Search results for: laboratory tools
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5996

Search results for: laboratory tools

5876 The Effectiveness of Exchange of Tacit and Explicit Knowledge Using Digital and Face to Face Sharing

Authors: Delio I. Castaneda, Paul Toulson

Abstract:

The purpose of this study was to investigate the knowledge sharing effectiveness of two types of knowledge, tacit and explicit, depending on two channels: face to face or digital. Participants were 217 knowledge workers in New Zealand and researchers who attended a knowledge management conference in the United Kingdom. In the study, it was found that digital tools are effective to share explicit knowledge. In addition, digital tools that facilitated dialogue were effective to share tacit knowledge. It was also found that face to face communication was an effective way to share tacit and explicit knowledge. Results of this study contribute to clarify in what cases digital tools are effective to share tacit knowledge. Additionally, even though explicit knowledge can be easily shared using digital tools, this type of knowledge is also possible to be shared through dialogue. Result of this study may support practitioners to redesign programs and activities based on knowledge sharing to make strategies more effective.

Keywords: digital knowledge, explicit knowledge, knowledge sharing, tacit knowledge

Procedia PDF Downloads 223
5875 Visco - Plastic Transition and Transfer of Plastic Material with SGF in case of Linear Dry Friction Contact on Steel Surfaces

Authors: Lucian Capitanu, Virgil Florescu

Abstract:

Often for the laboratory studies, modeling of specific tribological processes raises special problems. One such problem is the modeling of some temperatures and extremely high contact pressures, allowing modeling of temperatures and pressures at which the injection or extrusion processing of thermoplastic materials takes place. Tribological problems occur mainly in thermoplastics materials reinforced with glass fibers. They produce an advanced wear to the barrels and screws of processing machines, in short time. Obtaining temperatures around 210 °C and higher, as well as pressures around 100 MPa is very difficult in the laboratory. This paper reports a simple and convenient solution to get these conditions, using friction sliding couples with linear contact, cylindrical liner plastic filled with glass fibers on plate steel samples, polished and super-finished. C120 steel, which is a steel for moulds and Rp3 steel, high speed steel for tools, were used. Obtaining the pressure was achieved by continuous request of the liner in rotational movement up to its elasticity limits, when the dry friction coefficient reaches or exceeds the hardness value of 0.5 HB. By dissipation of the power lost by friction on flat steel sample, are reached contact temperatures at the metal surface that reach and exceed 230 °C, being placed in the range temperature values of the injection. Contact pressures (in load and materials conditions used) ranging from 16.3-36.4 MPa were obtained depending on the plastic material used and the glass fibers content.

Keywords: plastics with glass fibers, dry friction, linear contact, contact temperature, contact pressure, experimental simulation

Procedia PDF Downloads 276
5874 Evaluation of Free Technologies as Tools for Business Process Management

Authors: Julio Sotomayor, Daniel Yucra, Jorge Mayhuasca

Abstract:

The article presents an evaluation of free technologies for business process automation, with emphasis only on tools compatible with the general public license (GPL). The compendium of technologies was based on promoting a service-oriented enterprise architecture (SOA) and the establishment of a business process management system (BPMS). The methodology for the selection of tools was Agile UP. This proposal allows businesses to achieve technological sovereignty and independence, in addition to the promotion of service orientation and the development of free software based on components.

Keywords: BPM, BPMS suite, open-source software, SOA, enterprise architecture, business process management

Procedia PDF Downloads 253
5873 Study on Evaluating the Utilization of Social Media Tools (SMT) in Collaborative Learning Case Study: Faculty of Medicine, King Khalid University

Authors: Vasanthi Muniasamy, Intisar Magboul Ejalani, M.Anandhavalli, K. Gauthaman

Abstract:

Social Media (SM) are websites increasingly popular and built to allow people to express themselves and to interact socially with others. Most SMT are dominated by youth particularly college students. The proliferation of popular social media tools, which can accessed from any communication devices has become pervasive in the lives of today’s student life. Connecting traditional education to social media tools are a relatively new era and any collaborative tool could be used for learning activities. This study focuses (i) how the social media tools are useful for the learning activities of the students of faculty of medicine in King Khalid University (ii) whether the social media affects the collaborative learning with interaction among students, among course instructor, their engagement, perceived ease of use and perceived ease of usefulness (TAM) (iii) overall, the students satisfy with this collaborative learning through Social media.

Keywords: social media, Web 2.0, perceived ease of use, perceived usefulness, collaborative Learning

Procedia PDF Downloads 474
5872 Measurement Tools of the Maturity Model for IT Service Outsourcing in Higher Education Institutions

Authors: Victoriano Valencia García, Luis Usero Aragonés, Eugenio J. Fernández Vicente

Abstract:

Nowadays, the successful implementation of ICTs is vital for almost any kind of organization. Good governance and ICT management are essential for delivering value, managing technological risks, managing resources and performance measurement. In addition, outsourcing is a strategic IT service solution which complements IT services provided internally in organizations. This paper proposes the measurement tools of a new holistic maturity model based on standards ISO/IEC 20000 and ISO/IEC 38500, and the frameworks and best practices of ITIL and COBIT, with a specific focus on IT outsourcing. These measurement tools allow independent validation and practical application in the field of higher education, using a questionnaire, metrics tables, and continuous improvement plan tables as part of the measurement process. Guidelines and standards are proposed in the model for facilitating adaptation to universities and achieving excellence in the outsourcing of IT services.

