells helps to improve the lead removal efficiency in the water.Keywords: nano material, ground egg shells, metal oxide, lead
Procedia PDF Downloads 135221 Buckling Analysis of Composite Shells under Compression and Torsional Loads: Numerical and Analytical Study
Authors: Güneş Aydın, Razi Kalantari Osgouei, Murat Emre Öztürk, Ahmad Partovi Meran, Ekrem Tüfekçi
Abstract:
Advanced lightweight laminated composite shells are increasingly being used in all types of modern structures, for enhancing their structural efficiency and performance. Such thin-walled structures are susceptible to buckling when subjected to various loading. This paper focuses on the buckling of cylindrical shells under axial compression and torsional loads. Effects of fiber orientation on the maximum buckling load of carbon fiber reinforced polymer (CFRP) shells are optimized. Optimum fiber angles have been calculated analytically by using MATLAB program. Numerical models have been carried out by using Finite Element Method program ABAQUS. Results from analytical and numerical analyses are also compared.Keywords: buckling, composite, cylindrical shell, finite element, compression, torsion, MATLAB, optimization
Procedia PDF Downloads 586220 Active Control of Multiferroic Composite Shells Using 1-3 Piezoelectric Composites
Authors: S. C. Kattimani
Abstract:
This article deals with the analysis of active constrained layer damping (ACLD) of smart multiferroic or magneto-electro-elastic doubly curved shells. The kinematics of deformations of the multiferroic doubly curved shell is described by a layer-wise shear deformation theory. A three-dimensional finite element model of multiferroic shells has been developed taking into account the electro-elastic and magneto-elastic couplings. A simple velocity feedback control law is employed to incorporate the active damping. Influence of layer stacking sequence and boundary conditions on the response of the multiferroic doubly curved shell has been studied. In addition, for the different orientation of the fibers of the constraining layer, the performance of the ACLD treatment has been studied.Keywords: active constrained layer damping (ACLD), doubly curved shells, magneto-electro-elastic, multiferroic composite, smart structures
Procedia PDF Downloads 310219 Nonlinear Free Vibrations of Functionally Graded Cylindrical Shells
Authors: Alexandra Andrade Brandão Soares, Paulo Batista Gonçalves
Abstract:
Using a modal expansion that satisfies the boundary and continuity conditions and expresses the modal couplings characteristic of cylindrical shells in the nonlinear regime, the equations of motion are discretized using the Galerkin method. The resulting algebraic equations are solved by the Newton-Raphson method, thus obtaining the nonlinear frequency-amplitude relation. Finally, a parametric analysis is conducted to study the influence of the geometry of the shell, the gradient of the functional material and vibration modes on the degree and type of nonlinearity of the cylindrical shell, which is the main contribution of this research work.Keywords: cylindrical shells, dynamics, functionally graded material, nonlinear vibrations
Procedia PDF Downloads 64218 Bioremediation of Sea Food Waste in Solid State Fermentation along with Production of Bioactive Agents
Authors: Rahul Warmoota, Aditya Bhardwaj, Steffy Angural, Monika Rana, Sunena Jassal, Neena Puri, Naveen Gupta
Abstract:
Seafood processing generates large volumes of waste products such as skin, heads, tails, shells, scales, backbones, etc. Pollution due to conventional methods of seafood waste disposal causes negative implications on the environment, aquatic life, and human health. Moreover, these waste products can be used for the production of high-value products which are still untapped due to inappropriate management. Paenibacillus sp. AD is known to act on chitinolytic and proteinaceous waste and was explored for its potential to degrade various types of seafood waste in solid-state fermentation. Effective degradation of seafood waste generated from a variety of sources such as fish scales, crab shells, prawn shells, and a mixture of such wastes was observed. 30 to 40 percent degradation in terms of decrease in the mass was achieved. Along with the degradation, chitinolytic and proteolytic enzymes were produced, which can have various biotechnological applications. Apart from this, value-added products such as chitin oligosaccharides and peptides of various degrees of polymerization were also produced, which can be used for various therapeutic purposes. Results indicated that Paenibacillus sp. AD can be used for the development of a process for the infield degradation of seafood waste.Keywords: chitin, chitin-oligosaccharides, chitinase, protease, biodegradation, crab shells, prawn shells, fish scales
Procedia PDF Downloads 97217 Introduction of Microbial Symbiosis in Genus of Tridacna and Kiwaidae with Insights into Aquaculture
Authors: Jincao Guo
Abstract:
