Search results for: magnetic anisotropy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1478

Search results for: magnetic anisotropy

158 Resting-State Functional Connectivity Analysis Using an Independent Component Approach

Authors: Eric Jacob Bacon, Chaoyang Jin, Dianning He, Shuaishuai Hu, Lanbo Wang, Han Li, Shouliang Qi

Abstract:

Objective: Refractory epilepsy is a complicated type of epilepsy that can be difficult to diagnose. Recent technological advancements have made resting-state functional magnetic resonance (rsfMRI) a vital technique for studying brain activity. However, there is still much to learn about rsfMRI. Investigating rsfMRI connectivity may aid in the detection of abnormal activities. In this paper, we propose studying the functional connectivity of rsfMRI candidates to diagnose epilepsy. Methods: 45 rsfMRI candidates, comprising 26 with refractory epilepsy and 19 healthy controls, were enrolled in this study. A data-driven approach known as independent component analysis (ICA) was used to achieve our goal. First, rsfMRI data from both patients and healthy controls were analyzed using group ICA. The components that were obtained were then spatially sorted to find and select meaningful ones. A two-sample t-test was also used to identify abnormal networks in patients and healthy controls. Finally, based on the fractional amplitude of low-frequency fluctuations (fALFF), a chi-square statistic test was used to distinguish the network properties of the patient and healthy control groups. Results: The two-sample t-test analysis yielded abnormal in the default mode network, including the left superior temporal lobe and the left supramarginal. The right precuneus was found to be abnormal in the dorsal attention network. In addition, the frontal cortex showed an abnormal cluster in the medial temporal gyrus. In contrast, the temporal cortex showed an abnormal cluster in the right middle temporal gyrus and the right fronto-operculum gyrus. Finally, the chi-square statistic test was significant, producing a p-value of 0.001 for the analysis. Conclusion: This study offers evidence that investigating rsfMRI connectivity provides an excellent diagnosis option for refractory epilepsy.

Keywords: ICA, RSN, refractory epilepsy, rsfMRI

Procedia PDF Downloads 41
157 The Effects of High-frequency rTMS Targeting the Mirror Neurons on Improving Social Awareness in ASD, the Preliminary Analysis of a Pilot Study

Authors: Mitra Assadi, Md. Faan

Abstract:

Background: Autism Spectrum Disorder (ASD) in a common neurodevelopmental disorder with limited pharmacological interventions. Transcranial Magnetic Stimulation (rTMS) has produced promising results in ASD, although there is no consensus regarding optimal targets or stimulation paradigms. A prevailing theory in ASD attributes the core deficits to dysfunction of the mirror neurons located in the inferior parietal lobule (IPL) and inferior frontal gyrus (IFG). Methods: Thus far, 11 subjects with ASD, 10 boys and 1 girl with the mean age of 13.36 years have completed the study by receiving 10 session of high frequency rTMS to the IPL. The subjects were randomized to receive stimulation on the left or right IPL and sham stimulation to the opposite side. The outcome measures included the Social Responsiveness Scale – Second Edition (SRS-2) and Delis-Kaplan Executive Function System (D-KEFS) Verbal Fluency task. Results: None of the 11 subjects experienced any adverse effects. The rTMS did not produce any improvement in verbal fluency, nor there was any statistically significant difference between the right versus left sided stimulation. Analysis of social awareness on SRS-2 (SRS-AWR) indicated a close to significant effect of the treatment with a small to medium effect size. After removing a single subject with Level 3 ASD, we demonstrated a close to significant improvement on SRS-AWR with a large effect size. The analysis of the data 3-month post TMS demonstrated return of the SRS-AWR values to baseline. Conclusion: This preliminary analysis of the 11 subjects who have completed our study thus far shows a favorable response to high frequency rTMS stimulation of the mirror neurons/IPL on social awareness. While the decay of the response noted during the 3-month follow-up may be considered a limitation of rTMS, the presence of the improvement, especially the effect size despite the small sample size, is indicative of the efficacy of this technique.

Keywords: rTMS, autism, scoial cognition, mirror neurons

Procedia PDF Downloads 40
156 Collagen Hydrogels Cross-Linked by Squaric Acid

Authors: Joanna Skopinska-Wisniewska, Anna Bajek, Marta Ziegler-Borowska, Alina Sionkowska

Abstract:

Hydrogels are a class of materials widely used in medicine for many years. Proteins, such as collagen, due to the presence of a large number of functional groups are easily wettable by polar solvents and can create hydrogels. The supramolecular network capable to swelling is created by cross-linking of the biopolymers using various reagents. Many cross-linking agents has been tested for last years, however, researchers still are looking for a new, more secure reactants. Squaric acid, 3,4-dihydroxy 3-cyclobutene 1,2- dione, is a very strong acid, which possess flat and rigid structure. Due to the presence of two carboxyl groups the squaric acid willingly reacts with amino groups of collagen. The main purpose of this study was to investigate the influence of addition of squaric acid on the chemical, physical and biological properties of collagen materials. The collagen type I was extracted from rat tail tendons and 1% solution in 0.1M acetic acid was prepared. The samples were cross-linked by the addition of 5%, 10% and 20% of squaric acid. The mixtures of all reagents were incubated 30 min on magnetic stirrer and then dialyzed against deionized water. The FTIR spectra show that the collagen structure is not changed by cross-linking by squaric acid. Although the mechanical properties of the collagen material deteriorate, the temperature of thermal denaturation of collagen increases after cross-linking, what indicates that the protein network was created. The lyophilized collagen gels exhibit porous structure and the pore size decreases with the higher addition of squaric acid. Also the swelling ability is lower after the cross-linking. The in vitro study demonstrates that the materials are attractive for 3T3 cells. The addition of squaric acid causes formation of cross-ling bonds in the collagen materials and the transparent, stiff hydrogels are obtained. The changes of physicochemical properties of the material are typical for cross-linking process, except mechanical properties – it requires further experiments. However, the results let us to conclude that squaric acid is a suitable cross-linker for protein materials for medicine and tissue engineering.

Keywords: collagen, squaric acid, cross-linking, hydrogel

Procedia PDF Downloads 359
155 Effect of Citric Acid on Hydrogen-Bond Interactions and Tensile Retention Properties of Citric Acid Modified Thermoplastic Starch Biocomposites

Authors: Da-Wei Wang, Liang Yang, Xuan-Long Peng, Mei-Chuan Kuo, Jen-Taut Yeh

Abstract:

The tensile retention and waterproof properties of thermoplastic starch (TPS) resins were significantly enhanced by modifying with proper amounts of citric acid (CA) and by melt-blending with poly(lactic acid) (PLA), although no distinguished chemical reaction occurred between CA and starch molecules. As evidenced by Fourier transform infrared spectroscopy and Solid-state 13C Nuclear Magnetic Resonance analyses, disruption of intra and interhydrogen-bondings within starch molecules did occur during the modification processes of CA modified TPS (i.e. TPS100CAx) specimens. The tensile strength (σf) retention values of TPS specimens reduced rapidly from 27.8 to 20.5 and 0.4 MPa, respectively, as the conditioning time at 20°C/50% relative humidity (RH) increased from 0 to 7 and 70 days, respectively. While the elongation at break (εf) retention values of TPS specimens increased rapidly from 5.9 to 6.5 and 34.8%, respectively, as the conditioning time increased from 0 to 7 and 70 days. After conditioning at 20°C/50% RH for 70 days, the σf and εf retention values of the best prepared (TPS100CA0.1)30PLA70 specimen are equivalent to 85% and 167% of its initial σf and εf values, respectively, and are more than 105 times higher but 48% lower than those of TPS specimens conditioned at 20°C/50% RH for the same amount of time. Demarcated diffraction peaks, new melting endotherms of recrystallized starch crystals and distinguished ductile characteristics with drawn debris were found for many conditioned TPS specimens, however, only slight retrogradation effect and much less drawn debris was found for most conditioned TPS100CAx and/or (TPS100CA0.1)xPLAy specimens. The significantly improved water proof, tensile retention properties and relatively unchanged in retrogradation effect found for most conditioned TPS100CAx and/or (TPS100CA0.1)xPLAy specimens are apparently due to the efficient blocking of the moisture-absorbing hydroxyl groups (free or hydrogen bonded) by hydrogen-bonding CA with starch molecules during their modification processes.

