Search results for: leading edge vortex
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3740

Search results for: leading edge vortex

3650 Triggering Supersonic Boundary-Layer Instability by Small-Scale Vortex Shedding

Authors: Guohua Tu, Zhi Fu, Zhiwei Hu, Neil D Sandham, Jianqiang Chen

Abstract:

Tripping of boundary-layers from laminar to turbulent flow, which may be necessary in specific practical applications, requires high amplitude disturbances to be introduced into the boundary layers without large drag penalties. As a possible improvement on fixed trip devices, a technique based on vortex shedding for enhancing supersonic flow transition is demonstrated in the present paper for a Mach 1.5 boundary layer. The compressible Navier-Stokes equations are solved directly using a high-order (fifth-order in space and third-order in time) finite difference method for small-scale cylinders suspended transversely near the wall. For cylinders with proper diameter and mount location, asymmetry vortices shed within the boundary layer are capable of tripping laminar-turbulent transition. Full three-dimensional simulations showed that transition was enhanced. A parametric study of the size and mounting location of the cylinder is carried out to identify the most effective setup. It is also found that the vortex shedding can be suppressed by some factors such as wall effect.

Keywords: boundary layer instability, boundary layer transition, vortex shedding, supersonic flows, flow control

Procedia PDF Downloads 337
3649 The Reliability Analysis of Concrete Chimneys Due to Random Vortex Shedding

Authors: Saba Rahman, Arvind K. Jain, S. D. Bharti, T. K. Datta

Abstract:

Chimneys are generally tall and slender structures with circular cross-sections, due to which they are highly prone to wind forces. Wind exerts pressure on the wall of the chimneys, which produces unwanted forces. Vortex-induced oscillation is one of such excitations which can lead to the failure of the chimneys. Therefore, vortex-induced oscillation of chimneys is of great concern to researchers and practitioners since many failures of chimneys due to vortex shedding have occurred in the past. As a consequence, extensive research has taken place on the subject over decades. Many laboratory experiments have been performed to verify the theoretical models proposed to predict vortex-induced forces, including aero-elastic effects. Comparatively, very few proto-type measurement data have been recorded to verify the proposed theoretical models. Because of this reason, the theoretical models developed with the help of experimental laboratory data are utilized for analyzing the chimneys for vortex-induced forces. This calls for reliability analysis of the predictions of the responses of the chimneys produced due to vortex shedding phenomena. Although several works of literature exist on the vortex-induced oscillation of chimneys, including code provisions, the reliability analysis of chimneys against failure caused due to vortex shedding is scanty. In the present study, the reliability analysis of chimneys against vortex shedding failure is presented, assuming the uncertainty in vortex shedding phenomena to be significantly more than other uncertainties, and hence, the latter is ignored. The vortex shedding is modeled as a stationary random process and is represented by a power spectral density function (PSDF). It is assumed that the vortex shedding forces are perfectly correlated and act over the top one-third height of the chimney. The PSDF of the tip displacement of the chimney is obtained by performing a frequency domain spectral analysis using a matrix approach. For this purpose, both chimney and random wind forces are discretized over a number of points along with the height of the chimney. The method of analysis duly accounts for the aero-elastic effects. The double barrier threshold crossing level, as proposed by Vanmarcke, is used for determining the probability of crossing different threshold levels of the tip displacement of the chimney. Assuming the annual distribution of the mean wind velocity to be a Gumbel type-I distribution, the fragility curve denoting the variation of the annual probability of threshold crossing against different threshold levels of the tip displacement of the chimney is determined. The reliability estimate is derived from the fragility curve. A 210m tall concrete chimney with a base diameter of 35m, top diameter as 21m, and thickness as 0.3m has been taken as an illustrative example. The terrain condition is assumed to be that corresponding to the city center. The expression for the PSDF of the vortex shedding force is taken to be used by Vickery and Basu. The results of the study show that the threshold crossing reliability of the tip displacement of the chimney is significantly influenced by the assumed structural damping and the Gumbel distribution parameters. Further, the aero-elastic effect influences the reliability estimate to a great extent for small structural damping.

Keywords: chimney, fragility curve, reliability analysis, vortex-induced vibration

Procedia PDF Downloads 132
3648 Aerodynamic Study of an Open Window Moving Bus with Passengers

Authors: Pawan Kumar Pant, Bhanu Gupta, S. R. Kale, S. V. Veeravalli

Abstract:

In many countries, buses are the principal means of transport, of which a majority are naturally ventilated with open windows. The design of this ventilation has little scientific basis and to address this problem a study has been undertaken involving both experiments and numerical simulations. The flow pattern inside and around of an open window bus with passengers has been investigated in detail. A full scale three-dimensional numerical simulation has been used for a) a bus with closed windows and b) with open windows. In either simulation, the bus had 58 seated passengers. The bus dimensions used were 2500 mm wide × 2500 mm high (exterior) × 10500 mm long and its speed was set at 40 km/h. In both cases, the flow separates at the top front edge forming a vortex and reattaches close to the mid-length. This attached flow separates once more as it leaves the bus. However, the strength and shape of the vortices at the top front and wake region is different for both cases. The streamline pattern around the bus is also different for the two cases. For the bus with open windows, the dominant airflow inside the bus is from the rear to the front of the bus and air velocity at the face level of the passengers was found to be 1/10th of the free stream velocity. These findings are in good agreement with flow visualization experiments performed in a water channel at 10 m/s, and with smoke/tuft visualizations in a wind tunnel with a free-stream velocity of approximately 40 km/h on a 1:25 scaled Perspex model.