Keywords: IT governance, IT management, IT services, outsourcing, maturity model, measurement tools

Procedia PDF Downloads 558
5871 Organisational Blogging: Reviewing Its Effectiveness as an Organisational Learning Tool

Authors: Gavin J. Baxter, Mark H. Stansfield

Abstract:

This paper reviews the internal use of blogs and their potential effectiveness as organisational learning tools. Prior to and since the emergence of the concept of ‘Enterprise 2.0’ there still remains a lack of empirical evidence associated with how organisations are applying social media tools and whether they are effective towards supporting organisational learning. Surprisingly, blogs, one of the more traditional social media tools, still remains under-researched in the context of ‘Enterprise 2.0’ and organisational learning. The aim of this paper is to identify the theoretical linkage between blogs and organisational learning in addition to reviewing prior research on organisational blogging with a view towards exploring why this area remains under-researched and identifying what needs to be done to try and move the area forward. Through a review of the literature, one of the principal findings of this paper is that organisational blogs, dependent on their use, do have a mutual compatibility with the interpretivist aspect of organisational learning. This paper further advocates that further empirical work in this subject area is required to substantiate this theoretical assumption.

Keywords: Enterprise 2.0, blogs, organisational learning, social media tools

Procedia PDF Downloads 255
5870 Waste Prevention and Economic Policy: Policy Tools for Increasing Resource Efficiency and Savings

Authors: Sylvia Graczka

Abstract:

Waste related environmental problems are not only exploding but are also spotlighted for capacity shortages in recycling, as China announced its ban on waste imports. According to the waste hierarchy, prevention is the primary solution for waste, and also the cheapest. Waste related environmental pollution as externality puts an ever-growing burden on communities bearing the social costs. Economic policies often claim to be pro-environment, this often appears only theoretically, or at the level of principles. There are few concrete occurrences of tools in economic policies, such as green taxes, that are truly effective in stimulating the shift towards waste reduction. The paper presents theoretical economic policy tools based on literature review, and case studies on applied economic policy tools by analyzing policy papers, strategies in force, in line with ‘polluter pays’ and ‘extended producer responsibility’ principles. The study also emphasizes the differences between the broader notion of waste reduction and that of waste minimization, parallel to the difference between resource efficiency and resource savings. It also puts the issue in the context of neoclassical environmental economics and ecological economics, to present alternatives in approach. The research concludes in identifying effective economic policy tools that support the reduction of material use, and the prevention of waste. Consumer and producer awareness of waste problems and consciousness related to their choices are inevitable to make economic policy tools work effectively.

Keywords: economic policy, producer responsibility, resource efficiency, waste prevention

Procedia PDF Downloads 126
5869 Investigation of the Decisive Factors on the Slump Loss: A Case Study of Cement Factors (Portland Cement Type 2)

Authors: M. B. Ahmadi, A. A. Kaffash B., B. Mobaraki

Abstract:

Slump loss, which refers to the gradual reduction of workability and the amount of slump in fresh concrete over time, is one of the significant challenges in the ready-mixed concrete industry. Therefore, having accurate knowledge of the factors affecting slump loss is a crucial solution in this field. In this paper, an attempt was made to investigate the effect of cement produced by different units on the slump of concrete in a laboratory setting. For this purpose, 12 cement samples were prepared from 6 different production units. Physical and chemical tests were performed on the cement samples. Subsequently, a laboratory concrete mix with a slump of 13 ± 1 cm was prepared with each cement sample, and the slump was measured at 0, 15, 30, 45, and 60 minutes. Although the environmental factors, mix design specifications, and execution conditions—factors that significantly influence the slump loss trend—were constant in all 12 laboratory concrete mixes, the slump loss trends differed among them. These trends were categorized based on the results, and the relationship between the slump loss percentage in 60 minutes, the water-cement ratio, and the LOI and K2O values of different cements were introduced.

Keywords: concrete, slump loss, portland cement, efficiency

Procedia PDF Downloads 32
5868 Evaluation of Technology Tools for Mathematics Instruction by Novice Elementary Teachers

Authors: Christopher J. Johnston

Abstract:

This paper presents the finding of a research study in which novice (first and second year) elementary teachers (grades Kindergarten – six) evaluated various mathematics Virtual Manipulatives, websites, and Applets (tools) for use in mathematics instruction. Participants identified the criteria they used for evaluating these types of resources and provided recommendations for or against five pre-selected tools. During the study, participants participated in three data collection activities: (1) A brief Likert-scale survey which gathered information about their attitudes toward technology use; (2) An identification of criteria for evaluating technology tools; and (3) A review of five pre-selected technology tools in light of their self-identified criteria. Data were analyzed qualitatively using four theoretical categories (codes): Software Features (41%), Mathematics (26%), Learning (22%), and Motivation (11%). These four theoretical categories were then grouped into two broad categories: Content and Instruction (Mathematics and Learning), and Surface Features (Software Features and Motivation). These combined, broad categories suggest novice teachers place roughly the same weight on pedagogical features as they do technological features. Implications for mathematics teacher educators are discussed, and suggestions for future research are provided.

Keywords: mathematics education, novice teachers, technology, virtual manipulatives

Procedia PDF Downloads 102
5867 Understanding Consumer Behaviors by Using Neuromarketing Tools and Methods

Authors: Tabrej Khan

Abstract:

Neuromarketing can refer to the commercial application of neuroscience technologies and insights to drive business further. On the other side, consumer neuroscience can be seen as the academic use of neuroscience to better understand marketing effects on consumer behavior. Consumer Neuroscience and Neuromarketing is a multidisciplinary effort between economics, psychology, and neuroscience and information technology. Traditional methods are using survey, interviews, focus group people are overtly and consciously reporting on their experience and thoughts. The unconscious side of customer behavior is largely unmeasured in the traditional methods. Neuroscience has a potential to understand the unconscious part. Through this paper, we are going to present specific results of selected tools and methods that are used to understand consumer behaviors.