Keywords: thermoplastic starch, hydrogen-bonding, water proof, strength retention

Procedia PDF Downloads 279
154 The Effect of Primary Treatment on Histopathological Patterns and Choice of Neck Dissection in Regional Failure of Nasopharyngeal Carcinoma Patients

Authors: Ralene Sim, Stefan Mueller, N. Gopalakrishna Iyer, Ngian Chye Tan, Khee Chee Soo, R. Shetty Mahalakshmi, Hiang Khoon Tan

Abstract:

Background: Regional failure in nasopharyngeal carcinoma (NPC) is managed by salvage treatment in the form of neck dissection. Radical neck dissection (RND) is preferred over modified radical neck dissection (MRND) since it is traditionally believed to offer better long-term disease control. However, with the advent of more advanced imaging modalities like high-resolution Magnetic Resonance Imaging, Computed Tomography, and Positron Emission Tomography-CT scans, earlier detection is achieved. Additionally, concurrent chemotherapy also contributes to reduced tumour burden. Hence, there may be a lesser need for an RND and a greater role for MRND. With this retrospective study, the primary aim is to ascertain whether MRND, as opposed to RND, has similar outcomes and hence, whether there would be more grounds to offer a less aggressive procedure to achieve lower patient morbidity. Methods: This is a retrospective study of 66 NPC patients treated at Singapore General Hospital between 1994 to 2016 for histologically proven regional recurrence, of which 41 patients underwent RND and 25 who underwent MRND, based on surgeon preference. The type of ND performed, primary treatment mode, adjuvant treatment, and pattern of recurrence were reviewed. Overall survival (OS) was calculated using Kaplan-Meier estimate and compared. Results: Overall, the disease parameters such as nodal involvement and extranodal extension were comparable between the two groups. Comparing MRND and RND, the median (IQR) OS is 1.76 (0.58 to 3.49) and 2.41 (0.78 to 4.11) respectively. However, the p-value found is 0.5301 and hence not statistically significant. Conclusion: RND is more aggressive and has been associated with greater morbidity. Hence, with similar outcomes, MRND could be an alternative salvage procedure for regional failure in selected NPC patients, allowing similar salvage rates with lesser mortality and morbidity.

Keywords: nasopharyngeal carcinoma, neck dissection, modified neck dissection, radical neck dissection

Procedia PDF Downloads 140
153 Tree Resistance to Wind Storm: The Effects of Soil Saturation on Tree Anchorage of Young Pinus pinaster

Authors: P. Defossez, J. M. Bonnefond, D. Garrigou, P. Trichet, F. Danjon

Abstract:

Windstorm damage to European forests has ecological, social and economic consequences of major importance. Most trees during storms are uprooted. While a large amount of work has been done over the last decade on understanding the aerial tree response to turbulent wind flow, much less is known about the root-soil interface, and the impact of soil moisture and root-soil system fatiguing on tree uprooting. Anchorage strength is expected to be reduced by water-logging and heavy rain during storms due to soil strength decrease with soil water content. Our paper is focused on the maritime pine cultivated on sandy soil, as a representative species of the Forêt des Landes, the largest cultivated forest in Europe. This study aims at providing knowledge on the effects of soil saturation on root anchorage. Pulling experiments on trees were performed to characterize the resistance to wind by measuring the critical bending moment (Mc). Pulling tests were performed on 12 maritime pines of 13-years old for two unsaturated soil conditions that represent the soil conditions expected in winter when wind storms occur in France (w=11.46 to 23.34 % gg⁻¹). A magnetic field digitizing technique was used to characterize the three-dimensional architecture of root systems. The soil mechanical properties as function of soil water content were characterized by laboratory mechanical measurements as function of soil water content and soil porosity on remolded samples using direct shear tests at low confining pressure ( < 15 kPa). Remarkably Mc did not depend on w but mainly on the root system morphology. We suggested that the importance of soil water conditions on tree anchorage depends on the tree size. This study gives a new insight on young tree anchorage: roots may sustain by themselves anchorage, whereas adhesion between roots and surrounding soil may be negligible in sandy soil.

Keywords: roots, sandy soil, shear strength, tree anchorage, unsaturated soil

Procedia PDF Downloads 260
152 Design and Synthesis of Fully Benzoxazine-Based Porous Organic Polymer Through Sonogashira Coupling Reaction for CO₂ Capture and Energy Storage Application

Authors: Mohsin Ejaz, Shiao-Wei Kuo

Abstract:

The growing production and exploitation of fossil fuels have placed human society in serious environmental issues. As a result, it's critical to design efficient and eco-friendly energy production and storage techniques. Porous organic polymers (POPs) are multi-dimensional porous network materials developed through the formation of covalent bonds between different organic building blocks that possess distinct geometries and topologies. POPs have tunable porosities and high surface area making them a good candidate for an effective electrode material in energy storage applications. Herein, we prepared a fully benzoxazine-based porous organic polymers (TPA–DHTP–BZ POP) through sonogashira coupling of dihydroxyterephthalaldehyde (DHPT) and triphenylamine (TPA) containing benzoxazine (BZ) monomers. Firstly, both BZ monomers (TPA-BZ-Br and DHTP-BZ-Ea) were synthesized by three steps, including Schiff base, reduction, and mannich condensation reaction. Finally, the TPA–DHTP–BZ POP was prepared through the sonogashira coupling reaction of brominated monomer (TPA-BZ-Br) and ethynyl monomer (DHTP-BZ-Ea). Fourier transform infrared (FTIR) and solid-state nuclear magnetic resonance (NMR) spectroscopy confirmed the successful synthesis of monomers as well as POP. The porosity of TPA–DHTP–BZ POP was investigated by the N₂ absorption technique and showed a Brunauer–Emmett–Teller (BET) surface area of 196 m² g−¹, pore size 2.13 nm and pore volume of 0.54 cm³ g−¹, respectively. The TPA–DHTP–BZ POP experienced thermal ring-opening polymerization, resulting in poly (TPA–DHTP–BZ) POP having strong inter and intramolecular hydrogen bonds formed by phenolic groups and Mannich bridges, thereby enhancing CO₂ capture and supercapacitive performance. The poly(TPA–DHTP–BZ) POP demonstrated a remarkable CO₂ capture of 3.28 mmol g−¹ and a specific capacitance of 67 F g−¹ at 0.5 A g−¹. Thus, poly(TPA–DHTP–BZ) POP could potentially be used for energy storage and CO₂ capture applications.

Keywords: porous organic polymer, benzoxazine, sonogashira coupling, CO₂, supercapacitor

Procedia PDF Downloads 30
151 Design and Development of an Innovative MR Damper Based on Intelligent Active Suspension Control of a Malaysia's Model Vehicle

Authors: L. Wei Sheng, M. T. Noor Syazwanee, C. J. Carolyna, M. Amiruddin, M. Pauziah

Abstract:

This paper exhibits the alternatives towards active suspension systems revised based on the classical passive suspension system to improve comfort and handling performance. An active Magneto rheological (MR) suspension system is proposed as to explore the active based suspension system to enhance performance given its freedom to independently specify the characteristics of load carrying, handling, and ride quality. Malaysian quarter car with two degrees of freedom (2DOF) system is designed and constructed to simulate the actions of an active vehicle suspension system. The structure of a conventional twin-tube shock absorber is modified both internally and externally to comprehend with the active suspension system. The shock absorber peripheral structure is altered to enable the assembling and disassembling of the damper through a non-permanent joint whereby the stress analysis of the designed joint is simulated using Finite Element Analysis. Simulation on the internal part where an electrified copper coil of 24AWG is winded is done using Finite Element Method Magnetics to measure the magnetic flux density inside the MR damper. The primary purpose of this approach is to reduce the vibration transmitted from the effects of road surface irregularities while maintaining solid manoeuvrability. The aim of this research is to develop an intelligent control system of a consecutive damping automotive suspension system. The ride quality is improved by means of the reduction of the vertical body acceleration caused by the car body when it experiences disturbances from speed bump and random road roughness. Findings from this research are expected to enhance the quality of ride which in return can prevent the deteriorating effect of vibration on the vehicle condition as well as the passengers’ well-being.