Keywords: air flow, moving bus, open windows, vortex, wind tunnel

Procedia PDF Downloads 198
3647 LaPEA: Language for Preprocessing of Edge Applications in Smart Factory

Authors: Masaki Sakai, Tsuyoshi Nakajima, Kazuya Takahashi

Abstract:

In order to improve the productivity of a factory, it is often the case to create an inference model by collecting and analyzing operational data off-line and then to develop an edge application (EAP) that evaluates the quality of the products or diagnoses machine faults in real-time. To accelerate this development cycle, an edge application framework for the smart factory is proposed, which enables to create and modify EAPs based on prepared inference models. In the framework, the preprocessing component is the key part to make it work. This paper proposes a language for preprocessing of edge applications, called LaPEA, which can flexibly process several sensor data from machines into explanatory variables for an inference model, and proves that it meets the requirements for the preprocessing.

Keywords: edge application framework, edgecross, preprocessing language, smart factory

Procedia PDF Downloads 119
3646 Effects of Viscous and Pressure Forces in Vortex and Wake Induced Vibrations

Authors: Ravi Chaithanya Mysa, Abouzar Kaboudian, Boo Cheong Khoo, Rajeev Kumar Jaiman

Abstract:

Cross-flow vortex-induced vibrations of a circular cylinder are compared with the wake-induced oscillations of the downstream cylinder of a tandem cylinder arrangement. It is known that the synchronization of the frequency of vortex shedding with the natural frequency of the structure leads to large amplitude motions. In the case of tandem cylinders, the large amplitudes of the downstream cylinder found are compared to single cylinder setup. In this work, in the tandem arrangement, the upstream cylinder is fixed and the downstream cylinder is free to oscillate in transverse direction. We show that the wake from the upstream cylinder interacts with the downstream cylinder which influences the response of the coupled system. Extensive numerical experiments have been performed on single cylinder as well as tandem cylinder arrangements in cross-flow. Here, the wake interactions in connection to the forces generated are systematically studied. The ratio of the viscous loads to the pressure loads is found to play a major role in the displacement response of the single and tandem cylinder arrangements, as the viscous forces dissipate the energy.

Keywords: circular cylinder, vortex-shedding, VIV, wake-induced, vibrations

Procedia PDF Downloads 336
3645 Analysis of Aerodynamic Forces Acting on a Train Passing Through a Tornado

Authors: Masahiro Suzuki, Nobuyuki Okura

Abstract:

The crosswind effect on ground transportations has been extensively investigated for decades. The effect of tornado, however, has been hardly studied in spite of the fact that even heavy ground vehicles, namely, trains were overturned by tornadoes with casualties in the past. Therefore, aerodynamic effects of the tornado on the train were studied by several approaches in this study. First, an experimental facility was developed to clarify aerodynamic forces acting on a vehicle running through a tornado. Our experimental set-up consists of two apparatus. One is a tornado simulator, and the other is a moving model rig. PIV measurements showed that the tornado simulator can generate a swirling-flow field similar to those of the natural tornadoes. The flow field has the maximum tangential velocity of 7.4 m/s and the vortex core radius of 96 mm. The moving model rig makes a 1/40 scale model train of single-car/three-car unit run thorough the swirling flow with the maximum speed of 4.3 m/s. The model car has 72 pressure ports on its surface to estimate the aerodynamic forces. The experimental results show that the aerodynamic forces vary its magnitude and direction depends on the location of the vehicle in the flow field. Second, the aerodynamic forces on the train were estimated by using Rankin vortex model. The Rankin vortex model is a simple tornado model which widely used in the field of civil engineering. The estimated aerodynamic forces on the middle car were fairly good agreement with the experimental results. Effects of the vortex core radius and the path of the train on the aerodynamic forces were investigated using the Rankin vortex model. The results shows that the side and lift forces increases as the vortex core radius increases, while the yawing moment is maximum when the core radius is 0.3875 times of the car length. Third, a computational simulation was conducted to clarify the flow field around the train. The simulated results qualitatively agreed with the experimental ones.

Keywords: aerodynamic force, experimental method, tornado, train

Procedia PDF Downloads 207
3644 Comparative Analysis of Edge Detection Techniques for Extracting Characters

Authors: Rana Gill, Chandandeep Kaur

Abstract:

Segmentation of images can be implemented using different fundamental algorithms like edge detection (discontinuity based segmentation), region growing (similarity based segmentation), iterative thresholding method. A comprehensive literature review relevant to the study gives description of different techniques for vehicle number plate detection and edge detection techniques widely used on different types of images. This research work is based on edge detection techniques and calculating threshold on the basis of five edge operators. Five operators used are Prewitt, Roberts, Sobel, LoG and Canny. Segmentation of characters present in different type of images like vehicle number plate, name plate of house and characters on different sign boards are selected as a case study in this work. The proposed methodology has seven stages. The proposed system has been implemented using MATLAB R2010a. Comparison of all the five operators has been done on the basis of their performance. From the results it is found that Canny operators produce best results among the used operators and performance of different edge operators in decreasing order is: Canny>Log>Sobel>Prewitt>Roberts.

