Search results for: inverse Compton scattering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 856

Search results for: inverse Compton scattering

46 Flexible Ethylene-Propylene Copolymer Nanofibers Decorated with Ag Nanoparticles as Effective 3D Surface-Enhanced Raman Scattering Substrates

Authors: Yi Li, Rui Lu, Lianjun Wang

Abstract:

With the rapid development of chemical industry, the consumption of volatile organic compounds (VOCs) has increased extensively. In the process of VOCs production and application, plenty of them have been transferred to environment. As a result, it has led to pollution problems not only in soil and ground water but also to human beings. Thus, it is important to develop a sensitive and cost-effective analytical method for trace VOCs detection in environment. Surface-enhanced Raman Spectroscopy (SERS), as one of the most sensitive optical analytical technique with rapid response, pinpoint accuracy and noninvasive detection, has been widely used for ultratrace analysis. Based on the plasmon resonance on the nanoscale metallic surface, SERS technology can even detect single molecule due to abundant nanogaps (i.e. 'hot spots') on the nanosubstrate. In this work, a self-supported flexible silver nitrate (AgNO3)/ethylene-propylene copolymer (EPM) hybrid nanofibers was fabricated by electrospinning. After an in-situ chemical reduction using ice-cold sodium borohydride as reduction agent, numerous silver nanoparticles were formed on the nanofiber surface. By adjusting the reduction time and AgNO3 content, the morphology and dimension of silver nanoparticles could be controlled. According to the principles of solid-phase extraction, the hydrophobic substance is more likely to partition into the hydrophobic EPM membrane in an aqueous environment while water and other polar components are excluded from the analytes. By the enrichment of EPM fibers, the number of hydrophobic molecules located on the 'hot spots' generated from criss-crossed nanofibers is greatly increased, which further enhances SERS signal intensity. The as-prepared Ag/EPM hybrid nanofibers were first employed to detect common SERS probe molecule (p-aminothiophenol) with the detection limit down to 10-12 M, which demonstrated an excellent SERS performance. To further study the application of the fabricated substrate for monitoring hydrophobic substance in water, several typical VOCs, such as benzene, toluene and p-xylene, were selected as model compounds. The results showed that the characteristic peaks of these target analytes in the mixed aqueous solution could be distinguished even at a concentration of 10-6 M after multi-peaks gaussian fitting process, including C-H bending (850 cm-1), C-C ring stretching (1581 cm-1, 1600 cm-1) of benzene, C-H bending (844 cm-1 ,1151 cm-1), C-C ring stretching (1001 cm-1), CH3 bending vibration (1377 cm-1) of toluene, C-H bending (829 cm-1), C-C stretching (1614 cm-1) of p-xylene. The SERS substrate has remarkable advantages which combine the enrichment capacity from EPM and the Raman enhancement of Ag nanoparticles. Meanwhile, the huge specific surface area resulted from electrospinning is benificial to increase the number of adsoption sites and promotes 'hot spots' formation. In summary, this work provides powerful potential in rapid, on-site and accurate detection of trace VOCs using a portable Raman.

Keywords: electrospinning, ethylene-propylene copolymer, silver nanoparticles, SERS, VOCs

Procedia PDF Downloads 137
45 Relationships of Plasma Lipids, Lipoproteins and Cardiovascular Outcomes with Climatic Variations: A Large 8-Year Period Brazilian Study

Authors: Vanessa H. S. Zago, Ana Maria H. de Avila, Paula P. Costa, Welington Corozolla, Liriam S. Teixeira, Eliana C. de Faria

Abstract:

Objectives: The outcome of cardiovascular disease is affected by environment and climate. This study evaluated the possible relationships between climatic and environmental changes and the occurrence of biological rhythms in serum lipids and lipoproteins in a large population sample in the city of Campinas, State of Sao Paulo, Brazil. In addition, it determined the temporal variations of death due to atherosclerotic events in Campinas during the time window examined. Methods: A large 8-year retrospective study was carried out to evaluate the lipid profiles of individuals attended at the University of Campinas (Unicamp). The study population comprised 27.543 individuals of both sexes and of all ages. Normolipidemic and dyslipidemic individuals classified according to Brazilian guidelines on dyslipidemias, participated in the study. For the same period, the temperature, relative humidity and daily brightness records were obtained from the Centro de Pesquisas Meteorologicas e Climaticas Aplicadas a Agricultura/Unicamp and frequencies of death due to atherosclerotic events in Campinas were acquired from the Brazilian official database DATASUS, according to the International Classification of Diseases. Statistical analyses were performed using both Cosinor and ARIMA temporal analysis methods. For cross-correlation analysis between climatic and lipid parameters, cross-correlation functions were used. Results: Preliminary results indicated that rhythmicity was significant for LDL-C and HDL-C in the cases of both normolipidemic and dyslipidemic subjects (n =respectively 11.892 and 15.651 both measures increasing in the winter and decreasing in the summer). On the other hand, for dyslipidemic subjects triglycerides increased in summer and decreased in winter, in contrast to normolipidemic ones, in which triglycerides did not show rhythmicity. The number of deaths due to atherosclerotic events showed significant rhythmicity, with maximum and minimum frequencies in winter and summer, respectively. Cross-correlation analyzes showed that low humidity and temperature, higher thermal amplitude and dark cycles are associated with increased levels of LDL-C and HDL-C during winter. In contrast, TG showed moderate cross-correlations with temperature and minimum humidity in an inverse way: maximum temperature and humidity increased TG during the summer. Conclusions: This study showed a coincident rhythmicity between low temperatures and high concentrations of LDL-C and HDL-C and the number of deaths due to atherosclerotic cardiovascular events in individuals from the city of Campinas. The opposite behavior of cholesterol and TG suggest different physiological mechanisms in their metabolic modulation by climate parameters change. Thus, new analyses are underway to better elucidate these mechanisms, as well as variations in lipid concentrations in relation to climatic variations and their associations with atherosclerotic disease and death outcomes in Campinas.