Keywords: neuromarketing, neuroscience, consumer behaviors, tools

Procedia PDF Downloads 361
5866 Experimental Investigation and Numerical Simulations of the Cylindrical Machining of a Ti-6Al-4V Tree

Authors: Mohamed Sahli, David Bassir, Thierry Barriere, Xavier Roizard

Abstract:

Predicting the behaviour of the Ti-6Al-4V alloy during the turning operation was very important in the choice of suitable cutting tools and also in the machining strategies. In this study, a 3D model with thermo-mechanical coupling has been proposed to study the influence of cutting parameters and also lubrication on the performance of cutting tools. The constants of the constitutive Johnson-Cook model of Ti-6Al-4V alloy were identified using inverse analysis based on the parameters of the orthogonal cutting process. Then, numerical simulations of the finishing machining operation were developed and experimentally validated for the cylindrical stock removal stage with the finishing cutting tool.

Keywords: titanium turning, cutting tools, FE simulation, chip

Procedia PDF Downloads 143
5865 Forensic Entomology in Algeria

Authors: Meriem Taleb, Ghania Tail, Fatma Zohra Kara, Brahim Djedouani, T. Moussa

Abstract:

Forensic entomology is the use of insects and their arthropod relatives as silent witnesses to aid legal investigations by interpreting information concerning a death. The main purpose of forensic entomology is to establish the postmortem interval or PMI Postmortem interval is a matter of crucial importance in the investigations of homicide and other untimely deaths when the body found is after three days. Forensic entomology has grown immensely as a discipline in the past thirty years. In Algeria, forensic entomology was introduced in 2010 by the National Institute for Criminalistics and Criminology of the National Gendarmerie (NICC). However, all the work that has been done so far in this growing field in Algeria has been unknown at both the national and international levels. In this context, the aim of this paper is to describe the state of forensic entomology in Algeria. The Laboratory of Entomology of the NICC is the only one of its kind in Algeria. It started its activities in 2010, consisting of two specialists. The main missions of the laboratory are estimation of the PMI by the analysis of entomological evidence, and determination if the body was moved. Currently, the laboratory is performing different tasks such as the expert work required by investigators to estimate the PMI using the insects. The estimation is performed by the accumulated degree days method (ADD) in most of the cases except for those where the cadaver is in dry decay. To assure the quality of the entomological evidence, crime scene personnel are trained by the laboratory of Entomology of the NICC. Recently, undergraduate and graduate students have been studying carrion ecology and insect activity in different geographic locations of Algeria using rabbits and wild boar cadavers as animal models. The Laboratory of Entomology of the NICC has also been involved in some of these research projects. Entomotoxicology experiments are also conducted with the collaboration of the Toxicology Department of the NICC. By dint of hard work that has been performed by the Laboratory of Entomology of the NICC, official bodies have been adopting more and more the use of entomological evidence in criminal investigations in Algeria, which is commendable. It is important, therefore, that steps are taken to fill in the gaps in the knowledge necessary for entomological evidence to have a useful future in criminal investigations in Algeria.

Keywords: forensic entomology, corpse, insects, postmortem interval, expertise, Algeria

Procedia PDF Downloads 374
5864 Regular Laboratory Based Neonatal Simulation Program Increases Senior Clinicians’ Knowledge, Skills and Confidence Caring for Sick Neonates

Authors: Madeline Tagg, Choihoong Mui, Elizabeth Lek, Jide Menakaya

Abstract:

Introduction: Simulation technology is used by neonatal teams to learn and refresh skills and gain the knowledge and confidence to care for sick neonates. In-situ simulation is considered superior to laboratory-based programmes as it closely mirrors real life situations. This study reports our experience of running regular laboratory-based simulation sessions for senior clinicians and nurses and its impact on their knowledge, skills and confidence. Methods: A before and after questionnaire survey was carried out on senior clinicians and nurses that attended a scheduled laboratory-based simulation session. Participants were asked to document their expectations before a 3-hour monthly laboratory programme started and invited to feedback their reflections at the end of the session. The session included discussion of relevant clinical guidelines, immersion in a scenario and video led debrief. The results of the survey were analysed in three skills based categories - improved, no change or a worsened experience. Results: 45 questionnaires were completed and analysed. Of these 25 (55%) were completed by consultants seven and six by nurses and trainee doctors respectively, and seven respondents were unknown. 40 (88%) rated the session overall and guideline review as good/excellent, 39 respondents (86%) rated the scenario session good/excellent and 40/45 fed back a good/excellent debrief session. 33 (73%) respondents completed the before and after questionnaire. 21/33 (63%) reflected an improved knowledge, skill or confidence in caring for sick new-bon babies, eight respondents reported no change and four fed back a worse experience after the session. Discussion: Most respondents found the laboratory based structured simulation session beneficial for their professional development. They valued equally the whole content of the programme such as guideline review and equipment training as well as the simulation and debrief sessions. Two out three participants stated their knowledge of caring for sick new-born babies had been transformed positively by the session. Sessions where simulation equipment failed or relevant staff were absent contributed to a poor educational experience. Summary: A regular structured laboratory-based simulation programme with a rich content is a credible educational resource for improving the knowledge, skills and confidence of senior clinicians caring for sick new born babies.