Keywords: segmentation, edge detection, text, extracting characters

Procedia PDF Downloads 405
3643 Third Super-Harmonic Resonance in Vortex-Induced Vibration of a Pipeline Close to the Seabed

Authors: Yiming Jin, Ping Dong

Abstract:

The third super-harmonic resonance of a pipeline close to the seabed is investigated in this paper. To analyse the vortex-induced vibration (VIV) of the pipeline close to the seabed, the classic Van der Pol equation is extended with a nonlinear item. Then, on the base of the multi-scale method, the frequency-response curves of the pipeline with regard to the third super-harmonic resonance are studied with a series of parameters, such as the mass ratio, frequency, damp ratio and gap ratio. On the whole, the numerical results show that the characters of third super-harmonic resonance are quite from that of primary resonance, though with the same trend that the larger is the mass ratio, the smaller impact the gap ratio has on the frequency-response curves of the third super-harmonic resonance.

Keywords: the third super-harmonic resonance, gap ratio, vortex-induced vibration, multi-scale method

Procedia PDF Downloads 397
3642 Analysis of Stall Angle Delay in Airfoil Coupled with Spinning Cylinder

Authors: N. Kiran, S. A. Vikas, Yatish Chandra, S. Srinivasan

Abstract:

Several Centuries ago, the aerodynamic studies on rotating cylinders and spheres have started. From the observation, the rotation of a cylinder has a remarkable effect on the aerodynamic characteristics is noticed. In case of airfoils as the angle of attack increases, the drag increases with reduction in lift i.e at the critical angle of attack. If at this point a strong impulse is imparted to the boundary layer by means of a spinning cylinder, the re-energisation of boundary layer is achieved and hence delaying the boundary layer separation and stalling characteristics. Analysis of aerodynamic effects spinning cylinder either at leading edge or at trailing edge of the airfoil is carried in the past, the positioning of cylinder close to trailing edge and its effects in delaying the stall are yet to be analyzed in depth. This paper aim is to understand the combined aerodynamic effects of coupling the spinning cylinder with the airfoil closer to the Trailing edge, by considering different spin ratio of the cylinder, its location and geometrical parameters in relation to the chord of the airfoil. From the analysis, it was observed that the spinning cylinder speed of rotation and location had a impact on stalling characteristics for a prescribed free stream condition. The results predicted through CFD analysis and experimental analysis showed a raise in aerodynamic efficiency and as the spin ratio increases, increase in stalling angle of attack is noticed when compared to the airfoil without spinning cylinder.

Keywords: aerodynamics, airfoil, spinning cylinder, stalling

Procedia PDF Downloads 409
3641 Prediction of Trailing-Edge Noise under Adverse-Pressure Gradient Effect

Authors: Li Chen

Abstract:

For an aerofoil or hydrofoil in high Reynolds number flows, broadband noise is generated efficiently as the result of the turbulence convecting over the trailing edge. This noise can be related to the surface pressure fluctuations, which can be predicted by either CFD or empirical models. However, in reality, the aerofoil or hydrofoil often operates at an angle of attack. Under this situation, the flow is subjected to an Adverse-Pressure-Gradient (APG), and as a result, a flow separation may occur. This study is to assess trailing-edge noise models for such flows. In the present work, the trailing-edge noise from a 2D airfoil at 6 degree of angle of attach is investigated. Under this condition, the flow is experiencing a strong APG, and the flow separation occurs. The flow over the airfoil with a chord of 300 mm, equivalent to a Reynold Number 4x10⁵, is simulated using RANS with the SST k-ɛ turbulent model. The predicted surface pressure fluctuations are compared with the published experimental data and empirical models, and show a good agreement with the experimental data. The effect of the APG on the trailing edge noise is discussed, and the associated trailing edge noise is calculated.

Keywords: aero-acoustics, adverse-pressure gradient, computational fluid dynamics, trailing-edge noise

Procedia PDF Downloads 310
3640 Influence of Hydrophobic Surface on Flow Past Square Cylinder

Authors: S. Ajith Kumar, Vaisakh S. Rajan

Abstract:

In external flows, vortex shedding behind the bluff bodies causes to experience unsteady loads on a large number of engineering structures, resulting in structural failure. Vortex shedding can even turn out to be disastrous like the Tacoma Bridge failure incident. We need to have control over vortex shedding to get rid of this untoward condition by reducing the unsteady forces acting on the bluff body. In circular cylinders, hydrophobic surface in an otherwise no-slip surface is found to be delaying separation and minimizes the effects of vortex shedding drastically. Flow over square cylinder stands different from this behavior as separation can takes place from either of the two corner separation points (front or rear). An attempt is made in this study to numerically elucidate the effect of hydrophobic surface in flow over a square cylinder. A 2D numerical simulation has been done to understand the effects of the slip surface on the flow past square cylinder. The details of the numerical algorithm will be presented at the time of the conference. A non-dimensional parameter, Knudsen number is defined to quantify the slip on the cylinder surface based on Maxwell’s equation. The slip surface condition of the wall affects the vorticity distribution around the cylinder and the flow separation. In the numerical analysis, we observed that the hydrophobic surface enhances the shedding frequency and damps down the amplitude of oscillations of the square cylinder. We also found that the slip has a negative effect on aerodynamic force coefficients such as the coefficient of lift (CL), coefficient of drag (CD) etc. and hence replacing the no slip surface by a hydrophobic surface can be treated as an effective drag reduction strategy and the introduction of hydrophobic surface could be utilized for reducing the vortex induced vibrations (VIV) and is found as an effective method in controlling VIV thereby controlling the structural failures.