Keywords: atherosclerosis, climatic variations, lipids and lipoproteins, associations

Procedia PDF Downloads 96
44 Assessing Brain Targeting Efficiency of Ionisable Lipid Nanoparticles Encapsulating Cas9 mRNA/gGFP Following Different Routes of Administration in Mice

Authors: Meiling Yu, Nadia Rouatbi, Khuloud T. Al-Jamal

Abstract:

Background: Treatment of neurological disorders with modern medical and surgical approaches remains difficult. Gene therapy, allowing the delivery of genetic materials that encodes potential therapeutic molecules, represents an attractive option. The treatment of brain diseases with gene therapy requires the gene-editing tool to be delivered efficiently to the central nervous system. In this study, we explored the efficiency of different delivery routes, namely intravenous (i.v.), intra-cranial (i.c.), and intra-nasal (i.n.), to deliver stable nucleic acid-lipid particles (SNALPs) containing gene-editing tools namely Cas9 mRNA and sgRNA encoding for GFP as a reporter protein. We hypothesise that SNALPs can reach the brain and perform gene-editing to different extents depending on the administration route. Intranasal administration (i.n.) offers an attractive and non-invasive way to access the brain circumventing the blood–brain barrier. Successful delivery of gene-editing tools to the brain offers a great opportunity for therapeutic target validation and nucleic acids therapeutics delivery to improve treatment options for a range of neurodegenerative diseases. In this study, we utilised Rosa26-Cas9 knock-in mice, expressing GFP, to study brain distribution and gene-editing efficiency of SNALPs after i.v.; i.c. and i.n. routes of administration. Methods: Single guide RNA (sgRNA) against GFP has been designed and validated by in vitro nuclease assay. SNALPs were formulated and characterised using dynamic light scattering. The encapsulation efficiency of nucleic acids (NA) was measured by RiboGreen™ assay. SNALPs were incubated in serum to assess their ability to protect NA from degradation. Rosa26-Cas9 knock-in mice were i.v., i.n., or i.c. administered with SNALPs to test in vivo gene-editing (GFP knockout) efficiency. SNALPs were given as three doses of 0.64 mg/kg sgGFP following i.v. and i.n. or a single dose of 0.25 mg/kg sgGFP following i.c.. knockout efficiency was assessed after seven days using Sanger Sequencing and Inference of CRISPR Edits (ICE) analysis. In vivo, the biodistribution of DiR labelled SNALPs (SNALPs-DiR) was assessed at 24h post-administration using IVIS Lumina Series III. Results: Serum-stable SNALPs produced were 130-140 nm in diameter with ~90% nucleic acid loading efficiency. SNALPs could reach and stay in the brain for up to 24h following i.v.; i.n. and i.c. administration. Decreasing GFP expression (around 50% after i.v. and i.c. and 20% following i.n.) was confirmed by optical imaging. Despite the small number of mice used, ICE analysis confirmed GFP knockout in mice brains. Additional studies are currently taking place to increase mice numbers. Conclusion: Results confirmed efficient gene knockout achieved by SNALPs in Rosa26-Cas9 knock-in mice expressing GFP following different routes of administrations in the following order i.v.= i.c.> i.n. Each of the administration routes has its pros and cons. The next stages of the project involve assessing gene-editing efficiency in wild-type mice and replacing GFP as a model target with therapeutic target genes implicated in Motor Neuron Disease pathology.

