Search results for: isotope dating
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 176

Search results for: isotope dating

146 Polygenetic Iron Mineralization in the Baba-Ali and Galali Deposits, Further Evidences from Stable (S, O, H) Isotope Data, NW Hamedan, Iran

Authors: Ghodratollah Rostami Paydar

Abstract:

The Baba-Ali and Galali iron deposits are located in northwest Hamedan and the Iranian Sanandaj-Sirjan geological structural zone. The host rocks of these deposits are metavolcanosedimentary successions of Songhor stratigraphic series with permo-trriassic age. Field investigation, ore geometry, textures and structures and paragenetic sequence of minerals, all indicate that the ore minerals are crystallized in four stages: primary volcanosedimentary stage, secondary regional metamorphism with formation of ductile shear zones, contact metamorphism and metasomatism stage and the finally late hydrothermal mineralization within uplift and exposure. Totally 29 samples of sulfide, oxide-silicate and carbonate minerals of iron orees and gangue has been purified for stable isotope analysis. The isotope ratio data assure that occurrence of dynamothermal metamorphism in these areas typically involves a lengthy period of time, which results in a tendency toward isotopic homogenization specifically in O and H stable isotopes and showing the role of metamorphic waters in mineralization process. Measurement of δ34S (CDT) in first generation of pyrite is higher than another ones, so it confirms the volcanogenic origin of primary iron mineralization. δ13C data measurements in Galali carbonate country rocks show a marine origin. δ18O in magnetite and skarn forming silicates, δ18O and δ13C in limestone and skarn calcite and δ34S in sulphides are all consistent with the interaction of a magmatic-equilibrated fluid with Galali limestone, and a dominantly magmatic source for S. All these data imply skarn formation and mineralisation in a magmatic-hydrothermal system that maintained high salinity to relatively late stages resulting in the formation of the regional Na metasomatic alteration halo. Late stage hydrothermal quartz-calcite veinlets are important for gold mineralization, but the economic evaluation is required to detailed geochemical studies.

Keywords: iron, polygenetic, stable isotope, BabaAli, Galali

Procedia PDF Downloads 260
145 Identifying Dominant Anaerobic Microorganisms for Degradation of Benzene

Authors: Jian Peng, Wenhui Xiong, Zheng Lu

Abstract:

An optimal recipe of amendment (nutrients and electron acceptors) was developed and dominant indigenous benzene-degrading microorganisms were characterized in this study. Lessons were learnt from the development of the optimal amendment recipe: (1) salinity and substantial initial concentration of benzene were detrimental for benzene biodegradation; (2) large dose of amendments can shorten the lag time for benzene biodegradation occurrence; (3) toluene was an essential co-substance for promoting benzene degradation activity. The stable isotope probing study identified incorporation 13C from 13C-benzene into microorganisms, which can be considered as a direct evidence of the occurrence of benzene biodegradation. The dominant mechanism for benzene removal was identified by quantitative polymerase chain reaction analysis to be nitrate reduction. Microbial analyses (denaturing gradient gel electrophoresis and 16S ribosomal RNA) demonstrated that members of genus Dokdonella spp., Pusillimonas spp., and Advenella spp. were predominant within the microbial community and involved in the anaerobic benzene bioremediation.

Keywords: benzene, enhanced anaerobic bioremediation, stable isotope probing, biosep biotrap

Procedia PDF Downloads 316
144 Groundwater Recharge Pattern in East and West Coast of India: Evidence of Dissimilar Moisture Sources

Authors: Ajit Kumar Behera, Saranya P., Sudhir Kumar, Krishnakumar A

Abstract:

The stable isotope (δ¹⁸ O and δ²H) composition of groundwater of the coastal areas of Periyar and Mahanadi basins falling along East and West coast of India during North-East (NE) monsoon season have been studied. The east and west coast regions are surrounded by the Bay of Bengal and the Arabian Sea respectively, which are considered to be the primary sources for precipitation over India. The major difference between the Bay of Bengal and the Arabian Sea is that a number of large rivers feed the Bay of Bengal, whereas the Arabian Sea is fed by very few small rivers, resulting in enriched stable isotopic composition of the Arabian Sea than the Bay of Bengal. Previous studies have reported depleted ratios of stable isotopes during Northeast monsoon along East and West coasts due to the influence of the Bay of Bengal moisture source. The isotopic composition of groundwater of the Mahanadi delta in the east coast region varies from -6.87 ‰ to -3.40 ‰ for δ¹⁸ O and -45.42 ‰ to -22.43‰ for δ²H. However, the groundwater of the Periyar basin in the west coast has enriched stable isotope value varying from -4.3‰ to -2.5 ‰ for δ¹⁸ O and for δ²H from -23.7 to -6.4 ‰ which is a characteristic of South-West monsoon season. This suggests the groundwater system of the Mahanadi delta and the Periyar basins are influenced by dissimilar moisture sources. The δ¹⁸ O and δ² H relationship (δ²H= 6.513 δ¹⁸ O - 1.39) and d-excess value (< 10) in the east coast region indicates the influence of NE monsoon implying the quick groundwater recharge after precipitation with significant amount of evaporation. In contrast, the δ¹⁸ O and δ²H regression line (δ²H= 8.408 δ¹⁸ O + 11.71) with high d-excess value (>10) in the west coast region implies delayed recharge due to SW monsoon. The observed isotopic enrichment in west coast suggests that NE winter monsoon rainfall does not replenish groundwater quick enough to produce isotopic depletion during the season.

Keywords: Arabian sea, bay of Bengal, groundwater, monsoon, stable isotope

Procedia PDF Downloads 346
143 Luminescence Dating of Ancient Agricultural Terraced Landscapes: Prospects for Heritage Protection

Authors: Lisa Snape, Andreas Lang, Tony Brown, Dan Fallu, Ben Pears

Abstract:

Agricultural terraced landscapes are widespread in mountainous areas in a variety of climatic zones around the World. The most famous are those found associated with the famous Inca site of Machu Pichu in the Andes, the arid lands in upland areas of Yemen, and the abundant rice terraces covering the hilltops in tropical areas such as Thailand, Vietnam, and China and also Bali. Terraces were designed using advanced engineered techniques, requiring specialist knowledge of bedrock geology, soil cultivation and maintenance, and ecosystem management to grow a variety of crops in specific environmental conditions. These enigmatic landscapes were often overlooked in the past but have now received widespread attention to further understand their age, origins, and evolution as the landscapes and environment changed over time. By understanding the age and chronologies of agricultural terrace technology, we can enhance our understanding of these unique features considered widely as important ecosystem services in the present day. We present distinct luminescence dating evidence from a variety of terraced systems found in different European environmental settings, such as the UK, Italy and Belgium, as part of the wider ERC-funded TerrACE Project. Our research aims to better understand their history and advocate for their protection and effective management as important cultural, heritage and environmental assets, creating new avenues for future scientific research.