Keywords: drag reduction, flow past square cylinder, flow control, hydrophobic surfaces, vortex shedding

Procedia PDF Downloads 353
3639 CFD Modeling of Insect Flight at Low Reynolds Numbers

Authors: Wu Di, Yeo Khoon Seng, Lim Tee Tai

Abstract:

The typical insects employ a flapping-wing mode of flight. The numerical simulations on free flight of a model fruit fly (Re=143) including hovering and are presented in this paper. Unsteady aerodynamics around a flapping insect is studied by solving the three-dimensional Newtonian dynamics of the flyer coupled with Navier-Stokes equations. A hybrid-grid scheme (Generalized Finite Difference Method) that combines great geometry flexibility and accuracy of moving boundary definition is employed for obtaining flow dynamics. The results show good points of agreement and consistency with the outcomes and analyses of other researchers, which validate the computational model and demonstrate the feasibility of this computational approach on analyzing fluid phenomena in insect flight. The present modeling approach also offers a promising route of investigation that could complement as well as overcome some of the limitations of physical experiments in the study of free flight aerodynamics of insects. The results are potentially useful for the design of biomimetic flapping-wing flyers.

Keywords: free hovering flight, flapping wings, fruit fly, insect aerodynamics, leading edge vortex (LEV), computational fluid dynamics (CFD), Navier-Stokes equations (N-S), fluid structure interaction (FSI), generalized finite-difference method (GFD)

Procedia PDF Downloads 378
3638 Gravitational Water Vortex Power Plant: Experimental-Parametric Design of a Hydraulic Structure Capable of Inducing the Artificial Formation of a Gravitational Water Vortex Appropriate for Hydroelectric Generation

Authors: Henrry Vicente Rojas Asuero, Holger Manuel Benavides Muñoz

Abstract:

Approximately 80% of the energy consumed worldwide is generated from fossil sources, which are responsible for the emission of a large volume of greenhouse gases. For this reason, the global trend, at present, is the widespread use of energy produced from renewable sources. This seeks safety and diversification of energy supply, based on social cohesion, economic feasibility and environmental protection. In this scenario, small hydropower systems (P ≤ 10MW) stand out due to their high efficiency, economic competitiveness and low environmental impact. Small hydropower systems, along with wind and solar energy, are expected to represent a significant percentage of the world's energy matrix in the near term. Among the various technologies present in the state of the art, relating to small hydropower systems, is the Gravitational Water Vortex Power Plant, a recent technology that excels because of its versatility of operation, since it can operate with jumps in the range of 0.70 m-2.00 m and flow rates from 1 m3/s to 20 m3/s. Its operating system is based on the utilization of the energy of rotation contained within a large water vortex artificially induced. This paper presents the study and experimental design of an optimal hydraulic structure with the capacity to induce the artificial formation of a gravitational water vortex trough a system of easy application and high efficiency, able to operate in conditions of very low head and minimum flow. The proposed structure consists of a channel, with variable base, vortex inductor, tangential flow generator, coupled to a circular tank with a conical transition bottom hole. In the laboratory test, the angular velocity of the water vortex was related to the geometric characteristics of the inductor channel, as well as the influence of the conical transition bottom hole on the physical characteristics of the water vortex. The results show angular velocity values of greater magnitude as a function of depth, in addition the presence of the conical transition in the bottom hole of the circular tank improves the water vortex formation conditions while increasing the angular velocity values. Thus, the proposed system is a sustainable solution for the energy supply of rural areas near to watercourses.

Keywords: experimental model, gravitational water vortex power plant, renewable energy, small hydropower

Procedia PDF Downloads 267
3637 Generalized Vortex Lattice Method for Predicting Characteristics of Wings with Flap and Aileron Deflection

Authors: Mondher Yahyaoui

Abstract:

A generalized vortex lattice method for complex lifting surfaces with flap and aileron deflection is formulated. The method is not restricted by the linearized theory assumption and accounts for all standard geometric lifting surface parameters: camber, taper, sweep, washout, dihedral, in addition to flap and aileron deflection. Thickness is not accounted for since the physical lifting body is replaced by a lattice of panels located on the mean camber surface. This panel lattice setup and the treatment of different wake geometries is what distinguish the present work form the overwhelming majority of previous solutions based on the vortex lattice method. A MATLAB code implementing the proposed formulation is developed and validated by comparing our results to existing experimental and numerical ones and good agreement is demonstrated. It is then used to study the accuracy of the widely used classical vortex-lattice method. It is shown that the classical approach gives good agreement in the clean configuration but is off by as much as 30% when a flap or aileron deflection of 30° is imposed. This discrepancy is mainly due the linearized theory assumption associated with the conventional method. A comparison of the effect of four different wake geometries on the values of aerodynamic coefficients was also carried out and it is found that the choice of the wake shape had very little effect on the results.

Keywords: aileron deflection, camber-surface-bound vortices, classical VLM, generalized VLM, flap deflection

Procedia PDF Downloads 410
3636 Analysis of Vortex-Induced Vibration Characteristics for a Three-Dimensional Flexible Tube

Authors: Zhipeng Feng, Huanhuan Qi, Pingchuan Shen, Fenggang Zang, Yixiong Zhang

Abstract:

Numerical simulations of vortex-induced vibration of a three-dimensional flexible tube under uniform turbulent flow are calculated when Reynolds number is 1.35×104. In order to achieve the vortex-induced vibration, the three-dimensional unsteady, viscous, incompressible Navier-Stokes equation and LES turbulence model are solved with the finite volume approach, the tube is discretized according to the finite element theory, and its dynamic equilibrium equations are solved by the Newmark method. The fluid-tube interaction is realized by utilizing the diffusion-based smooth dynamic mesh method. Considering the vortex-induced vibration system, the variety trends of lift coefficient, drag coefficient, displacement, vertex shedding frequency, phase difference angle of tube are analyzed under different frequency ratios. The nonlinear phenomena of locked-in, phase-switch are captured successfully. Meanwhile, the limit cycle and bifurcation of lift coefficient and displacement are analyzed by using trajectory, phase portrait, and Poincaré sections. The results reveal that: when drag coefficient reaches its minimum value, the transverse amplitude reaches its maximum, and the “lock-in” begins simultaneously. In the range of lock-in, amplitude decreases gradually with increasing of frequency ratio. When lift coefficient reaches its minimum value, the phase difference undergoes a suddenly change from the “out-of-phase” to the “in-phase” mode.