Keywords: active suspension, FEA, magneto rheological damper, Malaysian quarter car model, vibration control

Procedia PDF Downloads 185
150 Neural Correlates of Attention Bias to Threat during the Emotional Stroop Task in Schizophrenia

Authors: Camellia Al-Ibrahim, Jenny Yiend, Sukhwinder S. Shergill

Abstract:

Background: Attention bias to threat play a role in the development, maintenance, and exacerbation of delusional beliefs in schizophrenia in which patients emphasize the threatening characteristics of stimuli and prioritise them for processing. Cognitive control deficits arise when task-irrelevant emotional information elicits attentional bias and obstruct optimal performance. This study is investigating neural correlates of interference effect of linguistic threat and whether these effects are independent of delusional severity. Methods: Using an event-related functional magnetic resonance imaging (fMRI), neural correlates of interference effect of linguistic threat during the emotional Stroop task were investigated and compared patients with schizophrenia with high (N=17) and low (N=16) paranoid symptoms and healthy controls (N=20). Participants were instructed to identify the font colour of each word presented on the screen as quickly and accurately as possible. Stimuli types vary between threat-relevant, positive and neutral words. Results: Group differences in whole brain effects indicate decreased amygdala activity in patients with high paranoid symptoms compared with low paranoid patients and healthy controls. Regions of interest analysis (ROI) validated our results within the amygdala and investigated changes within the striatum showing a pattern of reduced activation within the clinical group compared to healthy controls. Delusional severity was associated with significant decreased neural activity in the striatum within the clinical group. Conclusion: Our findings suggest that the emotional interference mediated by the amygdala and striatum may reduce responsiveness to threat-related stimuli in schizophrenia and that attenuation of fMRI Blood-oxygen-level dependent (BOLD) signal within these areas might be influenced by the severity of delusional symptoms.

Keywords: attention bias, fMRI, Schizophrenia, Stroop

Procedia PDF Downloads 171
149 Synthesis of Highly Stable Multi-Functional Iron Oxide Nanoparticles for Active Mitochondrial Targeting in Immunotherapy

Authors: Masome Moeni, Roya Abedizadeh, Elham Aram, Hamid Sadeghi-Abandansari, Davood Sabour, Robert Menzel, Ali Hassanpour

Abstract:

Mitochondria- targeting immunogenic cell death inducers (MT-ICD) have been designed to trigger intrinsic apoptosis signalling pathway in malignant cells and revive the antitumour immune system. MT-ICD inducers have considered to be non-specific, which can deteriorate the ability to initiate mitochondria-selective oxidative stress, causing high toxicity. Iron oxide nanoparticles (IONPs) can be an ideal candidate as vehicles for utilizing in immunotherapy due to their biocompatibility, modifiable surface chemistry, magnetic characteristics and multi-functional applications in single platform. These types of NPs can facilitate a real time imaging which can provide an effective strategy to analyse pharmacokinetic parameters of nano-formula, including blood circulation time, targeted and controlled release at tumour microenvironment. To our knowledge, the conjugation of IONPs with MT-ICD and oxaliplatin (a chemotherapeutic agent used for the treatment of colorectal cancer) for immunotherapy have not been investigated. Herein, IONPs were generated via co-precipitation reaction at high temperatures, followed by coating the colloidal suspension with tetraethyl orthosilicate and 3-aminopropyltriethoxysilane to optimize their bio-compatibility, preventing aggregation and maintaining stability at physiological pH, then functionalized with (3-carboxypropyl) triphenyl phosphonium bromide for mitochondrial delivery. Analytical results demonstrated the successful process of IONPs functionalization. In particular, the colloidal particles of doped IONPs exhibited an excellent stability and dispersibility. The resultant particles were also successfully loaded with the oxaliplatin for an active mitochondrial targeting in immunotherapy, resulting in well-maintained super-paramagnetic characteristics and stable structure of the functionalized IONPs with nanoscale particle sizes.

Keywords: Immunotherapy, mitochondria, cancer, iron oxide nanoparticle

Procedia PDF Downloads 53
148 Effectiveness of Office-Based Occupational Therapy for Office Workers with Low Back Pain: A Public Health Approach

Authors: Dina Jalalvand, Joshua A. Cleland

Abstract:

This double-blind, randomized control trial with parallel groups aimed to examine the effectiveness of office-based occupational therapy for office workers with low back pain on the intensity of pain and range of motion. Seventy-two male office workers (age: 20-50 years) with chronic low back pain (more than three months with at least two symptoms of chronic low back pain) satisfied eligibility criteria and agreed to participate in this study. The absence of joint burst following magnetic resonance imagining (MRI) was considered as an important inclusion criterion as well. Subjects were randomly assigned to a control or experimental group. The experimental group received the modified package of exercise-based occupational therapy, which included 11 simple exercise movements (derived from Williams and McKenzie), and the control group just received the conventional therapy, which included their routine physiotherapy sessions. The subjects completed the exercises three times a week for a duration of six weeks. Each exercise session was 10-15 minutes. Pain intensity and range of motion were the primary outcomes and were measured at baseline, 6 weeks, and 12 weeks after the end of the intervention using the numerical rating scale (NRS) and goniometer accordingly. Repeated measure ANOVA was used for analyzing data. The results of this study showed that significant decreases in pain intensity (p ≤ 0.05) and an increase in range of motion (p ≤ 0.001) in the experimental group in comparison with the control group after 6 and 12 weeks of intervention (between-group comparisons). In addition, there was a significant decrease in intensity of the pain (p ≤ 0.05) and an increase (p ≤ 0.001) in range of motion in the intervention group in comparison with baseline after 6 and 12 weeks (within-group comparison). This showed a positive effect of exercise-based occupational therapy that could potentially be used with low cost among office workers who suffer from low back pain. In addition, it should be noted that the introduced package of exercise training is easy to do, and there is not a need for a specific introduction.

Keywords: public health, office workers, low back pain, occupational therapy

Procedia PDF Downloads 194
147 A Radioprotective Effect of Nanoceria (CNPs), Magnetic Flower-Like Iron Oxide Microparticles (FIOMPs), and Vitamins C and E on Irradiated BSA Protein

Authors: Hajar Zarei, AliAkbar Zarenejadatashgah, Vuk Uskoković, Hiroshi Watabe

Abstract:

The reactive oxygen species (ROS) generated by radiation in nuclear diagnostic imaging and radiotherapy could damage the structure of the proteins in noncancerous cells surrounding the tumor. The critical factor in many age-related diseases, such as Alzheimer, Parkinson, or Huntington diseases, is the oxidation of proteins by the ROS as molecular triggers of the given pathologies. Our studies by spectroscopic experiments showed doses close to therapeutic ones (1 to 5 Gy) could lead to changes of secondary and tertiary structures in BSA protein macromolecule as a protein model as well as the aggregation of polypeptide chain but without the fragmentation. For this reason, we investigated the radioprotective effects of natural (vitamin C and E) and synthetic materials (CNPs and FIOMPs) on the structural changes in BSA protein induced by gamma irradiation at a therapeutic dose (3Gy). In the presence of both vitamins and synthetic materials, the spectroscopic studies revealed that irradiated BSA was protected from the structural changes caused by ROS, according to in vitro research. The radioprotective property of CNPs and FIOMPs arises from enzyme mimetic activities (catalase, superoxide dismutase, and peroxidase) and their antioxidant capability against hydroxyl radicals. In the case of FIOMPs, a porous structure also leads to increased ROS recombination with each other in the same radiolytic track and subsequently decreased encounters with BSA. The hydrophilicity of vitamin C resulted in the major scavenging of ROS in the solvent, whereas hydrophobic vitamin E localized on the nonpolar patches of the BSA surface, where it did not only neutralize them thanks to the moderate BSA binding constant but also formed a barrier for diffusing ROS. To the best of our knowledge, there has been a persistent lack of studies investigating the radioactive effect of mentioned materials on proteins. Therefore, the results of our studies can open a new widow for application of these common dietary ingredients and new synthetic NPs in improving the safety of radiotherapy.