Keywords: knowledge, laboratory based, neonates, simulation

Procedia PDF Downloads 100
5863 The Importance of Water Temperature and Curing Conditions on Concrete Curing

Authors: Ahmad Javid Zia, Abdulkerim Ilgun, Suleyman Kamil Akin, Mustafa Altin

Abstract:

Curing conditions that help concrete, which is one of the most widely used building materials in construction sector, gain strength today is one the important issues. In this study the varying concrete strength depending on water temperature at curing stage is investigated through tests at laboratory. At laboratory the curing conditions has been determined according to both TS EN 12390-2 and regular construction site while performing the experiments on specimens. Five samples have been taken from concrete and cured under five different curing conditions and the compressive strength results of concrete specimens have been compared. One of these five curing conditions has been prepared accordance with TS EN 12390-2, the sample cured at 20 ± 2 ˚C and accepted as reference samples. Two of the remaining sample groups have been cured in 5 ± 2 ˚C and 15 ± 2 ˚C and the other two have been cured outside of the laboratory. One group of the samples which have been cured outside has been watered twice a day and the other group has not been watered at all. The experiments have been carried out on 150x150x150 mm cube samples of C20 (200 kg/cm2) and C25 (250 kg/cm2). 7 and 28 days compressive strength of specimens have been measured and compared.

Keywords: concrete curing, curing conditions, water temperature, concrete compressive strength

Procedia PDF Downloads 343
5862 Characterizing Nanoparticles Generated from the Different Working Type and the Stack Flue during 3D Printing Process

Authors: Kai-Jui Kou, Tzu-Ling Shen, Ying-Fang Wang

Abstract:

The objectives of the present study are to characterize nanoparticles generated from the different working type in 3D printing room and the stack flue during 3D printing process. The studied laboratory (10.5 m× 7.2 m × 3.2 m) with a ventilation rate of 500 m³/H is installed a 3D metal printing machine. Direct-reading instrument of a scanning mobility particle sizer (SMPS, Model 3082, TSI Inc., St. Paul, MN, USA) was used to conduct static sampling for nanoparticle number concentration and particle size distribution measurements. The SMPS obtained particle number concentration at every 3 minutes, the diameter of the SMPS ranged from 11~372 nm when the aerosol and sheath flow rates were set at 0.6 and 6 L/min, respectively. The concentrations of background, printing process, clearing operation, and screening operation were performed in the laboratory. On the other hand, we also conducted nanoparticle measurement on the 3D printing machine's stack flue to understand its emission characteristics. Results show that the nanoparticles emitted from the different operation process were the same distribution in the form of the uni-modal with number median diameter (NMD) as approximately 28.3 nm to 29.6 nm. The number concentrations of nanoparticles were 2.55×10³ count/cm³ in laboratory background, 2.19×10³ count/cm³ during printing process, 2.29×10³ count/cm³ during clearing process, 3.05×10³ count/cm³ during screening process, 2.69×10³ count/cm³ in laboratory background after printing process, and 6.75×10³ outside laboratory, respectively. We found that there are no emission nanoparticles during the printing process. However, the number concentration of stack flue nanoparticles in the ongoing print is 1.13×10⁶ count/cm³, and that of the non-printing is 1.63×10⁴ count/cm³, with a NMD of 458 nm and 29.4 nm, respectively. It can be confirmed that the measured particle size belongs to easily penetrate the filter in theory during the printing process, even though the 3D printer has a high-efficiency filtration device. Therefore, it is recommended that the stack flue of the 3D printer would be equipped with an appropriate dust collection device to prevent the operators from exposing these hazardous particles.

Keywords: nanoparticle, particle emission, 3D printing, number concentration

Procedia PDF Downloads 151
5861 Early Age Behavior of Wind Turbine Gravity Foundations

Authors: Janet Modu, Jean-Francois Georgin, Laurent Briancon, Eric Antoinet

Abstract:

The current practice during the repowering phase of wind turbines is deconstruction of existing foundations and construction of new foundations to accept larger wind loads or once the foundations have reached the end of their service lives. The ongoing research project FUI25 FEDRE (Fondations d’Eoliennes Durables et REpowering) therefore serves to propose scalable wind turbine foundation designs to allow reuse of the existing foundations. To undertake this research, numerical models and laboratory-scale models are currently being utilized and implemented in the GEOMAS laboratory at INSA Lyon following instrumentation of a reference wind turbine situated in the Northern part of France. Sensors placed within both the foundation and the underlying soil monitor the evolution of stresses from the foundation’s early age to stresses during service. The results from the instrumentation form the basis of validation for both the laboratory and numerical works conducted throughout the project duration. The study currently focuses on the effect of coupled mechanisms (Thermal-Hydro-Mechanical-Chemical) that induce stress during the early age of the reinforced concrete foundation, and scale factor considerations in the replication of the reference wind turbine foundation at laboratory-scale. Using THMC 3D models on COMSOL Multi-physics software, the numerical analysis performed on both the laboratory-scale and the full-scale foundations simulate the thermal deformation, hydration, shrinkage (desiccation and autogenous) and creep so as to predict the initial damage caused by internal processes during concrete setting and hardening. Results show a prominent effect of early age properties on the damage potential in full-scale wind turbine foundations. However, a prediction of the damage potential at laboratory scale shows significant differences in early age stresses in comparison to the full-scale model depending on the spatial position in the foundation. In addition to the well-known size effect phenomenon, these differences may contribute to inaccuracies encountered when predicting ultimate deformations of the on-site foundation using laboratory scale models.