Aquaculture plays a significant role in the diet of people in many regions. However, problems such as bioaccumulation have risen with the rapidly growing industry due to a lack of control in the feeding process, which brings uncertainty to the quality of the products. The paper tackles the problem by introducing the symbiosis of the Giant Clam (Tridacna) with photosynthetic algae and Yeti Crab (Kiwaidae) with chemosynthetic bacteria in molecular and developmental details. By combing the knowledge gained from the two models and past studies, innovative ideas such as using mass selection methods to domesticate and farm those symbiotic species, as well as improvements for the current farming methods, such as introducing algae feeding, are discussed. Further studies are needed, but experiments are worth conducting since it increases the variety of choices for consumers and can potentially improve the quality and efficiency of aquaculture.Keywords: the giant clam Tridacna, yeti crab Kiwaidae, autotroph microbes, microbial symbiosis, aquaculture, bivalves, crustaceans, mollusk, photosynthesis, chemosynthesis
Procedia PDF Downloads 71216 Theoretical-Experimental Investigations on Free Vibration of Glass Fiber/Polyester Composite Conical Shells Containing Fluid
Authors: Tran Ich Thinh, Nguyen Manh Cuong
Abstract:
Free vibrations of partial fluid-filled composite truncated conical shells are investigated using the Dynamic Stiffness Method (DSM) or Continuous Element Method (CEM) based on the First Order Shear Deformation Theory (FSDT) and non-viscous incompressible fluid equations. Numerical examples are given for analyzing natural frequencies and harmonic responses of clamped-free conical shells partially and completely filled with fluid. To compare with the theoretical results, detailed experimental results have been obtained on the free vibration of a clamped-free conical shells partially filled with water by using a multi-vibration measuring machine (DEWEBOOK-DASYLab 5.61.10). Three glass fiber/polyester composite truncated cones with the radius of the larger end 285 mm, thickness 2 mm, and the cone lengths along the generators are 285 mm, 427.5 mm and 570 mm with the semi-vertex angles 27, 14 and 9 degrees respectively were used, and the filling ratio of the contained water was 0, 0.25, 0.50, 0.75 and 1.0. The results calculated by proposed computational model for studied composite conical shells are in good agreement with experiments. Obtained results indicate that the fluid filling can reduce significantly the natural frequencies of composite conical shells. Parametric studies including circumferential wave number, fluid depth and cone angles are carried out.Keywords: dynamic stiffness method, experimental study, free vibration, fluid-shell interaction, glass fiber/polyester composite conical shell
Procedia PDF Downloads 496215 Coconut Shells as the Alternative Equipment for Foot Reflexology
Authors: Nichanant Sermsri, Chananchida Yuktirat
Abstract:
This research was the experimental research. Its purpose was to find out how coconut shells can be adapted to be equipment for foot and calf reflexology. The sample group was 58 female street vendors in Thewet Market, Dusit District, Bangkok, selected by selection criteria and voluntary. The data collecting tool in this research was the Visual Analogue Scale. The massaging tool made from coconut shells (designed and produced by the research team) was the key equipment for this research. The duration of the research was 1 month. The research team assessed the level of exhaustion and heart rate among sample group before and after the massage, then analyzed the data by mean, standard deviation and paired sample t-test. We found out from the research that 1) The level of exhaustion decreased 4.529 levels after the massage. The standard deviation was 1.6195. The heart rates went down 11.67 times/minute. The standard deviation was 6.742. 2) The level of exhaustion and heart rate after the massage decreased with the statistically significance at 0.01.Keywords: foot reflexology, massaging plate, coconut shells, ecological sciences
Procedia PDF Downloads 186214 Investigating the Role of Clam Festival for Destination Branding: A Case Study of Tainan Cigu
Authors: Lim Lie Pin, Lin Hui Wen
Abstract:
Rural tourism has become popular in Taiwan, the villages based on agriculture including fishery have to follow the trend to develop the local economy and achieve the sustainable development of the rural areas. Through cultural festivals, the tourist could experience the benefit while promoting and stimulating the local development of rural tourism. Cigu is famous for salt history and abundant natural resources, such as lagoon, black-faced spoonbills and other fishery products. Digging clam has become the most special parent-child activities in Tainan and increasing awareness since it was initiated. Therefore, festival organizers and regional destination marketers need to identify visitors’ experiences attributes which lead to opportunities for industry professionals, community involvement to plan and organize regional festivals and their programmes for effective destination branding finding out more potential rural resources encouraging the local industry growth and sustainable development.Keywords: rural tourism, cultural festival, destination branding, tourist experience, sustainable development