Keywords: vortex induced vibration, limit cycle, LES, CFD, FEM

Procedia PDF Downloads 255
3635 Theoretical Study of Flexible Edge Seals for Vacuum Glazing

Authors: Farid Arya, Trevor Hyde

Abstract:

The development of vacuum glazing represents a significant advancement in the area of low heat loss glazing systems with the potential to substantially reduce building heating and cooling loads. Vacuum glazing consists of two or more glass panes hermetically sealed together around the edge with a vacuum gap between the panes. To avoid the glass panes from collapsing and touching each other under the influence of atmospheric pressure an array of support pillars is provided between the glass panes. A high level of thermal insulation is achieved by evacuating the spaces between the glass panes to a very low pressure which greatly reduces conduction and convection within the space; therefore heat transfer through this kind of glazing is significantly lower when compared with conventional insulating glazing. However, vacuum glazing is subject to inherent stresses due to atmospheric pressure and temperature differentials which can lead to fracture of the glass panes and failure of the edge seal. A flexible edge seal has been proposed to minimise the impact of these issues. In this paper, vacuum glazing system with rigid and flexible edge seals is theoretically studied and their advantages and disadvantages are discussed.

Keywords: flexible edge seal, stress, support pillar, vacuum glazing

Procedia PDF Downloads 200
3634 Hydrodynamics of Undulating Ribbon-fin and Its Application in Bionic Underwater Robot

Authors: Zhang Jun, Zhai Shucheng, Bai Yaqiang, Zhang Guoping

Abstract:

The Gymnarchus Niioticus fish(GNF) cruises generally with high efficiency by undulating ribbon-fin propulsion while keeping its body for straight line. The swing amplitude of GNF fins is usually in 60° to 90°, and in normal state the amplitude is close to 90°, only in the control of hovering or swimming at very low speed, the amplitude is smaller (about 60°). It provides inspiration for underwater robot design. In the paper, the unsteady flow of undulating ribbon-fin propulsion is numerical simulated by the dynamic grid technique including spring-based smoothing model and local grid remeshing to adapt to the fin surface significantly deforming, and the swing amplitude of fin ray reaches 850. The numerical simulation method is validated by thrust experiments. The spatial vortex structure and its evolution with phase angle is analyzed. The propulsion mechanism is investigated by comprehensive analysis of the hydrodynamics, vortex structure, and pressure distribution on the fin surface. The numerical results indicates that there are mainly three kinds of vortexes, i.e. streamwise vortex, crescent vortex and toroidal vortex. The intensity of streamwise vortex is the strongest among all kinds of vortexes. Streamwise vortexes and crescent vortexes all alternately distribute on the two sides of mid-sagittal plane. Inside the crescent vortexes is high-speed flow, while outside is low-speed flow. The crescent vortexes mainly induce high-speed axial jet, which produces the primary thrust. This is hydrodynamic mechanism undulating ribbon-fin propulsion. The streamwise vortexes mainly induce the vertical jet, which generates the primary heave force. The effect on hydrodynamics of main geometry and movement parameters including wave length, amplitude and advanced coefficients is investigated. A bionic underwater robot with bilateral undulating ribbon-fins is designed, and its navigation performance and maneuverability are measured.

Keywords: bionic propulsion, mobile robot, underwater robot, undulating ribbon-fins

Procedia PDF Downloads 252
3633 Extraction of Road Edge Lines from High-Resolution Remote Sensing Images Based on Energy Function and Snake Model

Authors: Zuoji Huang, Haiming Qian, Chunlin Wang, Jinyan Sun, Nan Xu

Abstract:

In this paper, the strategy to extract double road edge lines from acquired road stripe image was explored. The workflow is as follows: the road stripes are acquired by probabilistic boosting tree algorithm and morphological algorithm immediately, and road centerlines are detected by thinning algorithm, so the initial road edge lines can be acquired along the road centerlines. Then we refine the results with big variation of local curvature of centerlines. Specifically, the energy function of edge line is constructed by gradient feature and spectral information, and Dijkstra algorithm is used to optimize the initial road edge lines. The Snake model is constructed to solve the fracture problem of intersection, and the discrete dynamic programming algorithm is used to solve the model. After that, we could get the final road network. Experiment results show that the strategy proposed in this paper can be used to extract the continuous and smooth road edge lines from high-resolution remote sensing images with an accuracy of 88% in our study area.