Keywords: terraces, agriculture, luminescence dating, heritage protection

Procedia PDF Downloads 22
142 Ytterbium Advantages for Brachytherapy

Authors: S. V. Akulinichev, S. A. Chaushansky, V. I. Derzhiev

Abstract:

High dose rate (HDR) brachytherapy is a method of contact radiotherapy, when a single sealed source with an activity of about 10 Ci is temporarily inserted in the tumor area. The isotopes Ir-192 and (much less) Co-60 are used as active material for such sources. The other type of brachytherapy, the low dose rate (LDR) brachytherapy, implies the insertion of many permanent sources (up to 200) of lower activity. The pulse dose rate (PDR) brachytherapy can be considered as a modification of HDR brachytherapy, when the single source is repeatedly introduced in the tumor region in a pulse regime during several hours. The PDR source activity is of the order of one Ci and the isotope Ir-192 is currently used for these sources. The PDR brachytherapy is well recommended for the treatment of several tumors since, according to oncologists, it combines the medical benefits of both HDR and LDR types of brachytherapy. One of the main problems for the PDR brachytherapy progress is the shielding of the treatment area since the longer stay of patients in a shielded canyon is not enough comfortable for them. The use of Yb-169 as an active source material is the way to resolve the shielding problem for PDR, as well as for HRD brachytherapy. The isotope Yb-169 has the average photon emission energy of 93 KeV and the half-life of 32 days. Compared to iridium and cobalt, this isotope has a significantly lower emission energy and therefore requires a much lighter shielding. Moreover, the absorption cross section of different materials has a strong Z-dependence in that photon energy range. For example, the dose distributions of iridium and ytterbium have a quite similar behavior in the water or in the body. But the heavier material as lead absorbs the ytterbium radiation much stronger than the iridium or cobalt radiation. For example, only 2 mm of lead layer is enough to reduce the ytterbium radiation by a couple of orders of magnitude but is not enough to protect from iridium radiation. We have created an original facility to produce the start stable isotope Yb-168 using the laser technology AVLIS. This facility allows to raise the Yb-168 concentration up to 50 % and consumes much less of electrical power than the alternative electromagnetic enrichment facilities. We also developed, in cooperation with the Institute of high pressure physics of RAS, a new technology for manufacturing high-density ceramic cores of ytterbium oxide. Ceramics density reaches the limit of the theoretical values: 9.1 g/cm3 for the cubic phase of ytterbium oxide and 10 g/cm3 for the monoclinic phase. Source cores from this ceramics have high mechanical characteristics and a glassy surface. The use of ceramics allows to increase the source activity with fixed external dimensions of sources.

Keywords: brachytherapy, high, pulse dose rates, radionuclides for therapy, ytterbium sources

Procedia PDF Downloads 462
141 Measuring Biobased Content of Building Materials Using Carbon-14 Testing

Authors: Haley Gershon

Abstract:

The transition from using fossil fuel-based building material to formulating eco-friendly and biobased building materials plays a key role in sustainable building. The growing demand on a global level for biobased materials in the building and construction industries heightens the importance of carbon-14 testing, an analytical method used to determine the percentage of biobased content that comprises a material’s ingredients. This presentation will focus on the use of carbon-14 analysis within the building materials sector. Carbon-14, also known as radiocarbon, is a weakly radioactive isotope present in all living organisms. Any fossil material older than 50,000 years will not contain any carbon-14 content. The radiocarbon method is thus used to determine the amount of carbon-14 content present in a given sample. Carbon-14 testing is performed according to ASTM D6866, a standard test method developed specifically for biobased content determination of material in solid, liquid, or gaseous form, which requires radiocarbon dating. Samples are combusted and converted into a solid graphite form and then pressed onto a metal disc and mounted onto a wheel of an accelerator mass spectrometer (AMS) machine for the analysis. The AMS instrument is used in order to count the amount of carbon-14 present. By submitting samples for carbon-14 analysis, manufacturers of building materials can confirm the biobased content of ingredients used. Biobased testing through carbon-14 analysis reports results as percent biobased content, indicating the percentage of ingredients coming from biomass sourced carbon versus fossil carbon. The analysis is performed according to standardized methods such as ASTM D6866, ISO 16620, and EN 16640. Products 100% sourced from plants, animals, or microbiological material are therefore 100% biobased, while products sourced only from fossil fuel material are 0% biobased. Any result in between 0% and 100% biobased indicates that there is a mixture of both biomass-derived and fossil fuel-derived sources. Furthermore, biobased testing for building materials allows manufacturers to submit eligible material for certification and eco-label programs such as the United States Department of Agriculture (USDA) BioPreferred Program. This program includes a voluntary labeling initiative for biobased products, in which companies may apply to receive and display the USDA Certified Biobased Product label, stating third-party verification and displaying a product’s percentage of biobased content. The USDA program includes a specific category for Building Materials. In order to qualify for the biobased certification under this product category, examples of product criteria that must be met include minimum 62% biobased content for wall coverings, minimum 25% biobased content for lumber, and a minimum 91% biobased content for floor coverings (non-carpet). As a result, consumers can easily identify plant-based products in the marketplace.

Keywords: carbon-14 testing, biobased, biobased content, radiocarbon dating, accelerator mass spectrometry, AMS, materials

Procedia PDF Downloads 134
140 Serological Screening of Cytomegalovirus Infection among Sudanese Patients with Leukemia, Breast and Prostate Cancers at Radiation-Isotope Center in Khartoum

Authors: Abuelquasim. M. Hassan, Namarig .S. Mohammed, Samah F. Mohammed, Wafaa. A. Mohammed, Wafaa M. Edriss, Amel A. Ahmed, Elfadil M. Abass

Abstract:

Introduction: Cytomegalovirus (CMV), a common virus, usually causes asymptomatic infections in immunocompetent hosts; however, it may lead to serious complications especially in cancer patients. Objectives: This study was conducted to determine the seroprevalence of human cytomegalovirus (HCMV) among leukemia, breast and prostate cancer patients attending at Radiation Isotope-Center-Khartoum (RICK) from April to August 2016. Material and Methods: A total of 91 subjects were included: 30 leukemic, 22 breast cancer and 29 prostate cancer patients.10 of them were healthy and used as control group, serum samples were collected and tested for CMV IgG & IgM using enzyme-linked immune sorbent assay (ELISA). Result: Of the control group, 9/10 (9.9%) were seropositive for CMV IgG and 1/10 (1.09%) were sero positive for IgM. Also, all cancer groups demonstrated presence of IgG antibody classes as: The percentage of positive results in prostate, breast cancer and leukemia were 35.8 %, 37.2%, and 35.3% respectively. Conclusion: There was no significant correlation between leukemia, breast, prostate and HCMV.

Keywords: cytomegalovirus, serodiagnostic, breast cancer, leukemia

Procedia PDF Downloads 344
139 Adolescents’ Reports of Dating Abuse: Mothers’ Responses

Authors: Beverly Black

Abstract:

Background: Adolescent dating abuse (ADA) is widespread throughout the world and negatively impacts many adolescents. ADA is associated with lower self-esteem, poorer school performance, lower employment opportunities, higher rates of depression, absenteeism from school, substance abuse, bullying, smoking, suicide, pregnancy, eating disorders, and risky sexual behaviors, and experiencing domestic violence later in life. ADA prevention is sometimes addressed through school programming; yet, parental responses to ADA can also be an important vehicle for its prevention. In this exploratory study, the author examined how mothers, including abused mothers, responded to scenarios of ADA involving their children. Methods: Six focus groups were conducted between December, 2013 and June, 2014 with mothers (n=31) in the southern part of the United States. Three of the focus groups were comprised of mothers (n=17) who had been abused by their partners. Mothers were recruited from local community family agencies. Participants were provided a series of four scenarios about ADA and they were asked to explain how they would respond. Focus groups lasted approximately 45 minutes. All participants were given a gift card to a major retailer as a ‘thank you’. Using QSR-N10, two researchers’ analyzed the focus group data first using open and axial coding techniques to find overarching themes. Researchers triangulated the coded data to ensure accurate interpretations of the participants’ messages and used the scenario questions to structure the coded results. Results: Almost 30% of 699 comments coded as mothers’ recommendations for responding to ADA focused on the importance of providing advice to their children. Advice included breaking up, going to police, ignoring or avoiding the abusive partner, and setting boundaries in relationships. About 22% of comments focused on the need for educating teens about healthy and unhealthy relationships and seeking additional information. About 13% of the comments reflected the view that parents should confront abuser and/or abusers’ parents, and less than 2% noted the need to take their child to counseling. Mothers who had been abused offered similar responses as parents who had not experienced abuse. However, their responses were more likely to focus on sharing their own experience exercising caution in their responses, as they knew from their own experiences that authoritarian responses were ineffective. Over half of the comments indicated that parents would react stronger, quicker, and angrier if a girl was being abused by a boy than vice versa; parents expressed greater fear for their daughters than their sons involved in ADA. Conclusions. Results suggest that mothers have ideas about how to respond to ADA. Mothers who have been abused draw from their experiences and are aware that responding in an authoritarian manner may not be helpful. Because parental influence on teens is critical in their development, it is important for all parents to respond to ADA in a helpful manner to break the cycle of violence. Understanding responses to ADA can inform prevention programming to work with parents in responding to ADA.