Procedia PDF Downloads 304213 Finite Element Model to Investigate the Dynamic Behavior of Ring-Stiffened Conical Shell Fully and Partially Filled with Fluid
Authors: Mohammadamin Esmaeilzadehazimi, Morteza Shayan Arani, Mohammad Toorani, Aouni Lakis
Abstract:
This study uses a hybrid finite element method to predict the dynamic behavior of both fully and partially-filled truncated conical shells stiffened with ring stiffeners. The method combines classical shell theory and the finite element method, and employs displacement functions derived from exact solutions of Sanders' shell equilibrium equations for conical shells. The shell-fluid interface is analyzed by utilizing the velocity potential, Bernoulli's equation, and impermeability conditions to determine an explicit expression for fluid pressure. The equations of motion presented in this study apply to both conical and cylindrical shells. This study presents the first comparison of the method applied to ring-stiffened shells with other numerical and experimental findings. Vibration frequencies for conical shells with various boundary conditions and geometries in a vacuum and filled with water are compared with experimental and numerical investigations, achieving good agreement. The study thoroughly investigates the influence of geometric parameters, stiffener quantity, semi-vertex cone angle, level of water filled in the cone, and applied boundary conditions on the natural frequency of fluid-loaded ring-stiffened conical shells, and draws some useful conclusions. The primary advantage of the current method is its use of a minimal number of finite elements while achieving highly accurate results.Keywords: finite element method, fluid–structure interaction, conical shell, natural frequency, ring-stiffener
Procedia PDF Downloads 77212 Vibrational Behavior of Cylindrical Shells in Axial Magnetic Field
Authors: Sedrak Vardanyan
Abstract:
The investigation of the vibrational character of magnetic cylindrical shells placed in an axial magnetic field has important practical applications. In this work, we study the vibrational behaviour of such a cylindrical shell by making use of the so-called exact space treatment, which does not assume any hypothesis. We discuss the effects of several practically important boundary conditions on the vibrations of the described setup. We find that, for some cases of boundary conditions, e.g. clamped, simply supported or peripherally earthed, as well as for some values of the wave numbers, the vibrational frequencies of the shell are approximately zero. The theoretical and numerical exploration of this fact confirms that the vibrations are absent or attenuate very rapidly. For all the considered cases, the imaginary part of the frequencies is negative, which implies stability for the vibrational process.Keywords: bending vibrational frequencies, exact space treatment, free vibrations, magnetic cylindrical shells
Procedia PDF Downloads 279211 Analytical Solution for Multi-Segmented Toroidal Shells under Uniform Pressure
Authors: Nosakhare Enoma, Alphose Zingoni
Abstract:
The requirements for various toroidal shell forms are increasing due to new applications, available storage space and the consideration of appearance. Because of the complexity of some of these structural forms, the finite element method is nowadays mainly used for their analysis, even for simple static studies. This paper presents an easy-to-use analytical algorithm for pressurized multi-segmented toroidal shells of revolution. The membrane solution, which acts as a particular solution of the bending-theory equations, is developed based on membrane theory of shells, and a general approach is formulated for quantifying discontinuity effects at the shell junctions using the well-known Geckeler’s approximation. On superimposing these effects, and applying the ensuing solution to the problem of the pressurized toroid with four segments, closed-form stress results are obtained for the entire toroid. A numerical example is carried out using the developed method. The analytical results obtained show excellent agreement with those from the finite element method, indicating that the proposed method can be also used for complementing and verifying FEM results, and providing insights on other related problems.Keywords: bending theory of shells, membrane hypothesis, pressurized toroid, segmented toroidal vessel, shell analysis
Procedia PDF Downloads 320210 Gimbal Structure for the Design of 3D Flywheel System
Authors: Cheng-En Tsai, Chung-Chun Hsiao, Fu-Yuan Chang, Liang-Lun Lan, Jia-Ying Tu
Abstract:
New design of three dimensional (3D) flywheel system based on gimbal and gyro mechanics is proposed. The 3D flywheel device utilizes the rotational motion of three spherical shells and the conservation of angular momentum to achieve planar locomotion. Actuators mounted to the ring-shape frames are installed within the system to drive the spherical shells to rotate, for the purpose of steering and stabilization. Similar to the design of 2D flywheel system, it is expected that the spherical shells may function like a “flyball” to store and supply mechanical energy; additionally, in comparison with typical single-wheel and spherical robots, the 3D flywheel can be used for developing omnidirectional robotic systems with better mobility. The Lagrangian method is applied to derive the equation of motion of the 3D flywheel system, and simulation studies are presented to verify the proposed design.Keywords: Gimbal, spherical robot, gyroscope, Lagrangian formulation, flyball
Procedia PDF Downloads 627209 A Study to Evaluate Some Physical and Mechanical Properties, Relevant in Estimating Energy Requirements in Grinding the Palm Kernel and Coconut Shells
Authors: Saheed O. Akinwale, Olufemi A. Koya
Abstract:
Based on the need to modify palm kernel shell (PKS) and coconut shell (CNS) for some engineering applications, the study evaluated some physical characteristics and fracture resistance, relevant in estimating energy requirements in comminution of the nutshells. The shells, obtained from local processing mills, were washed, sun-dried and sorted to remove kernels, nuts and other extraneous materials. Experiments were then conducted to determine the thickness, density, moisture content, and hardness of the shells. Fracture resistances were characterised by the average compressive load, stiffness and toughness at bio-yield point of specially prepared section of the shells, under quasi-static compression loading. The densities of the dried PKS at 7.12% and the CNS at 6.47% (wb) moisture contents were 1291.20 and 1247.40 kg/m3, respectively. The corresponding Brinnel Hardness Numbers were 58.40 ± 1.91 and 56.33 ± 4.33. Close shells thickness of both PKS and CNS exhibited identical physical properties although; CNS is relatively larger in physical dimensions than PKS. The findings further showed that both shell types exhibited higher resistance with compression along the longitudinal axes than the transverse axes. With compressions along the longitudinal axes, the fracture force were 1.41 ± 0.11 and 3.62 ± 0.09 kN; bio-stiffness; 934.70 ± 67.03 kN/m and 1980.74 ± 8.92 kN/m; and toughness, 2.17 ± 0.16 and 6.51 ± 0.15 KN mm for the PKS and CNS, respectively. With the estimated toughness of CNS higher than that of PKS, the study showed the requirement of higher comminution energy for CNS.Keywords: bio-stiffness, coconut shell, comminution, crushing strength, energy requirement, palm kernel shell, toughness
Procedia PDF Downloads 232208 Shell Lime: An Eco-Friendly and Cost-Efficient Alternative for Agricultural Lime
Authors: Hene L. Hapinat, Mae D. Dumapig
Abstract:
This study aimed to determine the lime potential of 3 mollusks, namely: Crassostrea iredalei (Oyster shell), Turritella terebra (Turret shell), and Anodontia edentula (Mangrove clam shell) as alternative for commercially produced agricultural lime. The hydrogen ion concentration (pH) and the lime concentration using Calcium Carbonate Equivalent (CCE) of each shellfish species were measured and tested for the enhancement of an acidic soil. The experiment was laid out in a Completely Randomized Design (CRD) with 4 treatments replicated 3 times. The treatments were as follows: Treatment A- 100 g agricultural lime; B- 100 g oyster shell lime; C- 100 g turret shell lime; and D- 100 g mangrove clam shell lime. Each treatment was combined to the acidic soil sample. The results were statistically analyzed using One-way Analysis of Variance (ANOVA) and Least Square Difference (LSD) at 0.01 and 0.05 levels of significance. Results revealed that lime produced from the 3 selected mollusks can be a potential source of alternative and/or supplement materials for agricultural lime in dealing with soil acidity, entailing lower cost of farm production.Keywords: shell lime, pH, calcium carbonate concentrations, mollusks, agricultural lime, lime potential concentration, acidic soil
Procedia PDF Downloads 311207 Effects of Beeswax Coating on the Properties of Cocoa Bean Shell Based Papers
Authors: Sri Rejeki, Tamrin Tamrin, RH. F. Faradilla, Muhammad N. Ibrahim, Mariana M., Irnawati Irnawati
Abstract:
Cocoa bean shells, despite their antioxidant and antimicrobial properties, are still considered as an underutilized agricultural waste. The functional properties and their lignocelluloses content make cocoa bean shells a potential material for paper-based food packaging. In our previous research, we have successfully produced papers from cocoa bean shells that had antioxidant and antibacterial activities. However, the hydrophilic nature of the lignocelluloses of cocoa bean shells hinders the application of the paper to be used as a food packaging. In this research, we aimed to study the effects of beeswax coating on the wettability and mechanical properties of the paper. The coating was done by dipping the papers in beeswax solution several times and in three different beeswax concentrations. The number of dipping and beeswax concentration significantly (p<0.05) affected the water contact angle of the papers. Results show that the water contact angle increases dramatically due to the coating treatment. The control paper or uncoated paper had a contact angle of 40.50o, while the contact angle of the best-coated paper (D3B3: 3x dipping, 3g/10mL beeswax) reached 96.93o. Both tensile strength and percent elongation were not significantly (p>0.05) affected by the coating treatment. This showed that beeswax was a potential organic material to improve the hydrophobicity of paper from cocoa bean shells without any undesirable effects on the mechanical properties of the paper.Keywords: cocoa bean shell, paper, beeswax, coating, contact angle
Procedia PDF Downloads 148206 Spawning Induction and Early Larval Development of the Giant Reef Clam Periglypta multicostata (Sowerby, 1835) under Controlled Conditions
Authors: Jose Melena, Rosa Santander, Tanya Gonzalez, Richard Duque, Juan Illanes
Abstract:
Ecuador is one of the countries with the greatest aquatic biodiversity worldwide. In particular, there are at least a dozen native marine species with great aquaculture potential locally. This research concerns one of those species. It has proposed to implement experimental protocols in order to induce spawning and to generate the early larval development of the giant reef clam P. multicostata under controlled conditions. Bioassays were carried out with one adult batch (n= 8) with an average valvar length of 118,4 ± 5,8 mm, which were collected near of the Puerto Santa Rosa (2° 12' 30'' S, 80° 58' 28'' W), Santa Elena Province. During a short acclimation stage, the eight adults of giant reef clam P. multicostata were exposed to thermal stress. Briefly, the experimental protocol for spawning induction was based on the application of 20°C for 1 h and 30°C for 1 h on P. multicostata broodstock at least three consecutive times by one day. After spawning, collected sexual material was released for external fertilization process. After the delivery of gametes, it was achieved 3,25 × 10⁶ viable zygotes. As results, fertilized eggs had 56 µm diameter; while first and second cell divisions were observed to 2,5 h post-fertilization, with individual average length of 68 ± 5 µm and polar body. Latter cell divisions, including gastrula stage, appeared at 9 h post-fertilization, with individual average length of 73 ± 4 µm and trochophore stage at 15 h post-fertilization with individual average length of 75 ± 4 µm. In addition, veliger stage was registered at 20 h post-fertilization with individual average length of 82 ± 6 µm. Umboned larvae appeared at day 8 post-fertilization, with individual average length of 148 ± 6 µm. These pioneering results worldwide can strengthen the local conservation process of the overexploited P. multicostata and to encourage its production for commercial purposes.Keywords: Ecuador, larval development, Periglypta multicostata, spawning induction
Procedia PDF Downloads 136205 Numerical Modelling of Laminated Shells Made of Functionally Graded Elastic and Piezoelectric Materials
Authors: Gennady M. Kulikov, Svetlana V. Plotnikova
Abstract:
This paper focuses on implementation of the sampling surfaces (SaS) method for the three-dimensional (3D) stress analysis of functionally graded (FG) laminated elastic and piezoelectric shells. The SaS formulation is based on choosing inside the nth layer In not equally spaced SaS parallel to the middle surface of the shell in order to introduce the electric potentials and displacements of these surfaces as basic shell variables. Such choice of unknowns permits the presentation of the proposed FG piezoelectric shell formulation in a very compact form. The SaS are located inside each layer at Chebyshev polynomial nodes that improves the convergence of the SaS method significantly. As a result, the SaS formulation can be applied efficiently to 3D solutions for FG piezoelectric laminated shells, which asymptotically approach the exact solutions of piezoelectricity as the number of SaS In goes to infinity.Keywords: electroelasticity, functionally graded material, laminated piezoelectric shell, sampling surfaces method
Procedia PDF Downloads 688204 An Efficient Activated Carbon for Copper (II) Adsorption Synthesized from Indian Gooseberry Seed Shells
Authors: Somen Mondal, Subrata Kumar Majumder
Abstract:
Removal of metal pollutants by efficient activated carbon is challenging research in the present-day scenario. In the present study, the characteristic features of an efficient activated carbon (AC) synthesized from Indian gooseberry seed shells for the copper (II) adsorption are reported. A three-step chemical activation method consisting of the impregnation, carbonization and subsequent activation is used to produce the activated carbon. The copper adsorption kinetics and isotherms onto the activated carbon were analyzed. As per present investigation, Indian gooseberry seed shells showed the BET surface area of 1359 m²/g. The maximum adsorptivity of the activated carbon at a pH value of 9.52 was found to be 44.84 mg/g at 30°C. The adsorption process followed the pseudo-second-order kinetic model along with the Langmuir adsorption isotherm. This AC could be used as a favorable and cost-effective copper (II) adsorbent in wastewater treatment to remove the metal contaminants.Keywords: activated carbon, adsorption isotherm, kinetic model, characterization