Keywords: CRISPR, nanoparticles, brain diseases, administration routes

Procedia PDF Downloads 63
43 Flexural Performance of the Sandwich Structures Having Aluminum Foam Core with Different Thicknesses

Authors: Emre Kara, Ahmet Fatih Geylan, Kadir Koç, Şura Karakuzu, Metehan Demir, Halil Aykul

Abstract:

The structures obtained with the use of sandwich technologies combine low weight with high energy absorbing capacity and load carrying capacity. Hence, there is a growing and markedly interest in the use of sandwiches with aluminium foam core because of very good properties such as flexural rigidity and energy absorption capability. The static (bending and penetration) and dynamic (dynamic bending and low velocity impact) tests were already performed on the aluminum foam cored sandwiches with different types of outer skins by some of the authors. In the current investigation, the static three-point bending tests were carried out on the sandwiches with aluminum foam core and glass fiber reinforced polymer (GFRP) skins at different values of support span distances (L= 55, 70, 80, 125 mm) aiming the analyses of their flexural performance. The influence of the core thickness and the GFRP skin type was reported in terms of peak load, energy absorption capacity and energy efficiency. For this purpose, the skins with two different types of fabrics ([0°/90°] cross ply E-Glass Woven and [0°/90°] cross ply S-Glass Woven which have same thickness value of 1.5 mm) and the aluminum foam core with two different thicknesses (h=10 and 15 mm) were bonded with a commercial polyurethane based flexible adhesive in order to combine the composite sandwich panels. The GFRP skins fabricated via Vacuum Assisted Resin Transfer Molding (VARTM) technique used in the study can be easily bonded to the aluminum foam core and it is possible to configure the base materials (skin, adhesive and core), fiber angle orientation and number of layers for a specific application. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, energy efficiency, collapse mechanisms and the effect of the support span length and core thickness. The results of the experimental study showed that the sandwich with the skins made of S-Glass Woven fabrics and with the thicker foam core presented higher mechanical values such as load carrying and energy absorption capacities. The increment of the support span distance generated the decrease of the mechanical values for each type of panels, as expected, because of the inverse proportion between the force and span length. The most common failure types of the sandwiches are debonding of the upper or lower skin and the core shear. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry (automotive, aerospace, shipbuilding and marine industry), where the problems of collision and crash have increased in the last years.

Keywords: aluminum foam, composite panel, flexure, transport application

Procedia PDF Downloads 300
42 Dynamic Changes in NT-proBNP Levels in Unrelated Donors during Hematopoietic Stem Cells Mobilization

Authors: Natalia V. Minaeva, Natalia A. Zorina, Marina N. Khorobrikh, Philipp S. Sherstnev, Tatiana V. Krivokorytova, Alexander S. Luchinin, Maksim S. Minaev, Igor V. Paramonov

Abstract:

Background. Over the last few decades, the Center for International Blood and Marrow Transplant Research (CIBMTR) and the World Marrow Donor Association (WMDA) have been actively working to ensure the safety of the hematopoietic stem cell (HSC) donation process. Registration of adverse events that may occur during the donation period and establishing a relationship between donation and side effects are included in the WMDA international standards. The level of blood serum N-terminal pro-brain natriuretic peptide (NT-proBNP) is an early marker of myocardial stress. Due to the high analytical sensitivity and specificity, laboratory assessment of NT-proBNP makes it possible to objectively diagnose myocardial dysfunction. It is well known that the main stimulus for proBNP synthesis and secretion from atrial and ventricular cardiac myocytes is myocyte stretch and increasement of myocardial extensibility and pressure in the heart chambers. Аim. The aim of the study was to assess the dynamic changes in the levels of blood serum N-terminal pro-brain natriuretic peptide of unrelated donors at various stages of hematopoietic stem cell mobilization. Materials. We have examined 133 unrelated donors, including 92 men and 41 women, that have been included into the study. The NT-proBNP levels were measured before the start of mobilization, then on the day of apheresis, and after the donation of allogeneic HSC. The relationship between NT-proBNP levels and body mass index (BMI), ferritin, hemoglobin, and white blood cells (WBC) levels was assessed on the day of apheresis. The median age of donors was 34 years. Mobilization of HSCs was managed with filgrastim administration at a dose of 10 μg/kg daily for 4-5 days. The first leukocytapheresis was performed on day 4 from the start of filgrastim administration. Quantitative values of the blood serum NT-proBNP level are presented as a median (Me), first and third quartiles (Q1-Q3). Comparative analysis was carried out using the t-test and correlation analysis as well by Spearman method. Results. The baseline blood serum NT-proBNP levels in all 133 donors were within the reference values (<125 pg/ml) and equaled 21,6 (10,0; 43,3) pg/ml. At the same time, the level of NT-proBNP in women was significantly higher than that of men. On the day of the HSC apheresis, a significant increase of blood serum NT-proBNP levels was detected and equald 131,2 (72,6; 165,3) pg/ml (p<0,001), with higher rates in female donors. A statistically significant weak inverse correleation was established between the level of NT-proBNP and the BMI of donors (-0.18, p = 0,03), as well as the level of hemoglobin (-0.33, p <0,001), and ferritin levels (-0.19, p = 0,03). No relationship has been established between the magnitude of WBC levels achieved as a result of the mobilization of HSC on the day of leukocytapheresis. A day after the apheresis, the blood serum NT-proBNP levels still exceeded the reference values, but there was a decreasing tendency. Conclusion. An increase of the blood serum NT-proBNP level in unrelated donors during the mobilization of HSC was established. Future studies should clarify the reason for this phenomenon, as well as its effects on donors' long-term health.