Keywords: abused mothers' responses to dating abuse, adolescent dating abuse, mothers' responses to dating abuse, teen dating violence

Procedia PDF Downloads 196
138 The Potential for Cyclotron and Generator-produced Positron Emission Tomography Radiopharmaceuticals: An Overview

Authors: Ng Yen, Shafii Khamis, Rehir Bin Dahalan

Abstract:

Cyclotrons in the energy range 10-30 MeV are widely used for the production of clincally relevant radiosiotopes used in positron emission tomography (PET) nuclear imaging. Positron emmision tomography is a powerful nuclear imaging tool that produces high quality 3-dimentional images of functional processes of body. The advantage of PET among all other imaging devices is that it allows the study of an impressive array of discrete biochemical and physiologic processes, within a single imaging session. The number of PET scanner increases every year globally due to high clinical demand. However, not all PET centers can afford a cyclotron, due to the expense associated with operation of an in-house cyclotron. Therefore, current research has also focused on the development of parent/daughter generators that can reliably provide PET nuclides. These generators (68Ge/68Ga generator, 62Zn/62Cu, 82Sr/82Rb, etc) can provide even short-lived radionuclides at any time on demand, without the need of an ‘in-house cyclotron’. The parent isotope is produced at a cyclotron/reactor facility, and can be shipped to remote clinical sites (regionally/overseas), where the daughter isotope is eluted, a model similar to the 99Mo/99mTc generator system. The specific aim for this presentation is to talk about the potential for both of the cyclotron and generator-produced PET radiopharmaceuticals used in clinical imaging.

Keywords: positron emission tomography, radiopharmaceutical, cyclotron, generator

Procedia PDF Downloads 460
137 A Study on Evaluation for Performance Verification of Ni-63 Radioisotope Betavoltaic Battery

Authors: Youngmok Yun, Bosung Kim, Sungho Lee, Kyeongsu Jeon, Hyunwook Hwangbo, Byounggun Choi

Abstract:

A betavoltaic battery converts nuclear energy released as beta particles (β-) directly into electrical energy. Betavoltaic cells are analogous to photovoltaic cells. The beta particle’s kinetic energy enters a p-n junction and creates electron-hole pairs. Subsequently, the built-in potential of the p-n junction accelerates the electrons and ions to their respective collectors. The major challenges are electrical conversion efficiencies and exact evaluation. In this study, the performance of betavoltaic battery was evaluated. The betavoltaic cell was evaluated in the same condition as radiation from radioactive isotope using by FE-SEM(field emission scanning electron microscope). The average energy of the radiation emitted from the Ni-63 radioisotope is 17.42 keV. FE-SEM is capable of emitting an electron beam of 1-30keV. Therefore, it is possible to evaluate betavoltaic cell without radioactive isotopes. The betavoltaic battery consists of radioisotope that is physically connected on the surface of Si-based PN diode. The performance of betavoltaic battery can be estimated by the efficiency of PN diode unit cell. The current generated by scanning electron microscope with fixed accelerating voltage (17keV) was measured by using faraday cup. Electrical characterization of the p-n junction diode was performed by using Nano Probe Work Station and I-V measurement system. The output value of the betavoltaic cells developed by this research team was 0.162 μw/cm2 and the efficiency was 1.14%.

Keywords: betavoltaic, nuclear, battery, Ni-63, radio-isotope

Procedia PDF Downloads 234
136 Petrogenetic Model of Formation of Orthoclase Gabbro of the Dzirula Crystalline Massif, the Caucasus

Authors: David Shengelia, Tamara Tsutsunava, Manana Togonidze, Giorgi Chichinadze, Giorgi Beridze

Abstract:

Orthoclase gabbro intrusive exposes in the Eastern part of the Dzirula crystalline massif of the Central Transcaucasian microcontinent. It is intruded in the Baikal quartz-diorite gneisses as a stock-like body. The intrusive is characterized by heterogeneity of rock composition: variability of mineral content and irregular distribution of rock-forming minerals. The rocks are represented by pyroxenites, gabbro-pyroxenites and gabbros of different composition – K-feldspar, pyroxene-hornblende and biotite bearing varieties. Scientific views on the genesis and age of the orthoclase gabbro intrusive are considerably different. Based on the long-term pertogeochemical and geochronological investigations of the intrusive with such an extraordinary composition the authors came to the following conclusions. According to geological and geophysical data, it is stated that in the Saurian orogeny horizontal tectonic layering of the Earth’s crust of the Central Transcaucasian microcontinent took place. That is precisely this fact that explains the formation of the orthoclase gabbro intrusive. During the tectonic doubling of the Earth’s crust of the mentioned microcontinent thick tectonic nappes of mafic and sialic layers overlap the sialic basement (‘inversion’ layer). The initial magma of the intrusive was of high-temperature basite-ultrabasite composition, crystallization products of which are pyroxenites and gabbro-pyroxenites. Petrochemical data of the magma attest to its formation in the Upper mantle and partially in the ‘crustal astenolayer’. Then, a newly formed overheated dry magma with phenocrysts of clinopyrocxene and basic plagioclase intruded into the ‘inversion’ layer. From the new medium it was enriched by the volatile components causing the selective melting and as a result the formation of leucocratic quartz-feldspar material. At the same time in the basic magma intensive transformation of pyroxene to hornblende was going on. The basic magma partially mixed with the newly formed acid magma. These different magmas intruded first into the allochthonous basite layer without its significant transformation and then into the upper sialic layer and crystallized here at a depth of 7-10 km. By petrochemical data the newly formed leucocratic granite magma belongs to the S type granites, but the above mentioned mixed magma – to H (hybrid) type. During the final stage of magmatic processes the gabbroic rocks impregnated with high-temperature feldspar-bearing material forming anorthoclase or orthoclase. Thus, so called ‘orthoclase gabbro’ includes the rocks of various genetic groups: 1. protolith of gabbroic intrusive; 2. hybrid rock – K-feldspar gabbro and 3. leucocratic quartz-feldspar bearing rock. Petrochemical and geochemical data obtained from the hybrid gabbro and from the inrusive protolith differ from each other. For the identification of petrogenetic model of the orthoclase gabbro intrusive formation LA-ICP-MS- U-Pb zircon dating has been conducted in all three genetic types of gabbro. The zircon age of the protolith – mean 221.4±1.9 Ma and of hybrid K-feldspar gabbro – mean 221.9±2.2 Ma, records crystallization time of the intrusive, but the zircon age of quartz-feldspar bearing rocks – mean 323±2.9 Ma, as well as the inherited age (323±9, 329±8.3, 332±10 and 335±11 Ma) of hybrid K-feldspar gabbro corresponds to the formation age of Late Variscan granitoids widespread in the Dzirula crystalline massif.