Keywords: cement hydration, early age behavior, reinforced concrete, shrinkage, THMC 3D models, wind turbines

Procedia PDF Downloads 146
5860 Moderating Effects of Future Career Interest in Science and Gender on Students' Achievement in Basic Science in Oyo State, Nigeria

Authors: Segun Jacob Ogunkunle

Abstract:

The study examined the moderating effects of future career interest in science and gender on achievement in basic science of students taught in a simulated laboratory and enriched laboratory guide material environments. It adopted the pretest-posttest control group quasi experimental design with a 3x2x2 factorial matrix. A total of 277 (130 males, 147 females; ± 17 years) junior secondary three students randomly selected from six purposively selected secondary schools based on availability of functional computer and physics laboratories participated in the study. Data were collected using achievement test in basic science (r=0.87) and future career interest in science (r=0.99) while analysis of covariance and estimated marginal means were used to test three hypotheses at 0.05 level of significance. The findings of the study show that future career interest in science had significant effect on students’ achievement in basic science whereas gender did not. The interaction effect of future career interest in science and gender on students’ achievement in basic science was not significant. It is therefore recommended that prior knowledge of students’ future career interest in science could be used to improve participation in basic science practical in order to enhance achievement in biology, chemistry, and physics at the post-basic education level in Nigeria.

Keywords: future career interest in science, basic science, simulated laboratory, enriched laboratory guide materials, achievement in science

Procedia PDF Downloads 127
5859 Molecular Epidemiology of Anthrax in Georgia

Authors: N. G. Vepkhvadze, T. Enukidze

Abstract:

Anthrax is a fatal disease caused by strains of Bacillus anthracis, a spore-forming gram-positive bacillus that causes the disease anthrax in animals and humans. Anthrax is a zoonotic disease that is also well-recognized as a potential agent of bioterrorism. Infection in humans is extremely rare in the developed world and is generally due to contact with infected animals or contaminated animal products. Testing of this zoonotic disease began in 1907 in Georgia and is still being tested routinely to provide accurate information and efficient testing results at the State Laboratory of Agriculture of Georgia. Each clinical sample is analyzed by RT-PCR and bacteriology methods; this study used Real-Time PCR assays for the detection of B. anthracis that rely on plasmid-encoded targets with a chromosomal marker to correctly differentiate pathogenic strains from non-anthracis Bacillus species. During the period of 2015-2022, the State Laboratory of Agriculture (SLA) tested 250 clinical and environmental (soil) samples from several different regions in Georgia. In total, 61 out of the 250 samples were positive during this period. Based on the results, Anthrax cases are mostly present in Eastern Georgia, with a high density of the population of livestock, specifically in the regions of Kakheti and Kvemo Kartli. All laboratory activities are being performed in accordance with International Quality standards, adhering to biosafety and biosecurity rules by qualified and experienced personnel handling pathogenic agents. Laboratory testing plays the largest role in diagnosing animals with anthrax, which helps pertinent institutions to quickly confirm a diagnosis of anthrax and evaluate the epidemiological situation that generates important data for further responses.

Keywords: animal disease, baccilus anthracis, edp, laboratory molecular diagnostics

Procedia PDF Downloads 60
5858 Data Management System for Environmental Remediation

Authors: Elizaveta Petelina, Anton Sizo

Abstract:

Environmental remediation projects deal with a wide spectrum of data, including data collected during site assessment, execution of remediation activities, and environmental monitoring. Therefore, an appropriate data management is required as a key factor for well-grounded decision making. The Environmental Data Management System (EDMS) was developed to address all necessary data management aspects, including efficient data handling and data interoperability, access to historical and current data, spatial and temporal analysis, 2D and 3D data visualization, mapping, and data sharing. The system focuses on support of well-grounded decision making in relation to required mitigation measures and assessment of remediation success. The EDMS is a combination of enterprise and desktop level data management and Geographic Information System (GIS) tools assembled to assist to environmental remediation, project planning, and evaluation, and environmental monitoring of mine sites. EDMS consists of seven main components: a Geodatabase that contains spatial database to store and query spatially distributed data; a GIS and Web GIS component that combines desktop and server-based GIS solutions; a Field Data Collection component that contains tools for field work; a Quality Assurance (QA)/Quality Control (QC) component that combines operational procedures for QA and measures for QC; Data Import and Export component that includes tools and templates to support project data flow; a Lab Data component that provides connection between EDMS and laboratory information management systems; and a Reporting component that includes server-based services for real-time report generation. The EDMS has been successfully implemented for the Project CLEANS (Clean-up of Abandoned Northern Mines). Project CLEANS is a multi-year, multimillion-dollar project aimed at assessing and reclaiming 37 uranium mine sites in northern Saskatchewan, Canada. The EDMS has effectively facilitated integrated decision-making for CLEANS project managers and transparency amongst stakeholders.

Keywords: data management, environmental remediation, geographic information system, GIS, decision making

Procedia PDF Downloads 126
5857 Adoption of Noise and Vibration Management Tools for Major Infrastructure Projects in Sydney, Australia

Authors: Adrian Morris, Rodney Phillips, Mattia Tabacchi

Abstract:

Minimizing construction noise and vibration impacts is a key challenge for major infrastructure projects in urban environments. Before commencing construction works, Construction Noise and Vibration Management Plan (CNVMP) and Construction Noise and Vibration Impact Statements (CNVIS) are required to be prepared and submitted to the relevant government authorities for review and approval. However, the assessment of potential impacts from work activities at pre-approval stage may be inaccurate as works methodology and scheduling are yet to be determined. In response, noise and vibration management tools have been developed to refine and supplement the CNVIS as works progress. These tools have been successfully implemented in major infrastructure projects allowing contractors to plan and assess construction works in a cost effective and timely manner. As a result, noise and vibration management tools have been incorporated into management plans and are increasingly required by regulators.