Keywords: road edge lines extraction, energy function, intersection fracture, Snake model

Procedia PDF Downloads 316
3632 Flow Reproduction Using Vortex Particle Methods for Wake Buffeting Analysis of Bluff Structures

Authors: Samir Chawdhury, Guido Morgenthal

Abstract:

The paper presents a novel extension of Vortex Particle Methods (VPM) where the study aims to reproduce a template simulation of complex flow field that is generated from impulsively started flow past an upstream bluff body at certain Reynolds number Re-Vibration of a structural system under upstream wake flow is often considered its governing design criteria. Therefore, the attention is given in this study especially for the reproduction of wake flow simulation. The basic methodology for the implementation of the flow reproduction requires the downstream velocity sampling from the template flow simulation; therefore, at particular distances from the upstream section the instantaneous velocity components are sampled using a series of square sampling-cells arranged vertically where each of the cell contains four velocity sampling points at its corner. Since the grid free Lagrangian VPM algorithm discretises vorticity on particle elements, the method requires transformation of the velocity components into vortex circulation, and finally the simulation of the reproduction of the template flow field by seeding these vortex circulations or particles into a free stream flow. It is noteworthy that the vortex particles have to be released into the free stream exactly at same rate of velocity sampling. Studies have been done, specifically, in terms of different sampling rates and velocity sampling positions to find their effects on flow reproduction quality. The quality assessments are mainly done, using a downstream flow monitoring profile, by comparing the characteristic wind flow profiles using several statistical turbulence measures. Additionally, the comparisons are performed using velocity time histories, snapshots of the flow fields, and the vibration of a downstream bluff section by performing wake buffeting analyses of the section under the original and reproduced wake flows. Convergence study is performed for the validation of the method. The study also describes the possibilities how to achieve flow reproductions with less computational effort.

Keywords: vortex particle method, wake flow, flow reproduction, wake buffeting analysis

Procedia PDF Downloads 281
3631 Analysis of Flow Dynamics of Heated and Cooled Pylon Upstream to the Cavity past Supersonic Flow with Wall Heating and Cooling

Authors: Vishnu Asokan, Zaid M. Paloba

Abstract:

Flow over cavities is an important area of research due to the significant change in flow physics caused by cavity aspect ratio, free stream Mach number and the nature of upstream boundary layer approaching the cavity leading edge. Cavity flow finds application in aircraft wheel well, weapons bay, combustion chamber of scramjet engines, etc. These flows are highly unsteady, compressible and turbulent and it involves mass entrainment coupled with acoustics phenomenon. Variation of flow dynamics in an angled cavity with a heated and cooled pylon upstream to the cavity with spatial combinations of heat flux addition and removal to the wall studied numerically. The goal of study is to investigate the effect of energy addition, removal to the cavity walls and pylon cavity flow dynamics. Preliminary steady state numerical simulations on inclined cavities with heat addition have shown that wall pressure profiles, as well as the recirculation, are influenced by heat transfer to the compressible fluid medium. Such a hybrid control of cavity flow dynamics in the form of heat transfer and pylon geometry can open out greater opportunities in enhancement of mixing and flame holding requirements of supersonic combustors. Addition of pylon upstream to the cavity reduces the acoustic oscillations emanating from the geometry. A numerical unsteady analysis of supersonic flow past cavities exposed to cavity wall heating and cooling with heated and cooled pylon helps to get a clear idea about the oscillation suppression in the cavity. A Cavity of L/D 4 and aft wall angle 22 degree with an upstream pylon of h/D=1.5 mm with a wall angle 29 degree exposed to supersonic flow of Mach number 2 and heat flux of 40 W/cm² and -40 W/cm² modeled for the above study. In the preliminary study, the domain is modeled and validated numerically with a turbulence model of SST k-ω using an HLLC implicit scheme. Both qualitative and quantitative flow data extracted and analyzed using advanced CFD tools. Flow visualization is done using numerical Schlieren method as the fluid medium gives the density variation. The heat flux addition to the wall increases the secondary vortex size of the cavity and removal of energy leads to the reduction in vortex size. The flow field turbulence seems to be increasing at higher heat flux. The shear layer thickness increases as heat flux increases. The steady state analysis of wall pressure shows that there is variation on wall pressure as heat flux increases. Shift in frequency of unsteady wall pressure analysis is an interesting observation for the above study. The time averaged skin friction seems to be reducing at higher heat flux due to the variation in viscosity of fluid inside the cavity.

Keywords: energy addition, frequency shift, Numerical Schlieren, shear layer, vortex evolution

Procedia PDF Downloads 112
3630 Sub-Pixel Mapping Based on New Mixed Interpolation

Authors: Zeyu Zhou, Xiaojun Bi

Abstract:

Due to the limited environmental parameters and the limited resolution of the sensor, the universal existence of the mixed pixels in the process of remote sensing images restricts the spatial resolution of the remote sensing images. Sub-pixel mapping technology can effectively improve the spatial resolution. As the bilinear interpolation algorithm inevitably produces the edge blur effect, which leads to the inaccurate sub-pixel mapping results. In order to avoid the edge blur effect that affects the sub-pixel mapping results in the interpolation process, this paper presents a new edge-directed interpolation algorithm which uses the covariance adaptive interpolation algorithm on the edge of the low-resolution image and uses bilinear interpolation algorithm in the low-resolution image smooth area. By using the edge-directed interpolation algorithm, the super-resolution of the image with low resolution is obtained, and we get the percentage of each sub-pixel under a certain type of high-resolution image. Then we rely on the probability value as a soft attribute estimate and carry out sub-pixel scale under the ‘hard classification’. Finally, we get the result of sub-pixel mapping. Through the experiment, we compare the algorithm and the bilinear algorithm given in this paper to the results of the sub-pixel mapping method. It is found that the sub-pixel mapping method based on the edge-directed interpolation algorithm has better edge effect and higher mapping accuracy. The results of the paper meet our original intention of the question. At the same time, the method does not require iterative computation and training of samples, making it easier to implement.