Keywords: The Caucasus, isotope dating, orthoclase-bearing gabbro, petrogenetic model

Procedia PDF Downloads 323
135 Theoretical Study of Electronic Structure of Erbium (Er), Fermium (Fm), and Nobelium (No)

Authors: Saleh O. Allehabi, V. A. Dzubaa, V. V. Flambaum, Jiguang Li, A. V. Afanasjev, S. E. Agbemava

Abstract:

Recently developed versions of the configuration method for open shells, configuration interaction with perturbation theory (CIPT), and configuration interaction with many-body perturbation theory (CI+MBPT) techniques are used to study the electronic structure of Er, Fm, and No atoms. Excitation energies of odd states connected to the even ground state by electric dipole transitions, the corresponding transition rates, isotope shift, hyperfine structure, ionization potentials, and static scalar polarizabilities are calculated. The way of extracting parameters of nuclear charge distribution beyond nuclear root mean square (RMS) radius, e.g., a parameter of quadrupole deformation β, is demonstrated. In nuclei with spin > 1/2, parameter β is extracted from the quadrupole hyperfine structure. With zero nuclear spin or spin 1/2, it is impossible since quadrupole zero, so a different method was developed. The measurements of at least two atomic transitions are needed to disentangle the contributions of the changes in deformation and nuclear RMS radius into field isotopic shift. This is important for testing nuclear theory and for searching for the hypothetical island of stability. Fm and No are heavy elements approaching the superheavy region, for which the experimental data are very poor, only seven lines for the Fm element and one line for the No element. Since Er and Fm have similar electronic structures, calculations for Er serve as a guide to the accuracy of the calculations. Twenty-eight new levels of Fm atom are reported.

Keywords: atomic spectra, electronic transitions, isotope effect, electron correlation calculations for atoms

Procedia PDF Downloads 129
134 Attributes That Influence Respondents When Choosing a Mate in Internet Dating Sites: An Innovative Matching Algorithm

Authors: Moti Zwilling, Srečko Natek

Abstract:

This paper aims to present an innovative predictive analytics analysis in order to find the best combination between two consumers who strive to find their partner or in internet sites. The methodology shown in this paper is based on analysis of consumer preferences and involves data mining and machine learning search techniques. The study is composed of two parts: The first part examines by means of descriptive statistics the correlations between a set of parameters that are taken between man and women where they intent to meet each other through the social media, usually the internet. In this part several hypotheses were examined and statistical analysis were taken place. Results show that there is a strong correlation between the affiliated attributes of man and woman as long as concerned to how they present themselves in a social media such as "Facebook". One interesting issue is the strong desire to develop a serious relationship between most of the respondents. In the second part, the authors used common data mining algorithms to search and classify the most important and effective attributes that affect the response rate of the other side. Results exhibit that personal presentation and education background are found as most affective to achieve a positive attitude to one's profile from the other mate.

Keywords: dating sites, social networks, machine learning, decision trees, data mining

Procedia PDF Downloads 275
133 Geochemical Study of Natural Bitumen, Condensate and Gas Seeps from Sousse Area, Central Tunisia

Authors: Belhaj Mohamed, M. Saidi, N. Boucherab, N. Ouertani, I. Bouazizi, M. Ben Jrad

Abstract:

Natural hydrocarbon seepage has helped petroleum exploration as a direct indicator of gas and/or oil subsurface accumulations. Surface macro-seeps are generally an indication of a fault in an active Petroleum Seepage System belonging to a Total Petroleum System. This paper describes a case study in which multiple analytical techniques were used to identify and characterize trace petroleum-related hydrocarbons and other volatile organic compounds in groundwater samples collected from Sousse aquifer (Central Tunisia). The analytical techniques used for analyses of water samples included gas chromatography-mass spectrometry (GC-MS), capillary GC with flame-ionization detection, Compund Specific Isotope Analysis, Rock Eval Pyrolysis. The objective of the study was to confirm the presence of gasoline and other petroleum products or other volatile organic pollutants in those samples in order to assess the respective implication of each of the potentially responsible parties to the contamination of the aquifer. In addition, the degree of contamination at different depths in the aquifer was also of interest. The oil and gas seeps have been investigated using biomarker and stable carbon isotope analyses to perform oil-oil and oil-source rock correlations. The seepage gases are characterized by high CH4 content, very low δ13CCH4 values (-71,9 ‰) and high C1/C1–5 ratios (0.95–1.0), light deuterium–hydrogen isotope ratios (-198 ‰) and light δ13CC2 and δ13CCO2 values (-23,8‰ and-23,8‰ respectively) indicating a thermogenic origin with the contribution of the biogenic gas. An organic geochemistry study was carried out on the more ten oil seep samples. This study includes light hydrocarbon and biomarkers analyses (hopanes, steranes, n-alkanes, acyclic isoprenoids, and aromatic steroids) using GC and GC-MS. The studied samples show at least two distinct families, suggesting two different types of crude oil origins: the first oil seeps appears to be highly mature, showing evidence of chemical and/or biological degradation and was derived from a clay-rich source rock deposited in suboxic conditions. It has been sourced mainly by the lower Fahdene (Albian) source rocks. The second oil seeps was derived from a carbonate-rich source rock deposited in anoxic conditions, well correlated with the Bahloul (Cenomanian-Turonian) source rock.

Keywords: biomarkers, oil and gas seeps, organic geochemistry, source rock

Procedia PDF Downloads 417
132 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources

Authors: Mustafa Alhamdi

Abstract:

Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.

Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification

Procedia PDF Downloads 121
131 Variation of Carbon Isotope Ratio (δ13C) and Leaf-Productivity Traits in Aquilaria Species (Thymelaeceae)

Authors: Arlene López-Sampson, Tony Page, Betsy Jackes

Abstract:

Aquilaria genus produces a highly valuable fragrant oleoresin known as agarwood. Agarwood forms in a few trees in the wild as a response to injure or pathogen attack. The resin is used in perfume and incense industry and medicine. Cultivation of Aquilaria species as a sustainable source of the resin is now a common strategy. Physiological traits are frequently used as a proxy of crop and tree productivity. Aquilaria species growing in Queensland, Australia were studied to investigate relationship between leaf-productivity traits with tree growth. Specifically, 28 trees, representing 12 plus trees and 16 trees from yield plots, were selected to conduct carbon isotope analysis (δ13C) and monitor six leaf attributes. Trees were grouped on four diametric classes (diameter at 150 mm above ground level) ensuring the variability in growth of the whole population was sampled. Model averaging technique based on the Akaike’s information criterion (AIC) was computed to identify whether leaf traits could assist in diameter prediction. Carbon isotope values were correlated with height classes and leaf traits to determine any relationship. In average four leaves per shoot were recorded. Approximately one new leaf per week is produced by a shoot. Rate of leaf expansion was estimated in 1.45 mm day-1. There were no statistical differences between diametric classes and leaf expansion rate and number of new leaves per week (p > 0.05). Range of δ13C values in leaves of Aquilaria species was from -25.5 ‰ to -31 ‰ with an average of -28.4 ‰ (± 1.5 ‰). Only 39% of the variability in height can be explained by δ13C in leaf. Leaf δ13C and nitrogen content values were positively correlated. This relationship implies that leaves with higher photosynthetic capacities also had lower intercellular carbon dioxide concentrations (ci/ca) and less depleted values of 13C. Most of the predictor variables have a weak correlation with diameter (D). However, analysis of the 95% confidence of best-ranked regression models indicated that the predictors that could likely explain growth in Aquilaria species are petiole length (PeLen), values of δ13C (true13C) and δ15N (true15N), leaf area (LA), specific leaf area (SLA) and number of new leaf produced per week (NL.week). The model constructed with PeLen, true13C, true15N, LA, SLA and NL.week could explain 45% (R2 0.4573) of the variability in D. The leaf traits studied gave a better understanding of the leaf attributes that could assist in the selection of high-productivity trees in Aquilaria.