Keywords: noise management, environmental noise, infrastructure projects, construction, vibration, cost effective

Procedia PDF Downloads 97
5856 The Influence of Ice Topography on Sliding over Ice

Authors: Ernests Jansons, Karlis Agris Gross

Abstract:

Winter brings snow and ice in the Northern Europe and with it the need to move safely over ice. It has been customary to select an appropriate material surface for movement over ice, but another way to influence the interaction with ice is to modify the ice surface. The objective of this work was to investigate the influence of ice topography on initiating movement over ice and on sliding velocity over ice in the laboratory and real-life conditions. The ice was prepared smooth, scratched or with solidified ice-droplets to represent the surface of ice after ice rain. In the laboratory, the coefficient of friction and the sliding velocity were measured, but the sliding velocity measured at the skeleton push-start facility. The scratched ice surface increased the resistance to movement and also showed the slowest sliding speed. Sliding was easier on the smooth ice and ice covered with frozen droplets. The contact surface was measured to determine the effect of contact area with sliding. Results from laboratory tests will be compared to loading under heavier loads to show the influence of load on sliding over different ice surfaces. This outcome provides a useful indicator for pedestrians and road traffic on the safety of movement over different ice surfaces as well as a reference for those involved with winter sports.

Keywords: contact area, friction, ice topography, sliding velocity

Procedia PDF Downloads 212
5855 Cutting Tools in Finishing Operations for CNC Rapid Manufacturing Processes: Experimental Studies

Authors: M. N. Osman Zahid, K. Case, D. Watts

Abstract:

This paper reports an advanced approach in the application of CNC machining for rapid manufacturing processes (CNC-RM). The aim of this study is to improve the quality of machined parts by introducing different cutting tools during finishing operations. As the cutting is performed in different directions, the surfaces presented on part can be classified into several categories. Therefore, suitable cutting tools are assigned to machine particular surfaces and to improve the quality. Experimental studies have been carried out by fabricating several parts based on the suggested approach. The results provide further support for implementing this approach in rapid machining processes.

Keywords: CNC machining, end mill tool, finishing operation, rapid manufacturing

Procedia PDF Downloads 318
5854 Behavior Loss Aversion Experimental Laboratory of Financial Investments

Authors: Jihene Jebeniani

Abstract:

We proposed an approach combining both the techniques of experimental economy and the flexibility of discrete choice models in order to test the loss aversion. Our main objective was to test the loss aversion of the Cumulative Prospect Theory (CPT). We developed an experimental laboratory in the context of the financial investments that aimed to analyze the attitude towards the risk of the investors. The study uses the lotteries and is basing on econometric modeling. The estimated model was the ordered probit.

Keywords: risk aversion, behavioral finance, experimental economic, lotteries, cumulative prospect theory

Procedia PDF Downloads 437
5853 Determination of the Bearing Capacity of Granular Pumice Soils by Laboratory Tests

Authors: Mustafa Yildiz, Ali Sinan Soganci

Abstract:

Pumice soils are countered in many projects such as transportation roads, channels and residential units throughout the World. The pumice deposits are characterized by the vesicular nature of their particles. When the pumice soils are evaluated considering the geotechnical viewpoint, they differ from silica sands in terms of physical and engineering characteristics. These differences are low grain strength, high friction angle, void ratio and compressibility. At stresses greater than a few hundred kPa, the stress-strain-strength behaviour of these soils is determined by particle crushing. Particle crushing leads to changes in the density and reduction in the components of shear stress due to expansion. In this study, the bearing capacity and behaviour of granular pumice soils compared to sand-gravels were investigated by laboratory model tests. Firstly the geotechnical properties of granular pumice soils were determined; then, the behaviour of pumice soils with an equivalent diameter of sand and gravel soils were investigated by model rectangular and circular foundation types and were compared with each other. For this purpose, basic types of model footing (15*15 cm, 20*20 cm, Φ=15 cm and Φ=20 cm) have been selected. When the experimental results of model bearing capacity are analyzed, the values of sand and gravel bearing capacity tests were found to be 1.0-1.5 times higher than the bearing capacity of pumice the same size. This fact has shown that sand and gravel have a higher bearing capacity than pumice of the similar particle sizes.

Keywords: pumice soils, laboratory model tests, bearing capacity, laboratory model tests, Nevşehir

Procedia PDF Downloads 189
5852 Biochemical Approach to Renewable Energy: Enhancing Students' Perception and Understanding of Science of Energy through Integrated Hands-On Laboratory

Authors: Samina Yasmin, Anzar Khaliq, Zareen Tabassum

Abstract:

Acute power shortage in Pakistan requires an urgent attention to take preliminary steps to spread energy awareness at all levels. One such initiative is taken at Habib University (HU), Pakistan, through renewable energy course, one of the core offerings, where students are trained to investigate various aspects of renewable energy concepts. The course is offered to all freshmen enrolled at HU regardless of their academic backgrounds and degree programs. A four-credit modular course includes both theory and laboratory elements. Hands-on laboratories play an important role in science classes, particularly to enhance the motivation and deep understanding of energy science. A set of selected hands-on activities included in course introduced students to explore the latest developments in the field of renewable energy such as dye-sensitized solar cells, gas chromatography, global warming, climate change, fuel cell energy and power of biomass etc. These projects not only helped HU freshmen to build on energy fundamentals but also provided them greater confidence in investigating, questioning and experimenting with renewable energy related conceptions. A feedback survey arranged during and end of term revealed the effectiveness of the hands-on laboratory to enhance the common understanding of real world problems related to energy such as awareness of energy saving, the level of concern about global climate change, environmental pollution and science of energy behind the energy usage.