Keywords: reactive oxygen species, spectroscopy, bovine serum albumin, gamma radiation, radioprotection

Procedia PDF Downloads 57
146 Assessment of Platelet and Lymphocyte Interaction in Autoimmune Hyperthyroidism

Authors: Małgorzata Tomczyńska, Joanna Saluk-Bijak

Abstract:

Background: Graves’ disease is a frequent organ-specific autoimmune thyroid disease, which characterized by the presence of different kind autoantibodies, that, in most cases, act as agonists of the thyrotropin receptor, leading to hyperthyroidism. Role of platelets and lymphocytes can be modulated in the pathophysiology of thyroid autoimmune diseases. Interference in the physiology of platelets can lead to enhanced activity of these cells. Activated platelets can bind to circulating lymphocytes and to affect lymphocyte adhesion. Platelets and lymphocytes can regulate mutual functions. Therefore, the activation of T lymphocytes, as well as blood platelets, is associated with the development of inflammation and oxidative stress within the target tissue. The present study was performed to investigate a platelet-lymphocyte relation by assessing the degree of their mutual aggregation in whole blood of patients with Graves’ disease. Also, the purpose of this study was to examine the impact of platelet interaction on lymphocyte migration capacity. Methods: 30 patients with Graves’ disease were recruited in the study. The matched 30 healthy subjects were served as the control group. Immunophenotyping of lymphocytes was carried out by flow cytometry method. A CytoSelect™ Cell Migration Assay Kit was used to evaluate lymphocyte migration and adhesion to blood platelets. Visual assessment of lymphocyte-platelet aggregate morphology was done using confocal microscope after magnetic cell isolation by Miltenyi Biotec. Results: The migration and functional responses of lymphocytes to blood platelets were greater in the group of Graves’ disease patients compared with healthy controls. The group of Graves’ disease patients exhibited a reduced T lymphocyte and a higher B cell count compared with controls. Based on microscopic analysis, more platelet-lymphocyte aggregates were found in patients than in control. Conclusions: Studies have shown that in Graves' disease, lymphocytes show increased platelet affinity, more strongly migrating toward them, and forming mutual cellular conglomerates. This may be due to the increased activation of blood platelets in this disease.

Keywords: blood platelets, cell migration, Graves’ disease, lymphocytes, lymphocyte-platelet aggregates

Procedia PDF Downloads 200
145 Diagnosis of Choledocholithiasis with Endosonography

Authors: A. Kachmazova, A. Shadiev, Y. Teterin, P. Yartcev

Abstract:

Introduction: Biliary calculi disease (LCS) still occupies the leading position among urgent diseases of the abdominal cavity, manifesting itself from asymptomatic course to life-threatening states. Nowadays arsenal of diagnostic methods for choledocholithiasis is quite wide: ultrasound, hepatobiliscintigraphy (HBSG), magnetic resonance imaging (MRI), endoscopic retrograde cholangiography (ERCP). Among them, transabdominal ultrasound (TA ultrasound) is the most accessible and routine diagnostic method. Nowadays ERCG is the "gold" standard in diagnosis and one-stage treatment of biliary tract obstruction. However, transpapillary techniques are accompanied by serious postoperative complications (postmanipulative pancreatitis (3-5%), endoscopic papillosphincterotomy bleeding (2%), cholangitis (1%)), the lethality being 0.4%. GBSG and MRI are also quite informative methods in the diagnosis of choledocholithiasis. Small size of concrements, their localization in intrapancreatic and retroduodenal part of common bile duct significantly reduces informativity of all diagnostic methods described above, that demands additional studying of this problem. Materials and Methods: 890 patients with the diagnosis of cholelithiasis (calculous cholecystitis) were admitted to the Sklifosovsky Scientific Research Institute of Hospital Medicine in the period from August, 2020 to June, 2021. Of them 115 people with mechanical jaundice caused by concrements in bile ducts. Results: Final EUS diagnosis was made in all patients (100,0%). In all patients in whom choledocholithiasis diagnosis was revealed or confirmed after EUS, ERCP was performed urgently (within two days from the moment of its detection) as the X-ray operation room was provided; it confirmed the presence of concrements. All stones were removed by lithoextraction using Dormia basket. The postoperative period in these patients had no complications. Conclusions: EUS is the most informative and safe diagnostic method, which allows to detect choledocholithiasis in patients with discrepancies between clinical-laboratory and instrumental methods of diagnosis in shortest time, that in its turn will help to decide promptly on the further tactics of patient treatment. We consider it reasonable to include EUS in the diagnostic algorithm for choledocholithiasis. Disclosure: Nothing to disclose.

Keywords: endoscopic ultrasonography, choledocholithiasis, common bile duct, concrement, ERCP

Procedia PDF Downloads 59
144 Conductivity-Depth Inversion of Large Loop Transient Electromagnetic Sounding Data over Layered Earth Models

Authors: Ravi Ande, Mousumi Hazari

Abstract:

One of the common geophysical techniques for mapping subsurface geo-electrical structures, extensive hydro-geological research, and engineering and environmental geophysics applications is the use of time domain electromagnetic (TDEM)/transient electromagnetic (TEM) soundings. A large transmitter loop for energising the ground and a small receiver loop or magnetometer for recording the transient voltage or magnetic field in the air or on the surface of the earth, with the receiver at the center of the loop or at any random point inside or outside the source loop, make up a large loop TEM system. In general, one can acquire data using one of the configurations with a large loop source, namely, with the receiver at the center point of the loop (central loop method), at an arbitrary in-loop point (in-loop method), coincident with the transmitter loop (coincidence-loop method), and at an arbitrary offset loop point (offset-loop method), respectively. Because of the mathematical simplicity associated with the expressions of EM fields, as compared to the in-loop and offset-loop systems, the central loop system (for ground surveys) and coincident loop system (for ground as well as airborne surveys) have been developed and used extensively for the exploration of mineral and geothermal resources, for mapping contaminated groundwater caused by hazardous waste and thickness of permafrost layer. Because a proper analytical expression for the TEM response over the layered earth model for the large loop TEM system does not exist, the forward problem used in this inversion scheme is first formulated in the frequency domain and then it is transformed in the time domain using Fourier cosine or sine transforms. Using the EMLCLLER algorithm, the forward computation is initially carried out in the frequency domain. As a result, the EMLCLLER modified the forward calculation scheme in NLSTCI to compute frequency domain answers before converting them to the time domain using Fourier Cosine and/or Sine transforms.