Keywords: 13C, petiole length, specific leaf area, tree growth

Procedia PDF Downloads 473
130 Petrogenesis and Tectonic Implication of the Oligocene Na-Rich Granites from the North Sulawesi Arc, Indonesia

Authors: Xianghong Lu, Yuejun Wang, Chengshi Gan, Xin Qian

Abstract:

The North Sulawesi Arc, located on the east of Indonesia and to the south of the Celebes Sea, is the north part of the K-shape of Sulawesi Island and has a complex tectonic history since the Cenozoic due to the convergence of three plates (Eurasia, India-Australia and Pacific plates). Published rock records contain less precise chronology, mostly using K-Ar dating, and rare geochemistry data, which limit the understanding of the regional tectonic setting. This study presents detailed zircon U-Pb geochronological and Hf-O isotope and whole-rock geochemical analyses for the Na-rich granites from the North Sulawesi Arc. Zircon U-Pb geochronological analyses of three representative samples yield weighted mean ages of 30.4 ± 0.4 Ma, 29.5 ± 0.2 Ma, and 27.3 ± 0.4 Ma, respectively, revealing the Oligocene magmatism in the North Sulawesi Arc. The samples have high Na₂O and low K₂O contents with high Na₂O/K₂O ratios, belonging to Low-K tholeiitic Na-rich granites. The Na-rich granites are characterized by high SiO₂ contents (75.05-79.38 wt.%) and low MgO contents (0.07-0.91 wt.%) and show arc-like trace elemental signatures. They have low (⁸⁷Sr/⁸⁶Sr)i ratios (0.7044-0.7046), high εNd(t) values (from +5.1 to +6.6), high zircon εHf(t) values (from +10.1 to +18.8) and low zircon δ18O values (3.65-5.02). They show an Indian-Ocean affinity of Pb isotopic compositions with ²⁰⁶Pb/²⁰⁴Pb ratio of 18.16-18.37, ²⁰⁷Pb/²⁰⁴Pb ratio of 15.56-15.62, and ²⁰⁸Pb/²⁰⁴Pb ratio of 38.20-38.66. These geochemical signatures suggest that the Oligocene Na-rich granites from the North Sulawesi Arc formed by partial melting of the juvenile oceanic crust with sediment-derived fluid-related metasomatism in a subducting setting and support an intra-oceanic arc origin. Combined with the published study, the emergence of extensive calc-alkaline felsic arc magmatism can be traced back to the Early Oligocene period, subsequent to the Eocene back-arc basalts (BAB) that share similarity with the Celebes Sea basement. Since the opening of the Celebes Sea started from the Eocene (42~47 Ma) and stopped by the Early Oligocene (~32 Ma), the geodynamical mechanism of the formation of the Na-rich granites from the North Sulawesi Arc during the Oligocene might relate to the subduction of the Indian Ocean.

Keywords: North Sulawesi Arc, oligocene, Na-rich granites, in-situ zircon Hf–O analysis, intra-oceanic origin

Procedia PDF Downloads 45
129 Identification and Characterization of Groundwater Recharge Sites in Kuwait

Authors: Dalal Sadeqi

Abstract:

Groundwater is an important component of Kuwait’s water resources. Although limited in quantity and often poor in quality, the significance of this natural source of water cannot be overemphasized. Recharge of groundwater in Kuwait occurs during periodical storm events, especially in open desert areas. Runoff water dissolves accumulated surficial meteoric salts and subsequently leaches them into the groundwater following a period of evaporative enrichment at or near the soil surface. Geochemical processes governing groundwater recharge vary in time and space. Stable isotope (18O and 2H) and geochemical signatures are commonly used to gain some insight into recharge processes and groundwater salinization mechanisms, particularly in arid and semiarid regions. This article addresses the mechanism used in identifying and characterizing the main water shed areas in Kuwait using stable isotopes in an attempt to determine favorable groundwater recharge sites in the country. Stable isotopes of both rainwater and groundwater were targeted in different hydrogeological settings. Additionally, data and information obtained from subsurface logs in the study area were collected and analyzed to develop a better understanding of the lateral and vertical extent of the groundwater aquifers. Geographic Information System (GIS) and RockWorks 3D modelling software were used to map out the hydrogeomorphology of the study area and the subsurface lithology of the investigated aquifers. The collected data and information, including major ion chemistry, isotopes, subsurface characteristics, and hydrogeomorphology, were integrated in a GIS platform to identify and map out suitable natural recharge areas as part of an integrated water resources management scheme that addresses the challenges of the sustainability of the groundwater reserves in the country.

Keywords: scarcity, integrated, recharge, isotope

Procedia PDF Downloads 83
128 Evaluation of Stable Isotope in Life History and Mating Behaviour of Mediterranean Fruit Fly Ceratitis capitata (Diptera: Tephidae) in Laboratory Conditions

Authors: Hasan AL-Khshemawee, Manjree Agarwal, Xin Du, Yonglin Ren

Abstract:

The possibility use of stable isotopes to study Medfly mating and life history were investigated in these experiments. 13C6 glucose was incorporated in the diet of the Mediterranean fruit fly Ceratitis capitata (Diptera: Tephidae). Treatments included labelling and unlabelled of either the media or adult sugar water. The measured started from egg hatching till the adults have died. After mating, the adults were analysed for 13C6 glucose ratio using Liquid chromatography-mass spectrometry LC-MS in two periods of time immediately and after three days of mating. Results showed that stable isotopes were used successfully for labelling Medfly in laboratory conditions, and there were significant differences between labelled and unlabelled treatment in eggs hatching, larval development, pupae emergence, survival of adults and mating behaviour. Labelling during larval development and combined labelling of larvae and adults resulted in detectable values. The label glucose in larvae stage did not effect on mating behaviour, however, the label glucose in adults’ stage was affected by mating behaviour. We recommended that it is possible to label adults of Mediterranean fruit fly C. capitata and detected the label after mating. This method offers good tools to study mating behaviour in Medfly and other types of insects and could be providing useful tools in genetic studies, sterile insect technique (SIT) or agricultural pest management. Also, we recommended using this technique in the field.

Keywords: stable isotope, sterile insect technique (SIT), medfly, mating behaviour

Procedia PDF Downloads 223
127 Hydrological Challenges and Solutions in the Nashik Region: A Multi Tracer and Geochemistry Approach to Groundwater Management

Authors: Gokul Prasad, Pennan Chinnasamy

Abstract:

The degradation of groundwater resources, attributed to factors such as excessive abstraction and contamination, has emerged as a global concern. This study delves into the stable isotopes of water) in a hard-rock aquifer situated in the Upper Godavari watershed, an agriculturally rich region in India underlain by Basalt. The higher groundwater draft (> 90%) poses significant risks; comprehending groundwater sources, flow patterns, and their environmental impacts is pivotal for researchers and water managers. The region has faced five droughts in the past 20 years; four are categorized as medium. The recharge rates are variable and show a very minimum contribution to groundwater. The rainfall pattern shows vast variability, with the region receiving seasonal monsoon rainfall for just four months and the rest of the year experiencing minimal rainfall. This research closely monitored monsoon precipitation inputs and examined spatial and temporal fluctuations in δ18O and δ2H in both groundwater and precipitation. By discerning individual recharge events during monsoons, it became possible to identify periods when evaporation led to groundwater quality deterioration, characterized by elevated salinity and stable isotope values in the return flow. The locally derived meteoric water line (LMWL) (δ2H = 6.72 * δ18O + 1.53, r² = 0.6) provided valuable insights into the groundwater system. The leftward shift of the Nashik LMWL in relation to the GMWL and LMWL indicated groundwater evaporation (-33 ‰), supported by spatial variations in electrical conductivity (EC) data. Groundwater in the eastern and northern watershed areas exhibited higher salinity > 3000uS/cm, expanding > 40% of the area compared to the western and southern regions due to geological disparities (alluvium vs basalt). The findings emphasize meteoric precipitation as the primary groundwater source in the watershed. However, spatial variations in isotope values and chemical constituents indicate other contributing factors, including evaporation, groundwater source type, and natural or anthropogenic (specifically agricultural and industrial) contaminants. Therefore, the study recommends focused hydro geochemistry and isotope analysis in areas with strong agricultural and industrial influence for the development of holistic groundwater management plans for protecting the groundwater aquifers' quantity and quality.