Keywords: remote sensing images, sub-pixel mapping, bilinear interpolation, edge-directed interpolation

Procedia PDF Downloads 199
3629 Investigation of Vortex Induced Vibration and Galloping Characteristic for Various Shape Slender Bridge Hanger

Authors: Matza Gusto Andika, Syariefatunnisa

Abstract:

Hanger at the arch bridges is an important part to transfer load on the bridge deck onto the arch. Bridges are subjected to several types of loadings, such as dead load, temperature load, wind load, moving loads etc. Usually the hanger bridge has a typical bluff body shape such as circle, square, H beam, etc. When flow past bluff body, the flow separates from the body surface generating an unsteady broad wake. These vortices are shed to the wake periodically with some frequency that is related to the undisturbed wind speed and the size of the cross-section body by the well-known Strouhal relationship. The dynamic characteristic and hanger shape are crucial for the evaluation of vortex induced vibrations and structural vibrations. The effect of vortex induced vibration is not catastrophic as a flutter phenomenon, but it can make fatigue failure to the structure. Wind tunnel tests are conducted to investigate the VIV and galloping effect at circle, hexagonal, and H beam bluff body for hanger bridge. From this research, the hanger bridge with hexagonal shape has a minimum vibration amplitude due to VIV phenomenon compared to circle and H beam. However, when the wind bruises the acute angle of hexagon shape, the vibration amplitude of bridge hanger with hexagonal shape is higher than the other bluff body.

Keywords: vortex induced vibration, hanger bridge, wind tunnel, galloping

Procedia PDF Downloads 242
3628 The Effect of Chisel Edge on Drilling-Induced Delamination

Authors: Parnian Kianfar, Navid Zarif Karimi, Giangiacomo Minak

Abstract:

Drilling is one of the most important machining operations as numerous holes must be drilled in order to install mechanical fasteners for assembly in composite structures. Delamination is a major problem associated with the drilling of fiber reinforced composite materials, which degrades the mechanical properties of these materials. In drilling, delamination is initiated when the drilling force exceeds a threshold value, particularly at the critical entry and exit locations of the drill bit. The chisel edge of twist drill is a major contributor to the thrust force which is the primary cause of delamination. The main objective of this paper is to study the effect of chisel edge and pilot hole on thrust force and delamination during drilling of glass fiber reinforced composites. For this purpose, two sets of experiments, with and without pilot hole, were conducted with different drilling conditions. The results show a great reduction in the thrust force when a pilot hole is present which removes the chisel edge contribution.

Keywords: composites, chisel edge, drilling, delamination

Procedia PDF Downloads 412
3627 Stress Field Induced By an Interfacial Edge Dislocation in a Multi-Layered Medium

Authors: Aditya Khanna, Andrei Kotousov

Abstract:

A novel method is presented for obtaining the stress field induced by an edge dislocation in a multilayered composite. To demonstrate the applications of the obtained solution, we consider the problem of an interfacial crack in a periodically layered bimaterial medium. The crack is modeled as a continuous distribution of edge dislocations and the Distributed Dislocation Technique (DDT) is utilized to obtain numerical results for the energy release rate (ERR). The numerical results correspond well with previously published results and the comparison serves as a validation of the obtained dislocation solution.

Keywords: distributed dislocation technique, edge dislocation, elastic field, interfacial crack, multi-layered composite

Procedia PDF Downloads 414
3626 Effects of Using Gusset Plate Stiffeners on the Seismic Performance of Concentrically Braced Frame

Authors: B. Mohebi, N. Asadi, F. Kazemi

Abstract:

Inelastic deformation of the brace in Special Concentrically Braced Frame (SCBF) creates inelastic damages on gusset plate connections such as buckling at edges. In this study, to improve the seismic performance of SCBFs connections, an analytical study was undertaken. To improve the gusset plate connection, this study proposes using ‎edge’s stiffeners in both sides of gusset plate.‎ For this purpose, in order to examine edge’s stiffeners effect on gusset plate connections, two groups of modeling with and without considering edge’s stiffener and different types of braces were modeled using ABAQUS software. The results show that considering the edge’s stiffener reduces the equivalent plastic strain values at a connection region of gusset plate with beam and column, which can improve the seismic performance of gusset plate. Furthermore, considering the edge’s stiffeners significantly decreases the strain concentration at regions where gusset plates have been connected to beam and column. Moreover, considering 2tpl distance causes reduction in the plastic strain.

Keywords: special concentrically braced frame, gusset plate, edge's stiffener, seismic performance

Procedia PDF Downloads 101
3625 Post-Quantum Resistant Edge Authentication in Large Scale Industrial Internet of Things Environments Using Aggregated Local Knowledge and Consistent Triangulation

Authors: C. P. Autry, A. W. Roscoe, Mykhailo Magal

Abstract:

We discuss the theoretical model underlying 2BPA (two-band peer authentication), a practical alternative to conventional authentication of entities and data in IoT. In essence, this involves assembling a virtual map of authentication assets in the network, typically leading to many paths of confirmation between any pair of entities. This map is continuously updated, confirmed, and evaluated. The value of authentication along multiple disjoint paths becomes very clear, and we require analogues of triangulation to extend authentication along extended paths and deliver it along all possible paths. We discover that if an attacker wants to make an honest node falsely believe she has authenticated another, then the length of the authentication paths is of little importance. This is because optimal attack strategies correspond to minimal cuts in the authentication graph and do not contain multiple edges on the same path. The authentication provided by disjoint paths normally is additive (in entropy).