Keywords: time domain electromagnetic (TDEM), TEM system, geoelectrical sounding structure, Fourier cosine

Procedia PDF Downloads 63
143 Characterization of the Groundwater Aquifers at El Sadat City by Joint Inversion of VES and TEM Data

Authors: Usama Massoud, Abeer A. Kenawy, El-Said A. Ragab, Abbas M. Abbas, Heba M. El-Kosery

Abstract:

Vertical Electrical Sounding (VES) and Transient Electro Magnetic (TEM) survey have been applied for characterizing the groundwater aquifers at El Sadat industrial area. El-Sadat city is one of the most important industrial cities in Egypt. It has been constructed more than three decades ago at about 80 km northwest of Cairo along the Cairo–Alexandria desert road. Groundwater is the main source of water supplies required for domestic, municipal, and industrial activities in this area due to the lack of surface water sources. So, it is important to maintain this vital resource in order to sustain the development plans of this city. In this study, VES and TEM data were identically measured at 24 stations along three profiles trending NE–SW with the elongation of the study area. The measuring points were arranged in a grid like pattern with both inter-station spacing and line–line distance of about 2 km. After performing the necessary processing steps, the VES and TEM data sets were inverted individually to multi-layer models, followed by a joint inversion of both data sets. Joint inversion process has succeeded to overcome the model-equivalence problem encountered in the inversion of individual data set. Then, the joint models were used for the construction of a number of cross sections and contour maps showing the lateral and vertical distribution of the geo-electrical parameters in the subsurface medium. Interpretation of the obtained results and correlation with the available geological and hydrogeological information revealed TWO aquifer systems in the area. The shallow Pleistocene aquifer consists of sand and gravel saturated with fresh water and exhibits large thickness exceeding 200 m. The deep Pliocene aquifer is composed of clay and sand and shows low resistivity values. The water bearing layer of the Pleistocene aquifer and the upper surface of Pliocene aquifer are continuous and no structural features have cut this continuity through the investigated area.

Keywords: El Sadat city, joint inversion, VES, TEM

Procedia PDF Downloads 339
142 Computational Modelling of Epoxy-Graphene Composite Adhesive towards the Development of Cryosorption Pump

Authors: Ravi Verma

Abstract:

Cryosorption pump is the best solution to achieve clean, vibration free ultra-high vacuum. Furthermore, the operation of cryosorption pump is free from the influence of electric and magnetic fields. Due to these attributes, this pump is used in the space simulation chamber to create the ultra-high vacuum. The cryosorption pump comprises of three parts (a) panel which is cooled with the help of cryogen or cryocooler, (b) an adsorbent which is used to adsorb the gas molecules, (c) an epoxy which holds the adsorbent and the panel together thereby aiding in heat transfer from adsorbent to the panel. The performance of cryosorption pump depends on the temperature of the adsorbent and hence, on the thermal conductivity of the epoxy. Therefore we have made an attempt to increase the thermal conductivity of epoxy adhesive by mixing nano-sized graphene filler particles. The thermal conductivity of epoxy-graphene composite adhesive is measured with the help of indigenously developed experimental setup in the temperature range from 4.5 K to 7 K, which is generally the operating temperature range of cryosorption pump for efficiently pumping of hydrogen and helium gas. In this article, we have presented the experimental results of epoxy-graphene composite adhesive in the temperature range from 4.5 K to 7 K. We have also proposed an analytical heat conduction model to find the thermal conductivity of the composite. In this case, the filler particles, such as graphene, are randomly distributed in a base matrix of epoxy. The developed model considers the complete spatial random distribution of filler particles and this distribution is explained by Binomial distribution. The results obtained by the model have been compared with the experimental results as well as with the other established models. The developed model is able to predict the thermal conductivity in both isotropic regions as well as in anisotropic region over the required temperature range from 4.5 K to 7 K. Due to the non-empirical nature of the proposed model, it will be useful for the prediction of other properties of composite materials involving the filler in a base matrix. The present studies will aid in the understanding of low temperature heat transfer which in turn will be useful towards the development of high performance cryosorption pump.

Keywords: composite adhesive, computational modelling, cryosorption pump, thermal conductivity

Procedia PDF Downloads 64
141 Abridging Pharmaceutical Analysis and Drug Discovery via LC-MS-TOF, NMR, in-silico Toxicity-Bioactivity Profiling for Therapeutic Purposing Zileuton Impurities: Need of Hour

Authors: Saurabh B. Ganorkar, Atul A. Shirkhedkar

Abstract:

The need for investigations protecting against toxic impurities though seems to be a primary requirement; the impurities which may prove non - toxic can be explored for their therapeutic potential if any to assist advanced drug discovery. The essential role of pharmaceutical analysis can thus be extended effectively to achieve it. The present study successfully achieved these objectives with characterization of major degradation products as impurities for Zileuton which has been used for to treat asthma since years. The forced degradation studies were performed to identify the potential degradation products using Ultra-fine Liquid-chromatography. Liquid-chromatography-Mass spectrometry (Time of Flight) and Proton Nuclear Magnetic Resonance Studies were utilized effectively to characterize the drug along with five major oxidative and hydrolytic degradation products (DP’s). The mass fragments were identified for Zileuton and path for the degradation was investigated. The characterized DP’s were subjected to In-Silico studies as XP Molecular Docking to compare the gain or loss in binding affinity with 5-Lipooxygenase enzyme. One of the impurity of was found to have the binding affinity more than the drug itself indicating for its potential to be more bioactive as better Antiasthmatic. The close structural resemblance has the ability to potentiate or reduce bioactivity and or toxicity. The chances of being active biologically at other sites cannot be denied and the same is achieved to some extent by predictions for probability of being active with Prediction of Activity Spectrum for Substances (PASS) The impurities found to be bio-active as Antineoplastic, Antiallergic, and inhibitors of Complement Factor D. The toxicological abilities as Ames-Mutagenicity, Carcinogenicity, Developmental Toxicity and Skin Irritancy were evaluated using Toxicity Prediction by Komputer Assisted Technology (TOPKAT). Two of the impurities were found to be non-toxic as compared to original drug Zileuton. As the drugs are purposed and repurposed effectively the impurities can also be; as they can have more binding affinity; less toxicity and better ability to be bio-active at other biological targets.

Keywords: UFLC, LC-MS-TOF, NMR, Zileuton, impurities, toxicity, bio-activity

Procedia PDF Downloads 168
140 Realization and Characterizations of Conducting Ceramics Based on ZnO Doped by TiO₂, Al₂O₃ and MgO

Authors: Qianying Sun, Abdelhadi Kassiba, Guorong Li

Abstract:

ZnO with wurtzite structure is a well-known semiconducting oxide (SCO), being applied in thermoelectric devices, varistors, gas sensors, transparent electrodes, solar cells, liquid crystal displays, piezoelectric and electro-optical devices. Intrinsically, ZnO is weakly n-type SCO due to native defects (Znⱼ, Vₒ). However, the substitutional doping by metallic elements as (Al, Ti) gives rise to a high n-type conductivity ensured by donor centers. Under CO+N₂ sintering atmosphere, Schottky barriers of ZnO ceramics will be suppressed by lowering the concentration of acceptors at grain boundaries and then inducing a large increase in the Hall mobility, thereby increasing the conductivity. The presented work concerns ZnO based ceramics, which are fabricated with doping by TiO₂ (0.50mol%), Al₂O₃ (0.25mol%) and MgO (1.00mol%) and sintering in different atmospheres (Air (A), N₂ (N), CO+N₂(C)). We obtained uniform, dense ceramics with ZnO as the main phase and Zn₂TiO₄ spinel as a secondary and minor phase. An important increase of the conductivity was shown for the samples A, N, and C which were sintered under different atmospheres. The highest conductivity (σ = 1.52×10⁵ S·m⁻¹) was obtained under the reducing atmosphere (CO). The role of doping was investigated with the aim to identify the local environment and valence states of the doping elements. Thus, Electron paramagnetic spectroscopy (EPR) determines the concentration of defects and the effects of charge carriers in ZnO ceramics as a function of the sintering atmospheres. The relation between conductivity and defects concentration shows the opposite behavior between these parameters suggesting that defects act as traps for charge carriers. For Al ions, nuclear magnetic resonance (NMR) technique was used to identify the involved local coordination of these ions. Beyond the six and forth coordinated Al, an additional NMR signature of ZnO based TCO requires analysis taking into account the grain boundaries and the conductivity through the Knight shift effects. From the thermal evolution of the conductivity as a function of the sintering atmosphere, we succeed in defining the conditions to realize ZnO based TCO ceramics with an important thermal coefficient of resistance (TCR) which is promising for electrical safety of devices.