Keywords: groundwater quality, stable isotopes, salinity, groundwater management, hard-rock aquifer

Procedia PDF Downloads 27
126 Analysing Representations of ‘Leftover’ Women in Chinese Media: Taking the Film ‘The Last Woman Standing’ and ‘I Do’ as Examples

Authors: Ting Li Liu

Abstract:

‘Leftover woman’ or ‘3S’ woman is the term used to describe a well-educated, high income, independent woman who is single and never married around 30 years in Chinese society. With the naming of this demographic of ‘leftover women’, their family, dating culture, mate selection and marriage attract public concern. Massive media representations of ‘leftover women’ occur daily; the research aims to present several media representations of women’s anxiety about their singlehood and related marital issues around thirty. The research triangulates two areas of media representation of ‘leftover women’: films and audience reviews on ‘Douban Movie’ website. Drawing on traditional media studies, Fairclough’s critical discourse analysis combined with multimodal techniques is applied to the research to analyze the representations of ‘leftover women’ and their implications for marital culture in China, in conjunction with a feminist perspective. The conference paper will discuss two case studies: the film ‘The last woman standing’ and ‘I Do’. Paying attention to different aspects of ‘leftover women’, the research aims to re-examine the representations of ‘leftover women’ in selected scenes, such as their age anxiety, family, marriage, dating process, careers, etc. The paper also includes public beliefs about ‘leftover women’ from online audience reviews. In conclusion, the emergence of ‘leftover women’ is a reflection of Chinese tradition’s impact on people’s lives and new changes in Chinese families and their attitude to marriage.

Keywords: leftover women, marriage, family, media culture, China

Procedia PDF Downloads 231
125 The Application of Raman Spectroscopy in Olive Oil Analysis

Authors: Silvia Portarena, Chiara Anselmi, Chiara Baldacchini, Enrico Brugnoli

Abstract:

Extra virgin olive oil (EVOO) is a complex matrix mainly composed by fatty acid and other minor compounds, among which carotenoids are well known for their antioxidative function that is a key mechanism of protection against cancer, cardiovascular diseases, and macular degeneration in humans. EVOO composition in terms of such constituents is generally the result of a complex combination of genetic, agronomical and environmental factors. To selectively improve the quality of EVOOs, the role of each factor on its biochemical composition need to be investigated. By selecting fruits from four different cultivars similarly grown and harvested, it was demonstrated that Raman spectroscopy, combined with chemometric analysis, is able to discriminate the different cultivars, also as a function of the harvest date, based on the relative content and composition of fatty acid and carotenoids. In particular, a correct classification up to 94.4% of samples, according to the cultivar and the maturation stage, was obtained. Moreover, by using gas chromatography and high-performance liquid chromatography as reference techniques, the Raman spectral features further allowed to build models, based on partial least squares regression, that were able to predict the relative amount of the main fatty acids and the main carotenoids in EVOO, with high coefficients of determination. Besides genetic factors, climatic parameters, such as light exposition, distance from the sea, temperature, and amount of precipitations could have a strong influence on EVOO composition of both major and minor compounds. This suggests that the Raman spectra could act as a specific fingerprint for the geographical discrimination and authentication of EVOO. To understand the influence of environment on EVOO Raman spectra, samples from seven regions along the Italian coasts were selected and analyzed. In particular, it was used a dual approach combining Raman spectroscopy and isotope ratio mass spectrometry (IRMS) with principal component and linear discriminant analysis. A correct classification of 82% EVOO based on their regional geographical origin was obtained. Raman spectra were obtained by Super Labram spectrometer equipped with an Argon laser (514.5 nm wavelenght). Analyses of stable isotope content ratio were performed using an isotope ratio mass spectrometer connected to an elemental analyzer and to a pyrolysis system. These studies demonstrate that RR spectroscopy is a valuable and useful technique for the analysis of EVOO. In combination with statistical analysis, it makes possible the assessment of specific samples’ content and allows for classifying oils according to their geographical and varietal origin.

Keywords: authentication, chemometrics, olive oil, raman spectroscopy

Procedia PDF Downloads 298
124 Gratitude, Forgiveness and Relationship Satisfaction in Dating College Students: A Parallel Multiple Mediator Model

Authors: Qinglu Wu, Anna Wai-Man Choi, Peilian Chi

Abstract:

Gratitude is one individual strength that not only facilitates the mental health, but also fosters the relationship satisfaction in the romantic relationship. In terms of moral effect theory and stress-and-coping theory of forgiveness, present study not only investigated the association between grateful disposition and relationship satisfaction, but also explored the mechanism by comprehensively examining the potential mediating roles of three profiles of forgiveness (trait forgivingness, decisional forgiveness, emotional forgiveness), another character strength that highly related to the gratitude and relationship satisfaction. Structural equation modeling was used to conduct the multiple mediator model with a sample of 103 Chinese college students in dating relationship (39 male students and 64 female students, Mage = 19.41, SD = 1.34). Findings displayed that both gratitude and relationship satisfaction positively correlated with decisional forgiveness and emotional forgiveness. Emotional forgiveness was the only mediator, and it completely mediated the relationship between gratitude and relationship satisfaction. Gratitude was helpful in enhancing individuals’ perception of satisfaction in romantic relationship through replacing negative emotions toward partners with positive ones after transgression in daily life. It highlighted the function of emotional forgiveness in personal healing and peaceful state, which is important to the perception of satisfaction in relationship. Findings not only suggested gratitude could provide a stability for forgiveness, but also the mechanism of prosocial responses or positive psychological processes on relationship satisfaction. The significant roles of gratitude and emotional forgiveness could be emphasized in the intervention working on the romantic relationship development or reconciliation.

Keywords: decisional forgiveness, emotional forgiveness, gratitude, relationship satisfaction, trait forgivingness

Procedia PDF Downloads 245
123 Geological, Geochronological, Geochemical, and Geophysical Characteristics of the Dalli Porphyry Cu-Au Deposit in Central Iran; Implications for Exploration

Authors: Hooshag Asadi Haroni, Maryam Veiskarami, Yongjun Lu

Abstract:

The Dalli gold-rich porphyry deposit (17 Mt @ 0.5% Cu and 0.65 g/t Au) is located in the Urumieh-Dokhtar Magmatic Arc (UDMA), a small segment of the Tethyan metallogenic belt, hosting several porphyry Cu (Mo-Au) systems in Iran. This research characterizes the Dalli deposit to define exploration criteria in advanced exploration such as the drilling of possible blind porphyry centers. Geological map, trench/drill hole geochemical and ground magnetic data, and age dating and isotope trace element analyses, carried out at the John De Laeter Research Center of Curtin University, were used to characterize the Delli deposit. Mineralization at Dalli is hosted by NE-trending quartz-diorite porphyry stocks (~ 200m in diameter) intruded by a wall-rock andesite porphyry. Disseminated and stockwork Cu-Au mineralization is related to potassic alteration, comprising magnetite, late K-feldspar and biotite, and quartz-sericite-specularite overprint, surrounded by extensive barren argillic and propylitic alterations. In the peripheries of the porphyry centers, there are N-trending vuggy quartz veins, hosting epithermal Au-Ag-As-Sb mineralization. Geochemical analyses of drill core samples showed that the core of the porphyry stocks is low-grade, whereas the high-grade disseminated and stockwork mineralization (~ 1% Cu and ~ 1.2 g/t Au) occurred at the contact of the porphyry stocks and andesite porphyry. Geochemical studies of the drill hole and trench samples showed a strong correlation between Cu and Au and both show a second-order correlation with Fe and As. Magnetic survey revealed two significant magnetic anomalies, associated with intensive potassic alteration, in the reduced-to-the-pole magnetic map of the area. A relatively weaker magnetic anomaly, showing no surface porphyry expressions, is located on a lithocap, consisting of advanced argillic alteration, vuggy quartz veins, and surface expressions of epithermal geochemical signatures. The association of the lithocap and the weak magnetic anomaly could be indicative of a hidden mineralized porphyry center. Litho-geochemical analyses of the least altered Dalli intrusions and volcanic rocks indicated high Sr/Y (49-61) and Eu/Eu* (0.89-0.92), features typical of Cu porphyries. The U-Pb dating of zircons of the mineralized quartz diorite and andesite porphyry, carried out by laser ablation inductively coupled plasma mass spectrometry, yielded magmatic crystallization ages of 15.4-16.0 Ma (Middle Miocene). The zircon trace element concentrations of Dalli are characterized by high Eu/Eu* (0.3-0.8), (Ce/Nd)/Y (0.01-0.3), and 10000*(Eu/Eu*)/Y (2-15) ratios, similar to fertile porphyry suites such as the giant Sar-Cheshmeh and Qulong porphyry Cu deposits along the Tethyan belt. This suggests that the Middle Miocene Dalli intrusions are fertile and require extensive deep drillings to define their potential. Chondrite-normalized rare earth element (REE) patterns show no significant Eu anomalies, and are characterized by light-REE enrichments (La/Sm)n = 2.57–6.40). In normalized multi-element diagrams, analyzed rocks are characterized by enrichments in large ion lithophile elements (LILE) and depletions in high field strength elements (HFSE), and display typical features of subduction-related calc-alkaline magmas. The characteristics of the Dalli deposit provided several recognition criteria for detailed exploration of Cu-Au porphyry deposits and highlighted the importance of the UDMA as a potentially significant, economically important, but relatively underexplored porphyry province.