Keywords: biochemical approaches, energy curriculum, hands-on laboratory, renewable energy

Procedia PDF Downloads 228
5851 Anlaytical Studies on Subgrade Soil Using Jute Geotextile

Authors: A. Vinod Kumar, G. Sunny Deol, Rakesh Kumar, B. Chandra

Abstract:

Application of fiber reinforcement in road construction is gaining some interest in enhancing soil strength. In this paper, the natural geotextile material obtained from gunny bags was used due to its vast local availability. Construction of flexible pavement on weaker soil such as clay soils is a significant problem in construction as well as in design due to its expansive characteristics. Jute geotextile (JGT) was used on a foundation layer of flexible pavement on rural roads. This problem will be conquered by increasing the subgrade strength by decreasing sub-base layer thickness by improving their overall pavement strength characteristics which ultimately reduces the cost of construction and leads to an economical design. California Bearing Ratio (CBR), unconfined compressive strength (UCS) and triaxial laboratory tests were conducted on two different soil samples, CI and MI. Weaker soil is reinforced with JGT, JGT+Bitumen. JGT+polythene sheet was varied with heights while performing the laboratory tests. Subgrade strength evaluation was investigated by conducting soak CBR test in the laboratory for clayey and silt soils. Laboratory results reveal that reinforced soak CBR value of clayey soil (CI) observed was 10.35%, and silty soil (MI) was 15.6%. This study intends to develop new technique for reinforcing weaker soil with JGT varying parameters for the need of low volume flexible pavements. It was observed that the performance of JGT is inferior when used with bitumen and polyethylene sheets.

Keywords: CBR, jute geotextile, low volume road, weaker soil

Procedia PDF Downloads 414
5850 The Accuracy of an 8-Minute Running Field Test to Estimate Lactate Threshold

Authors: Timothy Quinn, Ronald Croce, Aliaksandr Leuchanka, Justin Walker

Abstract:

Many endurance athletes train at or just below an intensity associated with their lactate threshold (LT) and often the heart rate (HR) that these athletes use for their LT are above their true LT-HR measured in a laboratory. Training above their true LT-HR may lead to overtraining and injury. Few athletes have the capability of measuring their LT in a laboratory and rely on perception to guide them, as accurate field tests to determine LT are limited. Therefore, the purpose of this study was to determine if an 8-minute field test could accurately define the HR associated with LT as measured in the laboratory. On Day 1, fifteen male runners (mean±SD; age, 27.8±4.1 years; height, 177.9±7.1 cm; body mass, 72.3±6.2 kg; body fat, 8.3±3.1%) performed a discontinuous treadmill LT/maximal oxygen consumption (LT/VO2max) test using a portable metabolic gas analyzer (Cosmed K4b2) and a lactate analyzer (Analox GL5). The LT (and associated HR) was determined using the 1/+1 method, where blood lactate increased by 1 mMol•L-1 over baseline followed by an additional 1 mMol•L-1 increase. Days 2 and 3 were randomized, and the athletes performed either an 8-minute run on the treadmill (TM) or on a 160-m indoor track (TR) in an effort to cover as much distance as possible while maintaining a high intensity throughout the entire 8 minutes. VO2, HR, ventilation (VE), and respiratory exchange ratio (RER) were measured using the Cosmed system, and rating of perceived exertion (RPE; 6-20 scale) was recorded every minute. All variables were averaged over the 8 minutes. The total distance covered over the 8 minutes was measured in both conditions. At the completion of the 8-minute runs, blood lactate was measured. Paired sample t-tests and pairwise Pearson correlations were computed to determine the relationship between variables measured in the field tests versus those obtained in the laboratory at LT. An alpha level of <0.05 was required for statistical significance. The HR (mean +SD) during the TM (167+9 bpm) and TR (172+9 bpm) tests were strongly correlated to the HR measured during the laboratory LT (169+11 bpm) test (r=0.68; p<0.03 and r=0.88; p<0.001, respectively). Blood lactate values during the TM and TR tests were not different from each other but were strongly correlated with the laboratory LT (r=0.73; p<0.04 and r=0.66; p<0.05, respectively). VE (Lmin-1) was significantly greater during the TR (134.8+11.4 Lmin-1) as compared to the TM (123.3+16.2 Lmin-1) with moderately strong correlations to the laboratory threshold values (r=0.38; p=0.27 and r=0.58; p=0.06, respectively). VO2 was higher during TR (51.4 mlkg-1min-1) compared to TM (47.4 mlkg-1min-1) with correlations of 0.33 (p=0.35) and 0.48 (p=0.13), respectively to threshold values. Total distance run was significantly greater during the TR (2331.6+180.9 m) as compared to the TM (2177.0+232.6 m), but they were strongly correlated with each other (r=0.82; p<0.002). These results suggest that an 8-minute running field test can accurately predict the HR associated with the LT and may be a simple test that athletes and coaches could implement to aid in training techniques.