Keywords: ceramics, conductivity, defects, TCO, ZnO

Procedia PDF Downloads 161
139 Hybrid Nanostructures of Acrylonitrile Copolymers

Authors: A. Sezai Sarac

Abstract:

Acrylonitrile (AN) copolymers with typical comonomers of vinyl acetate (VAc) or methyl acrylate (MA) exhibit better mechanical behaviors than its homopolymer. To increase processability of conjugated polymer, and to obtain a hybrid nano-structure multi-stepped emulsion polymerization was applied. Such products could be used in, i.e., drug-delivery systems, biosensors, gas-sensors, electronic compounds, etc. Incorporation of a number of flexible comonomers weakens the dipolar interactions among CN and thereby decreases melting point or increases decomposition temperatures of the PAN based copolymers. Hence, it is important to consider the effect of comonomer on the properties of PAN-based copolymers. Acrylonitrile vinylacetate (AN–VAc ) copolymers have the significant effect to their thermal behavior and are also of interest as precursors in the production of high strength carbon fibers. AN is copolymerized with one or two comonomers, particularly with vinyl acetate The copolymer of AN and VAc can be used either as a plastic (VAc > 15 wt %) or as microfibers (VAc < 15 wt %). AN provides the copolymer with good processability, electrochemical and thermal stability; VAc provides the mechanical stability. The free radical copolymerization of AN and VAc copolymer and core Shell structure of polyprrole composites,and nanofibers of poly(m-anthranilic acid)/polyacrylonitrile blends were recently studied. Free radical copolymerization of acrylonitrile (AN) – with different comonomers, i.e. acrylates, and styrene was realized using ammonium persulfate (APS) in the presence of a surfactant and in-situ polymerization of conjugated polymers was performed in this reaction medium to obtain core-shell nano particles. Nanofibers of such nanoparticles were obtained by electrospinning. Morphological properties of nanofibers are investigated by scanning electron microscopy (SEM) and atomic force spectroscopy (AFM). Nanofibers are characterized using Fourier Transform Infrared - Attenuated Total Reflectance spectrometer (FTIR-ATR), Nuclear Magnetic Resonance Spectroscopy (1H-NMR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA), and Electrochemical Impedance Spectroscopy. The electrochemical Impedance results of the nanofibers were fitted to an equivalent curcuit by modelling (ECM).

Keywords: core shell nanoparticles, nanofibers, ascrylonitile copolymers, hybrid nanostructures

Procedia PDF Downloads 361
138 Design and Development of Bioactive a-Hydroxy Carboxylate Group Modified MnFe₂O₄ Nanoparticle: Comparative Fluorescence Study, Magnetism and DNA Nuclease Activity

Authors: Indranil Chakraborty, Kalyan Mandal

Abstract:

Three new α-hydroxy carboxylate group functionalized MnFe₂O₄ nanoparticles (NPs) have been developed to explore the microscopic origin of ligand modified fluorescence and magnetic properties of nearly monodispersed MnFe₂O₄ NPs. The surface functionalization has been carried out with three small organic ligands (tartrate, malate, and citrate) having different number of α-hydroxy carboxylate functional group along with steric effect. Detailed study unveils that α-hydroxy carboxylate moiety of the ligands plays key role to generate intrinsic fluorescence in functionalized MnFe₂O₄ NPs through the activation of ligand to metal charge transfer transitions, associated with ligand-Mn²⁺/Fe³⁺ interactions along with d-d transition corresponding to d-orbital energy level splitting of Fe³⁺ ions on NP surface. Further, MnFe₂O₄ NPs show a maximum 140.88% increase in coercivity and 97.95% decrease in magnetization compared to its bare one upon functionalization. The ligands that induce smallest crystal field splitting of d-orbital energy level of transition metal ions are found to result in strongest ferromagnetic activation of the NPs. Finally, our developed tartrate functionalized MnFe₂O₄ (T-MnFe₂O₄) NPs have been utilized for studying DNA binding interaction and nuclease activity for stimulating their beneficial activities toward diverse biomedical applications. The spectroscopic measurements indicate that T-MnFe₂O₄ NPs bind calf thymus DNA by intercalative mode. The ability of T-MnFe₂O₄ NPs to induce DNA cleavage was studied by gel electrophoresis technique where the complex is found to promote the cleavage of pBR322 plasmid DNA from the super coiled form I to linear coiled form II and nicked coiled form III with good efficiency. This may be taken into account for designing new biomolecular detection agents and anti-cancer drug which can open up a new door toward diverse non-invasive biomedical applications.

Keywords: MnFe₂O₄ nanoparticle, α-hydroxy carboxylic acid, comparative fluorescence, magnetism study, DNA interaction, nuclease activity

Procedia PDF Downloads 112
137 Processing and Characterization of Oxide Dispersion Strengthened (ODS) Fe-14Cr-3W-0.5Ti-0.3Y₂O₃ (14YWT) Ferritic Steel

Authors: Farha Mizana Shamsudin, Shahidan Radiman, Yusof Abdullah, Nasri Abdul Hamid

Abstract:

Oxide dispersion strengthened (ODS) ferritic steels are amongst the most promising candidates for large scale structural materials to be applied in next generation fission and fusion nuclear power reactors. This kind of material is relatively stable at high temperature, possess remarkable mechanical properties and comparatively good resistance from neutron radiation damage. The superior performance of ODS ferritic steels over their conventional properties is attributed to the high number density of nano-sized dispersoids that act as nucleation sites and stable sinks for many small helium bubbles resulting from irradiation, and also as pinning points to dislocation movement and grain growth. ODS ferritic steels are usually produced by powder metallurgical routes involving mechanical alloying (MA) process of Y2O3 and pre-alloyed or elemental metallic powders, and then consolidated by hot isostatic pressing (HIP) or hot extrusion (HE) techniques. In this study, Fe-14Cr-3W-0.5Ti-0.3Y₂O₃ (designated as 14YWT) was produced by mechanical alloying process and followed by hot isostatic pressing (HIP) technique. Crystal structure and morphology of this sample were identified and characterized by using X-ray Diffraction (XRD) and field emission scanning electron microscope (FESEM) respectively. The magnetic measurement of this sample at room temperature was carried out by using a vibrating sample magnetometer (VSM). FESEM micrograph revealed a homogeneous microstructure constituted by fine grains of less than 650 nm in size. The ultra-fine dispersoids of size between 5 nm to 19 nm were observed homogeneously distributed within the BCC matrix. The EDS mapping reveals that the dispersoids contain Y-Ti-O nanoclusters and from the magnetization curve plotted by VSM, this sample approaches the behavior of soft ferromagnetic materials. In conclusion, ODS Fe-14Cr-3W-0.5Ti-0.3Y₂O₃ (14YWT) ferritic steel was successfully produced by HIP technique in this present study.

Keywords: hot isostatic pressing, magnetization, microstructure, ODS ferritic steel

Procedia PDF Downloads 289
136 An Advanced Automated Brain Tumor Diagnostics Approach

Authors: Berkan Ural, Arif Eser, Sinan Apaydin

Abstract:

Medical image processing is generally become a challenging task nowadays. Indeed, processing of brain MRI images is one of the difficult parts of this area. This study proposes a hybrid well-defined approach which is consisted from tumor detection, extraction and analyzing steps. This approach is mainly consisted from a computer aided diagnostics system for identifying and detecting the tumor formation in any region of the brain and this system is commonly used for early prediction of brain tumor using advanced image processing and probabilistic neural network methods, respectively. For this approach, generally, some advanced noise removal functions, image processing methods such as automatic segmentation and morphological operations are used to detect the brain tumor boundaries and to obtain the important feature parameters of the tumor region. All stages of the approach are done specifically with using MATLAB software. Generally, for this approach, firstly tumor is successfully detected and the tumor area is contoured with a specific colored circle by the computer aided diagnostics program. Then, the tumor is segmented and some morphological processes are achieved to increase the visibility of the tumor area. Moreover, while this process continues, the tumor area and important shape based features are also calculated. Finally, with using the probabilistic neural network method and with using some advanced classification steps, tumor area and the type of the tumor are clearly obtained. Also, the future aim of this study is to detect the severity of lesions through classes of brain tumor which is achieved through advanced multi classification and neural network stages and creating a user friendly environment using GUI in MATLAB. In the experimental part of the study, generally, 100 images are used to train the diagnostics system and 100 out of sample images are also used to test and to check the whole results. The preliminary results demonstrate the high classification accuracy for the neural network structure. Finally, according to the results, this situation also motivates us to extend this framework to detect and localize the tumors in the other organs.