Keywords: porphyry, gold, geochronology, magnetic, exploration

Procedia PDF Downloads 23
122 Conservation of Ibis Statue Made of Composite Materials Dating to 3RD Intermediate Period - Late Period

Authors: Badawi Mahmoud, Eid Mohamed, Salih Hytham, Tahoun Mamdouh

Abstract:

Cultural properties made of types of materials; we can classify them broadly into three categories. There are organic cultural properties which have their origin in the animal and plant kingdoms. There are the inorganic cultural properties made of metal or stone. Then there are those made of both organic and inorganic materials such as metal with wood. Most cultural properties are made from several materials rather than from one single material. Cultural properties reveal a lot of information about the past and often have great artistic value. It is important to extend the life of cultural properties and preserve themif possible, that is intended to preserve them for future generations. The study of metallic relics usually includes examining the techniques used to make them and the extent to which they have corroded. The conservation science of archaeological artifacts demands an accurate grasp of the interior of the article, which cannot be seen. This is essential to elucidate the method of manufacture and provides information that is important for cleaning, restoration, and other processes of conservation. Conservation treatment does not ensure the prevention of further degradation of the archaeological artifact. Instead, it is an attempt to inhibit further degradation as much as possible. Ancient metallic artifacts are made of many materials. Some are made of a single metal, such as iron, copper, or bronze. There are also composite relics made of several metals. Almost all metals (except gold) corrode while they rest underground. Corrosion is caused by the interaction of oxygen, water, and various ions. Chloride ions play a major role in the advance of corrosion. Excavated metallic relics are usually scientifically examined as to their structure and materials and treated for preservation before being displayed for exhibition or stored in a storehouse. Bird statue hermit body is made of wood and legs and beak bronze, the object broken separated to three parts. This statue came to Grand Egyptian Museum – Conservation Centre (GEM-CC) Inorganic Lab. Statuette representing the god djehoty shaped of the bird (ibis) sculpture made of bronze and wood the body of statues made from wood and bronze from head and leg and founded remains of black resin maybe it found with mummy, the base installed by wooden statue of the ancient writings there dating, the archaeological unit decided the dating is 3rd intermediate period - late period. This study aims to do conservation process for this statue, attempt to inhibit further degradation as much as possible and fill fractures and cracks in the wooden part.

Keywords: inorganic materials, metal, wood, corrosion, ibis

Procedia PDF Downloads 224
121 Petrologic and Geochemical Characteristics of Marine Sand Strip in the Proterozoic Chuanlinggou Formation of the North China

Authors: Yue Feng, Chun-jiang Wang, Zhi-long Huang

Abstract:

The study of the sedimentary environment of Mesoproterozoic marine deposits in North China has attracted special attention in recent years. It is not clear that the sedimentary environment and the cause of formation of the sandstone strip and its internal carbonate cements and pyrite in the Mesoproterozoic Chuanlinggou Formation in North China. In this study, drilling core samples in North China were identified by microscopy, and their petrological characteristics such as mineral composition and structure were identified. The geochemical data of carbon and oxygen isotopes, total organic carbon (TOC) contents and total sulfur (TS) contents were obtained by processing and analyzing the samples. The samples are mainly quartz particles with low compositional maturity, combined with low value of TOC, it shows that the sedimentary environment of the sandy clastic is a sandy littoral sedimentary environment with relative strong hydrodynamic force, and then the sandstone strip in black shale are formed by the deposition of gravity flow. Analysis of TS values reflect sandstone bands formed in hypoxic environments. The carbonate cements and the pyrite in the sandstone belt are authigenic. The carbon isotope values of authigenic carbonate cements are negatively biased in comparison with the carbonate isotope of carbonate rocks in the same period, but it is more biased than the carbon isotopic values of anaerobic oxidation of methane (AOM) genetic carbonate rocks. Authigenic pyrite may be mainly due to the formation of HS- by the action of bacterial sulfate reduction (BSR) and Fe²⁺, their causes are in contact. This indicates that authigenic carbonate cements are mainly carbonate precipitates formed but are significantly affected by the effects of AOM. Summary, the sedimentary environment of the sandstone zone in the Chuanlinggou Formation in the North China is a shallow sea facies with iron rich and anoxic.

Keywords: sandstone strip, sedimentary environment, authigenic carbonate cements, authigenic pyrite, The Chuanlinggou group, North China

Procedia PDF Downloads 120
120 The Evolution of Man through Cranial and Dental Remains: A Literature Review

Authors: Rishana Bilimoria

Abstract:

Darwin’s insightful anthropological theory on the evolution drove mankind’s understanding of our existence in the natural world. Scientists consider analysis of dental and craniofacial remains to be pivotal in uncovering facts about our evolutionary journey. The resilient mineral content of enamel and dentine allow cranial and dental remains to be preserved for millions of years, making it an excellent resource not only in anthropology but other fields of research including forensic dentistry. This literature review aims to chronologically approach each ancestral species, reviewing Australopithecus, Paranthropus, Homo Habilis, Homo Rudolfensis, Homo Erectus, Homo Neanderthalis, and finally Homo Sapiens. Studies included in the review assess the features of cranio-dental remains that are of evolutionary importance, such as microstructure, microwear, morphology, and jaw biomechanics. The article discusses the plethora of analysis techniques employed to study dental remains including carbon dating, dental topography, confocal imaging, DPI scanning and light microscopy, in addition to microwear study and analysis of features such as coronal and root morphology, mandibular corpus shape, craniofacial anatomy and microstructure. Furthermore, results from these studies provide insight into the diet, lifestyle and consequently, ecological surroundings of each species. We can correlate dental fossil evidence with wider theories on pivotal global events, to help us contextualize each species in space and time. Examples include dietary adaptation during the period of global cooling converting the landscape of Africa from forest to grassland. Global migration ‘out of Africa’ can be demonstrated by enamel thickness variation, cranial vault variation over time demonstrates accommodation to larger brain sizes, and dental wear patterns can place the commencement of lithic technology in history. Conclusions from this literature review show that dental evidence plays a major role in painting a phenotypic and all rounded picture of species of the Homo genus, in particular, analysis of coronal morphology through carbon dating and dental wear analysis. With regards to analysis technique, whilst studies require larger sample sizes, this could be unrealistic since there are limitations in ability to retrieve fossil data. We cannot deny the reliability of carbon dating; however, there is certainly scope for the use of more recent techniques, and further evidence of their success is required.