Keywords: blood lactate, heart rate, running, training

Procedia PDF Downloads 226
5849 Development of Advanced Virtual Radiation Detection and Measurement Laboratory (AVR-DML) for Nuclear Science and Engineering Students

Authors: Lily Ranjbar, Haori Yang

Abstract:

Online education has been around for several decades, but the importance of online education became evident after the COVID-19 pandemic. Eventhough the online delivery approach works well for knowledge building through delivering content and oversight processes, it has limitations in developing hands-on laboratory skills, especially in the STEM field. During the pandemic, many education institutions faced numerous challenges in delivering lab-based courses, especially in the STEM field. Also, many students worldwide were unable to practice working with lab equipment due to social distancing or the significant cost of highly specialized equipment. The laboratory plays a crucial role in nuclear science and engineering education. It can engage students and improve their learning outcomes. In addition, online education and virtual labs have gained substantial popularity in engineering and science education. Therefore, developing virtual labs is vital for institutions to deliver high-class education to their students, including their online students. The School of Nuclear Science and Engineering (NSE) at Oregon State University, in partnership with SpectralLabs company, has developed an Advanced Virtual Radiation Detection and Measurement Lab (AVR-DML) to offer a fully online Master of Health Physics program. It was essential for us to use a system that could simulate nuclear modules that accurately replicate the underlying physics, the nature of radiation and radiation transport, and the mechanics of the instrumentations used in the real radiation detection lab. It was all accomplished using a Realistic, Adaptive, Interactive Learning System (RAILS). RAILS is a comprehensive software simulation-based learning system for use in training. It is comprised of a web-based learning management system that is located on a central server, as well as a 3D-simulation package that is downloaded locally to user machines. Users will find that the graphics, animations, and sounds in RAILS create a realistic, immersive environment to practice detecting different radiation sources. These features allow students to coexist, interact and engage with a real STEM lab in all its dimensions. It enables them to feel like they are in a real lab environment and to see the same system they would in a lab. Unique interactive interfaces were designed and developed by integrating all the tools and equipment needed to run each lab. These interfaces provide students full functionality for data collection, changing the experimental setup, and live data collection with real-time updates for each experiment. Students can manually do all experimental setups and parameter changes in this lab. Experimental results can then be tracked and analyzed in an oscilloscope, a multi-channel analyzer, or a single-channel analyzer (SCA). The advanced virtual radiation detection and measurement laboratory developed in this study enabled the NSE school to offer a fully online MHP program. This flexibility of course modality helped us to attract more non-traditional students, including international students. It is a valuable educational tool as students can walk around the virtual lab, make mistakes, and learn from them. They have an unlimited amount of time to repeat and engage in experiments. This lab will also help us speed up training in nuclear science and engineering.

Keywords: advanced radiation detection and measurement, virtual laboratory, realistic adaptive interactive learning system (rails), online education in stem fields, student engagement, stem online education, stem laboratory, online engineering education

Procedia PDF Downloads 61
5848 Predicting COVID-19 Severity Using a Simple Parameters in Resource-Limited Settings

Authors: Sireethorn Nimitvilai, Ussanee Poolvivatchaikarn, Nuchanart Tomeun

Abstract:

Objective: To determine the simple laboratory parameters to predict disease severity among COVID-19 patients in resource-limited settings. Material and methods: A retrospective cohort study was conducted at Nakhonpathom Hospital, a 722-bed tertiary care hospital, with an average of 50,000 admissions per year, during April 15 and May 15, 2021. Eligible patients were adults aged ≥ 15 years who were hospitalized with COVID-19. Baseline characteristics, comorbid conditions ad laboratory findings at admission were collected. Predictive factors for severe COVID-19 infection were analyzed. Result: There were 207 patients (79 male and 128 female) and the mean age was 46.7 (16.8) years. Of these, 39 cases (18.8%) were severe and 168 (81.2%) cases were non-severe. Factors associated with severe COVID-19 were neutrophil to lymphocyte ratio ≥ 4 (OR 8.1, 95%CI 2.3-20.3, P < 0.001) and C-reactive protein to albumin ratio ≥ 10 (OR 3.49, 95%CI 1.3-9.1, p 0.01). Conclusions: Complete blood counts, C-reactive protein and albumin are simple, inexpensive, widely available tests and can be used to predict severe COVID-19 in resource-limited settings.

Keywords: COVID-19, predictor of severity, resource-limiting settings, simple laboratory parameters

Procedia PDF Downloads 147
5847 Analytical Studies on Subgrade Soil Using Jute Geotextiles

Authors: A. Vinod Kumar, G. Sunny Deol, Rakesh Kumar, B. Chandra

Abstract:

Application of fiber reinforcement in road construction is gaining some interest in enhancing soil strength. In this paper, the natural Geotextile material obtained from gunny bags was used due to vast local availability material. Construction of flexible pavement on weaker soil such as clay soils are a significant problem in construction as well as in design due to its expansive characteristics. Jute Geotextile (JGT) was used on a foundation layer of flexible pavement on rural roads. This problem will be conquered by increasing the subgrade strength by decreasing sub-base layer thickness by improving their overall pavement strength characteristics which ultimately reduces the cost of construction and leads to economically design. The California Bearing Ratio (CBR), unconfined compressive strength (UCS) and triaxial laboratory tests were conducted on two different soil samples CI and MI. Weaker soil is reinforced with JGT, JGT+Bitumen; JGT+polythene sheet was varied with heights while performing the laboratory tests. Subgrade strength evaluation was investigated by conducting soak CBR test in the laboratory for clayey and silt soils. Laboratory results reveal that reinforced soak CBR value of clayey soil (CI) observed was 10.35%, and silty soil (MI) was 15.6%. This study intends to develop new technique for reinforcing weaker soil with JGT varying parameters for the need of low volume flexible pavements. It was observed that the performance of JGT is inferior when used with bitumen and polyethylene sheets.

Keywords: CBR, Jute geotextile, low volume road, weaker soil

Procedia PDF Downloads 399