Keywords: authentication, edge computing, industrial IoT, post-quantum resistance

Procedia PDF Downloads 168
3624 Concentric Circle Detection based on Edge Pre-Classification and Extended RANSAC

Authors: Zhongjie Yu, Hancheng Yu

Abstract:

In this paper, we propose an effective method to detect concentric circles with imperfect edges. First, the gradient of edge pixel is coded and a 2-D lookup table is built to speed up normal generation. Then we take an accumulator to estimate the rough center and collect plausible edges of concentric circles through gradient and distance. Later, we take the contour-based method, which takes the contour and edge intersection, to pre-classify the edges. Finally, we use the extended RANSAC method to find all the candidate circles. The center of concentric circles is determined by the two circles with the highest concentricity. Experimental results demonstrate that the proposed method has both good performance and accuracy for the detection of concentric circles.

Keywords: concentric circle detection, gradient, contour, edge pre-classification, RANSAC

Procedia PDF Downloads 108
3623 Fracture Control of the Soda-Lime Glass in Laser Thermal Cleavage

Authors: Jehnming Lin

Abstract:

The effects of the contact ball-lens on the soda lime glass in laser thermal cleavage with a cw Nd-YAG laser were investigated in this study. A contact ball-lens was adopted to generate a bending force on the crack formation of the soda-lime glass in the laser cutting process. The Nd-YAG laser beam (wavelength of 1064 nm) was focused through the ball-lens and transmitted to the soda-lime glass, which was coated with a carbon film on the surface with a bending force from a ball-lens to generate a tensile stress state on the surface cracking. The fracture was controlled by the contact ball-lens and a straight cutting was tested to demonstrate the feasibility. Experimental observations on the crack propagation from the leading edge, main section and trailing edge of the glass sheet were compared with various mechanical and thermal loadings. Further analyses on the stress under various laser powers and contact ball loadings were made to characterize the innovative technology. The results show that the distributions of the side crack at the leading and trailing edges are mainly dependent on the boundary condition, contact force, cutting speed and laser power. With the increase of the mechanical and thermal loadings, the region of the side cracks might be dramatically reduced with proper selection of the geometrical constraints. Therefore, the application of the contact ball-lens is a possible way to control the fracture in laser cleavage with improved cutting qualities.

Keywords: laser cleavage, stress analysis, crack visualization, laser

Procedia PDF Downloads 413
3622 Investigating the Flow Physics within Vortex-Shockwave Interactions

Authors: Frederick Ferguson, Dehua Feng, Yang Gao

Abstract:

No doubt, current CFD tools have a great many technical limitations, and active research is being done to overcome these limitations. Current areas of limitations include vortex-dominated flows, separated flows, and turbulent flows. In general, turbulent flows are unsteady solutions to the fluid dynamic equations, and instances of these solutions can be computed directly from the equations. One of the approaches commonly implemented is known as the ‘direct numerical simulation’, DNS. This approach requires a spatial grid that is fine enough to capture the smallest length scale of the turbulent fluid motion. This approach is called the ‘Kolmogorov scale’ model. It is of interest to note that the Kolmogorov scale model must be captured throughout the domain of interest and at a correspondingly small-time step. In typical problems of industrial interest, the ratio of the length scale of the domain to the Kolmogorov length scale is so great that the required grid set becomes prohibitively large. As a result, the available computational resources are usually inadequate for DNS related tasks. At this time in its development, DNS is not applicable to industrial problems. In this research, an attempt is made to develop a numerical technique that is capable of delivering DNS quality solutions at the scale required by the industry. To date, this technique has delivered preliminary results for both steady and unsteady, viscous and inviscid, compressible and incompressible, and for both high and low Reynolds number flow fields that are very accurate. Herein, it is proposed that the Integro-Differential Scheme (IDS) be applied to a set of vortex-shockwave interaction problems with the goal of investigating the nonstationary physics within the resulting interaction regions. In the proposed paper, the IDS formulation and its numerical error capability will be described. Further, the IDS will be used to solve the inviscid and viscous Burgers equation, with the goal of analyzing their solutions over a considerable length of time, thus demonstrating the unsteady capabilities of the IDS. Finally, the IDS will be used to solve a set of fluid dynamic problems related to flow that involves highly vortex interactions. Plans are to solve the following problems: the travelling wave and vortex problems over considerable lengths of time, the normal shockwave–vortex interaction problem for low supersonic conditions and the reflected oblique shock–vortex interaction problem. The IDS solutions obtained in each of these solutions will be explored further in efforts to determine the distributed density gradients and vorticity, as well as the Q-criterion. Parametric studies will be conducted to determine the effects of the Mach number on the intensity of vortex-shockwave interactions.

Keywords: vortex dominated flows, shockwave interactions, high Reynolds number, integro-differential scheme

Procedia PDF Downloads 105
3621 Multi-Fidelity Fluid-Structure Interaction Analysis of a Membrane Wing

Authors: M. Saeedi, R. Wuchner, K.-U. Bletzinger

Abstract:

In order to study the aerodynamic performance of a semi-flexible membrane wing, Fluid-Structure Interaction simulations have been performed. The fluid problem has been modeled using two different approaches which are the numerical solution of the Navier-Stokes equations and the vortex panel method. Nonlinear analysis of the structural problem is performed using the Finite Element Method. Comparison between the two fluid solvers has been made. Aerodynamic performance of the wing is discussed regarding its lift and drag coefficients and they are compared with those of the equivalent rigid wing.

Keywords: CFD, FSI, Membrane wing, Vortex panel method

Procedia PDF Downloads 458