Procedia PDF Downloads 160203 Innovation Potential of Palm Kernel Shells from the Littoral Region in Cameroon
Authors: Marcelle Muriel Domkam Tchunkam, Rolin Feudjio
Abstract:
This work investigates the ultrastructure, physicochemical and thermal properties evaluation of Palm Kernel Shells (PKS). PKS Tenera waste samples were obtained from a palm oil mill in Dizangué Sub-Division, Littoral region of Cameroon, while PKS Dura waste samples were collected from the Institute of Agricultural Research for Development (IRAD) of Mbongo. A sodium hydroxide solution was used to wash the shells. They were then rinsed by demineralised water and dried in an oven at 70 °C during 72 hours. They were then grounded and sieved to obtained powders from 0.04 mm to 0.45 mm in size. Transmission Electron Microscopy (TEM) and Surface Electron Microscopy (SEM) were used to characterized powder samples. Chemical compounds and elemental constituents, as well as thermal performance were evaluated by Van Soest Method, TEM/EDXA and SEM/EDS techniques. Thermal characterization was also performed using Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Our results from microstructural analysis revealed that most of the PKS material is made of particles with irregular morphology, mainly amorphous phases of carbon/oxygen with small amounts of Ca, K, and Mg. The DSC data enabled the derivation of the materials’ thermal transition phases and the relevant characteristic temperatures and physical properties. Overall, our data show that PKS have nanopores and show potential in 3D printing and membrane filtration applications.Keywords: DSC, EDXA, palm kernel shells, SEM, TEM
Procedia PDF Downloads 120202 The Innovation of English Materials to Communicate the Identity of Bangpoo, Samut Prakan Province, for Ecotourism
Authors: Kitda Praraththajariya
Abstract:
The main purpose of this research was to study how to communicate the identity of the Mueang district, SamutSongkram province for ecotourism. The qualitative data was collected through studying related materials, exploring the area, in-depth interviews with three groups of people: three directly responsible officers who were key informants of the district, twenty foreign tourists and five Thai tourist guides. A content analysis was used to analyze the qualitative data. The two main findings of the study were as follows: (1) The identity of Amphur (District) Mueang, SamutSongkram province. This establishment was near the Mouth of Maekong River for normal people and tourists, consisting of rest accommodations. There are restaurants where food and drinks are served, rich mangrove forests, Hoy Lod (Razor Clam) and mangrove trees. Don Hoy Lod, is characterized by muddy beaches, is a coastal wetland for Ramsar Site. It is at 1099th ranging where the greatest number of Hoy Lod (Razor Clam) can be seen from March to May each year. (2) The communication of the identity of AmphurMueang, SamutSongkram province which the researcher could find and design to present in English materials can be summed up in 4 items: 1) The history of AmphurMueang, SamutSongkram province 2) WatPhetSamutWorrawihan 3) The Learning source of Ecotourism: Don Hoy Lod and Mangrove forest 4) How to keep AmphurMueang, SamutSongkram province for ecotourism.Keywords: foreigner tourists, signified, semiotics, ecotourism
Procedia PDF Downloads 304201 Optimal Design of Concrete Shells by Modified Particle Community Algorithm Using Spinless Curves
Authors: Reza Abbasi, Ahmad Hamidi Benam
Abstract:
Shell structures have many geometrical variables that modify some of these parameters to improve the mechanical behavior of the shell. On the other hand, the behavior of such structures depends on their geometry rather than on mass. Optimization techniques are useful in finding the geometrical shape of shell structures to improve mechanical behavior, especially to prevent or reduce bending anchors. The overall objective of this research is to optimize the shape of concrete shells using the thickness and height parameters along the reference curve and the overall shape of this curve. To implement the proposed scheme, the geometry of the structure was formulated using nonlinear curves. Shell optimization was performed under equivalent static loading conditions using the modified bird community algorithm. The results of this optimization show that without disrupting the initial design and with slight changes in the shell geometry, the structural behavior is significantly improved.Keywords: concrete shells, shape optimization, spinless curves, modified particle community algorithm
Procedia PDF Downloads 230