Keywords: image processing algorithms, magnetic resonance imaging, neural network, pattern recognition

Procedia PDF Downloads 384
135 Chemical Characterization, Crystallography and Acute Toxicity Evaluation of Two Boronic-Carbohydrate Adducts

Authors: Héctor González Espinosa, Ricardo Ivan Cordova Chávez, Alejandra Contreras Ramos, Itzia Irene Padilla Martínez, José Guadalupe Trujillo Ferrara, Marvin Antonio Soriano Ursúa

Abstract:

Boronic acids are able to create diester bonds with carbohydrates because of their hydroxyl groups; in nature, there are some organoborates with these characteristics, such as the calcium fructoborate, formed by the union of two fructose molecules and a boron atom, synthesized by plants. In addition, it has been observed that, in animal cells only the compounds with cis-diol functional groups are capable of linking to boric or boronic acids. The formation of these organoboron compounds could impair the physical and chemical properties of the precursors, even their acute toxicity. In this project, two carbohydrate-derived boron-containing compounds from D-fructose and D-arabinose and phenylboronic acid are analyzed by different spectroscopy techniques such as Raman, Infrared with Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance (NMR) and X-ray diffraction crystallography to describe their chemical characteristics. Also, an acute toxicity test was performed to determine their LD50 using the Lorke’s method. It was confirmed by multiple spectra the formation of the adducts by the generation of the diester bonds with a β-D-pyranose of fructose and arabinose. The most prominent findings were the presence of signals corresponding to the formation of new bonds, like the stretching of B-O bonds, or the absence of signals of functional groups like the hydroxyls presented in the reagents used for the synthesis of the adducts. The NMR spectra yielded information about the stereoselectivity in the synthesis reaction, observed by the interaction of the protons and their vicinal atoms in the anomeric and second position carbons; but also, the absence of a racemic mix by the finding of just one signal in the range for the anomeric carbon in the 13C NMR spectra of both adducts. The acute toxicity tests by the Lorke’s method showed that the LD50 value for both compounds is 1265 mg/kg. Those results let us to propose these adducts as highly safe agents for further biological evaluation with medical purposes.

Keywords: acute toxicity, adduct, boron, carbohydrate, diester bond

Procedia PDF Downloads 26
134 Elastic Behaviour of Graphene Nanoplatelets Reinforced Epoxy Resin Composites

Authors: V. K. Srivastava

Abstract:

Graphene has recently attracted an increasing attention in nanocomposites applications because it has 200 times greater strength than steel, making it the strongest material ever tested. Graphene, as the fundamental two-dimensional (2D) carbon structure with exceptionally high crystal and electronic quality, has emerged as a rapidly rising star in the field of material science. Graphene, as defined, as a 2D crystal, is composed of monolayers of carbon atoms arranged in a honeycombed network with six-membered rings, which is the interest of both theoretical and experimental researchers worldwide. The name comes from graphite and alkene. Graphite itself consists of many graphite-sheets stacked together by weak van der Waals forces. This is attributed to the monolayer of carbon atoms densely packed into honeycomb structure. Due to superior inherent properties of graphene nanoplatelets (GnP) over other nanofillers, GnP particles were added in epoxy resin with the variation of weight percentage. It is indicated that the DMA results of storage modulus, loss modulus and tan δ, defined as the ratio of elastic modulus and imaginary (loss) modulus versus temperature were affected with addition of GnP in the epoxy resin. In epoxy resin, damping (tan δ) is usually caused by movement of the molecular chain. The tan δ of the graphene nanoplatelets/epoxy resin composite is much lower than that of epoxy resin alone. This finding suggests that addition of graphene nanoplatelets effectively impedes movement of the molecular chain. The decrease in storage modulus can be interpreted by an increasing susceptibility to agglomeration, leading to less energy dissipation in the system under viscoelastic deformation. The results indicates the tan δ increased with the increase of temperature, which confirms that tan δ is associated with magnetic field strength. Also, the results show that the nanohardness increases with increase of elastic modulus marginally. GnP filled epoxy resin gives higher value than the epoxy resin, because GnP improves the mechanical properties of epoxy resin. Debonding of GnP is clearly observed in the micrograph having agglomeration of fillers and inhomogeneous distribution. Therefore, DMA and nanohardness studies indiacte that the elastic modulus of epoxy resin is increased with the addition of GnP fillers.

Keywords: agglomeration, elastic modulus, epoxy resin, graphene nanoplatelet, loss modulus, nanohardness, storage modulus

Procedia PDF Downloads 243
133 Ultrasensitive Detection and Discrimination of Cancer-Related Single Nucleotide Polymorphisms Using Poly-Enzyme Polymer Bead Amplification

Authors: Lorico D. S. Lapitan Jr., Yihan Xu, Yuan Guo, Dejian Zhou

Abstract:

The ability of ultrasensitive detection of specific genes and discrimination of single nucleotide polymorphisms is important for clinical diagnosis and biomedical research. Herein, we report the development of a new ultrasensitive approach for label-free DNA detection using magnetic nanoparticle (MNP) assisted rapid target capture/separation in combination with signal amplification using poly-enzyme tagged polymer nanobead. The sensor uses an MNP linked capture DNA and a biotin modified signal DNA to sandwich bind the target followed by ligation to provide high single-nucleotide polymorphism discrimination. Only the presence of a perfect match target DNA yields a covalent linkage between the capture and signal DNAs for subsequent conjugation of a neutravidin-modified horseradish peroxidase (HRP) enzyme through the strong biotin-nuetravidin interaction. This converts each captured DNA target into an HRP which can convert millions of copies of a non-fluorescent substrate (amplex red) to a highly fluorescent product (resorufin), for great signal amplification. The use of polymer nanobead each tagged with thousands of copies of HRPs as the signal amplifier greatly improves the signal amplification power, leading to greatly improved sensitivity. We show our biosensing approach can specifically detect an unlabeled DNA target down to 10 aM with a wide dynamic range of 5 orders of magnitude (from 0.001 fM to 100.0 fM). Furthermore, our approach has a high discrimination between a perfectly matched gene and its cancer-related single-base mismatch targets (SNPs): It can positively detect the perfect match DNA target even in the presence of 100 fold excess of co-existing SNPs. This sensing approach also works robustly in clinical relevant media (e.g. 10% human serum) and gives almost the same SNP discrimination ratio as that in clean buffers. Therefore, this ultrasensitive SNP biosensor appears to be well-suited for potential diagnostic applications of genetic diseases.