Keywords: cranio-facial, dental remains, evolution, hominids

Procedia PDF Downloads 135
119 A Multipurpose Inertial Electrostatic Magnetic Confinement Fusion for Medical Isotopes Production

Authors: Yasser R. Shaban

Abstract:

A practical multipurpose device for medical isotopes production is most wanted for clinical centers and researches. Unfortunately, the major supply of these radioisotopes currently comes from aging sources, and there is a great deal of uneasiness in the domestic market. There are also many cases where the cost of certain radioisotopes is too high for their introduction on a commercial scale even though the isotopes might have great benefits for society. The medical isotopes such as radiotracers PET (Positron Emission Tomography), Technetium-99 m, and Iodine-131, Lutetium-177 by is feasible to be generated by a single unit named IEMC (Inertial Electrostatic Magnetic Confinement). The IEMC fusion vessel is the upgrading unit of the Inertial Electrostatic Confinement IEC fusion vessel. Comprehensive experimental works on IEC were carried earlier with promising results. The principle of inertial electrostatic magnetic confinement IEMC fusion is based on forcing the binary fuel ions to interact in the opposite directions in ions cyclotrons orbits with different kinetic energies in order to have equal compression (forces) and with different ion cyclotron frequency ω in order to increase the rate of intersection. The IEMC features greater fusion volume than IEC by several orders of magnitude. The particles rate from the IEMC approach are projected to be 8.5 x 10¹¹ (p/s), ~ 0.2 microampere proton, for D/He-3 fusion reaction and 4.2 x 10¹² (n/s) for D/T fusion reaction. The projected values of particles yield (neutrons and protons) are suitable for medical isotope productions on-site by a single unit without any change in the fusion vessel but only the fuel gas. The PET radiotracers are usually produced on-site by medical ion accelerator whereas Technetium-99m (Tc-99m) is usually produced off-site from the irradiation facilities of nuclear power plants. Typically, hospitals receive molybdenum-99 isotope container; the isotope decays to Tc-99mwith half-life time 2.75 days. Even though the projected current from IEMC is lesser than the proton current from the medical ion accelerator but still the IEMC vessel is simpler, and reduced in components and power consumption which add a new value of populating the PET radiotracers in most clinical centers. On the other hand, the projected neutrons flux from the IEMC is lesser than the thermal neutron flux at the irradiation facilities of nuclear power plants, but in the IEMC case the productions of Technetium-99m is suggested to be at the resonance region of which the resonance integral cross section is two orders of magnitude higher than the thermal flux. Thus it can be said the net activity from both is evened. Besides, the particle accelerator cannot be considered a multipurpose particles production unless a significant change is made to the accelerator to change from neutrons mode to protons mode or vice versa. In conclusion, the projected fusion yield from IEMC is a straightforward since slightly change in the primer IEC and ion source is required.

Keywords: electrostatic versus magnetic confinement fusion vessel, ion source, medical isotopes productions, neutron activation

Procedia PDF Downloads 325
118 Thorium-Doped PbS Thin Films for Radiation Damage Studies

Authors: Michael Shandalov, Tzvi Templeman, Michael Schmidt, Itzhak Kelson, Eyal Yahel

Abstract:

We present a new method to produce a model system for the study of radiation damage in non-radioactive materials. The method is based on homogeneously incorporating 228Th ions in PbS thin films using a small volume chemical bath deposition (CBD) technique. The common way to alloy metals with radioactive elements is by melting pure elements, which requires considerable amounts of radioactive material with its safety consequences such as high sample activity. Controlled doping of the thin films with (very) small amounts (100-200ppm) of radioactive elements such as thorium is expected to provide a unique path for studying radiation damage in materials due to decay processes without the need of sealed enclosure. As a first stage, we developed CBD process for controlled doping of PbS thin films (~100 nm thick) with the stable isotope (t1/2~106 years), 232Th. Next, we developed CBD process for controlled doping of PbS thin films with active 228Th isotope. This was achieved by altering deposition parameters such as temperature, pH, reagent concentrations and time. The 228Th-doped films were characterized using X-ray diffraction, which indicated a single phase material. Film morphology and thickness were determined using scanning electron microscopy (SEM). Energy dispersive spectroscopy (EDS) mapping in the analytical transmission electron microscope (A-TEM), X-ray photoelectron spectroscopy (XPS) depth profiles and autoradiography indicated that the Th ions were homogeneously distributed throughout the films, suggesting Pb substitution by Th ions in the crystal lattice. The properties of the PbS (228Th) film activity were investigated by using alpha-spectroscopy and gamma spectroscopy. The resulting films are applicable for isochronal annealing of resistivity measurements and currently under investigation. This work shows promise as a model system for the analysis of dilute defect systems in semiconductor thin films.

Keywords: thin films, doping, radiation damage, chemical bath deposition

Procedia PDF Downloads 366
117 Reduced General Dispersion Model in Cylindrical Coordinates and Isotope Transient Kinetic Analysis in Laminar Flow

Authors: Masood Otarod, Ronald M. Supkowski

Abstract:

This abstract discusses a method that reduces the general dispersion model in cylindrical coordinates to a second order linear ordinary differential equation with constant coefficients so that it can be utilized to conduct kinetic studies in packed bed tubular catalytic reactors at a broad range of Reynolds numbers. The model was tested by 13CO isotope transient tracing of the CO adsorption of Boudouard reaction in a differential reactor at an average Reynolds number of 0.2 over Pd-Al2O3 catalyst. Detailed experimental results have provided evidence for the validity of the theoretical framing of the model and the estimated parameters are consistent with the literature. The solution of the general dispersion model requires the knowledge of the radial distribution of axial velocity. This is not always known. Hence, up until now, the implementation of the dispersion model has been largely restricted to the plug-flow regime. But, ideal plug-flow is impossible to achieve and flow regimes approximating plug-flow leave much room for debate as to the validity of the results. The reduction of the general dispersion model transpires as a result of the application of a factorization theorem. Factorization theorem is derived from the observation that a cross section of a catalytic bed consists of a solid phase across which the reaction takes place and a void or porous phase across which no significant measure of reaction occurs. The disparity in flow and the heterogeneity of the catalytic bed cause the concentration of reacting compounds to fluctuate radially. These variabilities signify the existence of radial positions at which the radial gradient of concentration is zero. Succinctly, factorization theorem states that a concentration function of axial and radial coordinates in a catalytic bed is factorable as the product of the mean radial cup-mixing function and a contingent dimensionless function. The concentration of adsorbed compounds are also factorable since they are piecewise continuous functions and suffer the same variability but in the reverse order of the concentration of mobile phase compounds. Factorability is a property of packed beds which transforms the general dispersion model to an equation in terms of the measurable mean radial cup-mixing concentration of the mobile phase compounds and mean cross-sectional concentration of adsorbed species. The reduced model does not require the knowledge of the radial distribution of the axial velocity. Instead, it is characterized by new transport parameters so denoted by Ωc, Ωa, Ωc, and which are respectively denominated convection coefficient cofactor, axial dispersion coefficient cofactor, and radial dispersion coefficient cofactor. These cofactors adjust the dispersion equation as compensation for the unavailability of the radial distribution of the axial velocity. Together with the rest of the kinetic parameters they can be determined from experimental data via an optimization procedure. Our data showed that the estimated parameters Ωc, Ωa Ωr, are monotonically correlated with the Reynolds number. This is expected to be the case based on the theoretical construct of the model. Computer generated simulations of methanation reaction on nickel provide additional support for the utility of the newly conceptualized dispersion model.

Keywords: factorization, general dispersion model, isotope transient kinetic, partial differential equations

Procedia PDF Downloads 240