Keywords: DNA detection, polymer beads, signal amplification, single nucleotide polymorphisms

Procedia PDF Downloads 229
132 Synthesis and Two-Photon Polymerization of a Cytocompatibility Tyramine Functionalized Hyaluronic Acid Hydrogel That Mimics the Chemical, Mechanical, and Structural Characteristics of Spinal Cord Tissue

Authors: James Britton, Vijaya Krishna, Manus Biggs, Abhay Pandit

Abstract:

Regeneration of the spinal cord after injury remains a great challenge due to the complexity of this organ. Inflammation and gliosis at the injury site hinder the outgrowth of axons and hence prevent synaptic reconnection and reinnervation. Hyaluronic acid (HA) is the main component of the spinal cord extracellular matrix and plays a vital role in cell proliferation and axonal guidance. In this study, we have synthesized and characterized a photo-cross-linkable HA-tyramine (tyr) hydrogel from a chemical, mechanical, electrical, biological and structural perspective. From our experimentation, we have found that HA-tyr can be synthesized with controllable degrees of tyramine substitution using click chemistry. The complex modulus (G*) of HA-tyr can be tuned to mimic the mechanical properties of the native spinal cord via optimization of the photo-initiator concentration and UV exposure. We have examined the degree of tyramine-tyramine covalent bonding (polymerization) as a function of UV exposure and photo-initiator use via Photo and Nuclear magnetic resonance spectroscopy. Both swelling and enzymatic degradation assays were conducted to examine the resilience of our 3D printed hydrogel constructs in-vitro. Using a femtosecond 780nm laser, the two-photon polymerization of HA-tyr hydrogel in the presence of riboflavin photoinitiator was optimized. A laser power of 50mW and scan speed of 30,000 μm/s produced high-resolution spatial patterning within the hydrogel with sustained mechanical integrity. Using dorsal root ganglion explants, the cytocompatibility of photo-crosslinked HA-tyr was assessed. Using potentiometry, the electrical conductivity of photo-crosslinked HA-tyr was assessed and compared to that of native spinal cord tissue as a function of frequency. In conclusion, we have developed a biocompatible hydrogel that can be used for photolithographic 3D printing to fabricate tissue engineered constructs for neural tissue regeneration applications.

Keywords: 3D printing, hyaluronic acid, photolithography, spinal cord injury

Procedia PDF Downloads 131
131 Diagnostic Accuracy in the Detection of Cervical Lymph Node Metastases in Head and Neck Squamous Cell Carcinoma Patients: A Comparison of Sonography, CT, PET/CT and MRI

Authors: Di Luo, Maria Buchberger, Anja Pickhard

Abstract:

Objectives: The purpose of this study was to assess and compare the diagnostic accuracy of four common morphological approaches, including sonography, computed tomography (CT), positron emission tomography/computed tomography (PET/CT), and magnetic resonance imaging (MRI) for the evaluation of cervical lymph node metastases in head and neck squamous cell carcinoma (HNSCC) patients. Material and Methods: Included in this retrospective study were 26 patients diagnosed with HNSCC between 2010 and 2011 who all underwent sonography, CT, PET/CT, and MRI imaging before neck dissection. Morphological data were compared to the corresponding histopathological results. Statistical analysis was performed with SPSS statistic software (version 26.0), calculating sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for detection of cervical lymph node metastases. Results: The 5-year survival rate of the patient collective was 55.5%.Risk factors for survival included initial primary tumor stage, initial lymph node stage, initial metastasis status, and therapeutic approaches. Cox regression showed initial metastasis status(HR 8.671, 95%CI 1.316-57.123, p=0.025) and therapeutic approaches(HR 6.699, 95%CI 1.746-25.700, p=0.006)to be independent predictive risk factors for survival. Sensitivity was highest for MRI (96% compared to 85% for sonography and 89% for CT and PET/CT). Specificity was comparable with 95 % for CT and 98 % for sonography and PET/CT, but only 68% for MRI. While the MRI showed the least PPV (34%) compared to all other methods (85% for sonography,75% for CT, and 86% for PET/CT), the NPV was comparable in all methods(98-99%). The overall accuracy of cervical lymph node metastases detection was comparable for sonography, CT, and PET/CT with 96%,97%,94%, respectively, while MRI had only 72% accuracy. Conclusion: Since the initial status of metastasis is an independent predictive risk factor for patients’ survival, efficient detection is crucial to plan adequate therapeutic approaches. Sonography, CT, and PET/CT have better diagnostic accuracy than MRI for the evaluation of cervical lymph node metastases in HNSCC patients.

Keywords: cervical lymph node metastases, diagnostic accuracy, head and neck squamous carcinoma, risk factors, survival

Procedia PDF Downloads 105
130 Extensive Cerebral Venous Thrombosis after Resection of Third Ventricle Colloid Cyst

Authors: Naim Izet Kajtazi

Abstract:

Context: The third ventricle colloid cyst (CC) is a benign growth usually located in the third ventricle and can cause various neurological symptoms, including sudden death. Modern surgical interventions may still result in a wide range of complications and cerebral venous thrombosis (CVT) is among them. Process: A 38-year-old female with an existing diagnosis of diabetes mellitus (DM) and hypothyroidism and a six-month history of headaches, blurred vision, and vomiting presented to our clinic three days after the headaches became excessively severe. Neurological examination on admission revealed bilateral papilledema without any associated focal neurological deficits. Brain computed tomography (CT) and magnetic resonance imaging (MRI) confirmed the presence of a third ventricle colloid cyst and associated non-communicating hydrocephalus involving the lateral ventricles. As a result, the patient underwent emergency bilateral external ventricular drainage (EVD) insertion followed by a third ventricular CC excision under neuronavigation through a right frontal craniotomy. Twelve days post-operatively, the patient developed further headaches, followed by a generalized tonic-clonic seizure that led to no postictal neurological deficits. Nonetheless, computed tomography venography of the brain revealed extensive thrombosis of the superior sagittal sinus, inferior sagittal sinus, right sigmoid sinus, and right internal jugular vein. A newly diagnosed CVT was treated with intravenous heparin. The patient was discharged with warfarin, which was discontinued after 12 months. Ten years after her illness, she remained stable and free from any neurological deficits but still suffered from mild chronic headaches. Outcome: Ten years after her illness, she remained stable and free from any neurological deficits but still suffered from mild chronic headaches. Relevance: A preoperative venous study should be performed in all cases to gain a better understanding of the venous anatomy. We advocate meticulous microsurgical techniques to protect the venous system surrounding the foramen of Monro and reduce the amount of retraction during surgery.

Keywords: CVT, seizures, third ventricle colloid cyst, MRI of brain

Procedia PDF Downloads 41
129 Exploration of Hydrocarbon Unconventional Accumulations in the Argillaceous Formation of the Autochthonous Miocene Succession in the Carpathian Foredeep

Authors: Wojciech Górecki, Anna Sowiżdżał, Grzegorz Machowski, Tomasz Maćkowski, Bartosz Papiernik, Michał Stefaniuk

Abstract:

The article shows results of the project which aims at evaluating possibilities of effective development and exploitation of natural gas from argillaceous series of the Autochthonous Miocene in the Carpathian Foredeep. To achieve the objective, the research team develop a world-trend based but unique methodology of processing and interpretation, adjusted to data, local variations and petroleum characteristics of the area. In order to determine the zones in which maximum volumes of hydrocarbons might have been generated and preserved as shale gas reservoirs, as well as to identify the most preferable well sites where largest gas accumulations are anticipated a number of task were accomplished. Evaluation of petrophysical properties and hydrocarbon saturation of the Miocene complex is based on laboratory measurements as well as interpretation of well-logs and archival data. The studies apply mercury porosimetry (MICP), micro CT and nuclear magnetic resonance imaging (using the Rock Core Analyzer). For prospective location (e.g. central part of Carpathian Foredeep – Brzesko-Wojnicz area) reprocessing and reinterpretation of detailed seismic survey data with the use of integrated geophysical investigations has been made. Construction of quantitative, structural and parametric models for selected areas of the Carpathian Foredeep is performed on the basis of integrated, detailed 3D computer models. Modeling are carried on with the Schlumberger’s Petrel software. Finally, prospective zones are spatially contoured in a form of regional 3D grid, which will be framework for generation modelling and comprehensive parametric mapping, allowing for spatial identification of the most prospective zones of unconventional gas accumulation in the Carpathian Foredeep. Preliminary results of research works indicate a potentially prospective area for occurrence of unconventional gas accumulations in the Polish part of Carpathian Foredeep.

Keywords: autochthonous Miocene, Carpathian foredeep, Poland, shale gas

Procedia PDF Downloads 199