Keywords: unrelated donors, mobilization, hematopoietic stem cells, N-terminal pro-brain natriuretic peptide

Procedia PDF Downloads 68
41 Influence of Packing Density of Layers Placed in Specific Order in Composite Nonwoven Structure for Improved Filtration Performance

Authors: Saiyed M Ishtiaque, Priyal Dixit

Abstract:

Objectives: An approach is being suggested to design the filter media to maximize the filtration efficiency with minimum possible pressure drop of composite nonwoven by incorporating the layers of different packing densities induced by fibre of different deniers and punching parameters by using the concept of sequential punching technique in specific order in layered composite nonwoven structure. X-ray computed tomography technique is used to measure the packing density along the thickness of layered nonwoven structure composed by placing the layer of differently oriented fibres influenced by fibres of different deniers and punching parameters in various combinations to minimize the pressure drop at maximum possible filtration efficiency. Methodology Used: This work involves preparation of needle punched layered structure with batts 100g/m2 basis weight having fibre denier, punch density and needle penetration depth as variables to produce 300 g/m2 basis weight nonwoven composite. X-ray computed tomography technique is used to measure the packing density along the thickness of layered nonwoven structure composed by placing the layers of differently oriented fibres influenced by considered variables in various combinations. to minimize the pressure drop at maximum possible filtration efficiencyFor developing layered nonwoven fabrics, batts made of fibre of different deniers having 100g/m2 each basis weight were placed in various combinations. For second set of experiment, the composite nonwoven fabrics were prepared by using 3 denier circular cross section polyester fibre having 64 mm length on needle punched nonwoven machine by using the sequential punching technique to prepare the composite nonwoven fabrics. In this technique, three semi punched fabrics of 100 g/m2 each having either different punch densities or needle penetration depths were prepared for first phase of fabric preparation. These fabrics were later punched altogether to obtain the overall basis weight of 300 g/m2. The total punch density of the composite nonwoven fabric was kept at 200 punches/ cm2 with a needle penetration depth of 10 mm. The layered structures so formed were subcategorised into two groups- homogeneous layered structure in which all the three batts comprising the nonwoven fabric were made from same denier of fibre, punch density and needle penetration depth and were placed in different positions in respective fabric and heterogeneous layered structure in which batts were made from fibres of different deniers, punch densities and needle penetration depths and were placed in different positions. Contributions: The results concluded that reduction in pressure drop is not derived by the overall packing density of the layered nonwoven fabric rather sequencing of layers of specific packing density in layered structure decides the pressure drop. Accordingly, creation of inverse gradient of packing density in layered structure provided maximum filtration efficiency with least pressure drop. This study paves the way for the possibility of customising the composite nonwoven fabrics by the incorporation of differently oriented fibres in constituent layers induced by considered variablres for desired filtration properties.

Keywords: filtration efficiency, layered nonwoven structure, packing density, pressure drop

Procedia PDF Downloads 37
40 Finite Element Modeling of Global Ti-6Al-4V Mechanical Behavior in Relationship with Microstructural Parameters

Authors: Fatna Benmessaoud, Mohammed Cheikh, Vencent Velay, Vanessa Vedal, Farhad Rezai-Aria, Christine Boher

Abstract:

The global mechanical behavior of materials is strongly linked to their microstructure, especially their crystallographic texture and their grains morphology. These material aspects determine the mechanical fields character (heterogeneous or homogeneous), thus, they give to the global behavior a degree of anisotropy according the initial microstructure. For these reasons, the prediction of global behavior of materials in relationship with the microstructure must be performed with a multi-scale approach. Therefore, multi-scale modeling in the context of crystal plasticity is widely used. In this present contribution, a phenomenological elasto-viscoplastic model developed in the crystal plasticity context and finite element method are used to investigate the effects of crystallographic texture and grains sizes on global behavior of a polycrystalline equiaxed Ti-6Al-4V alloy. The constitutive equations of this model are written on local scale for each slip system within each grain while the strain and stress mechanical fields are investigated at the global scale via finite element scale transition. The beta phase of Ti-6Al-4V alloy modeled is negligible; its percent is less than 10%. Three families of slip systems of alpha phase are considered: basal and prismatic families with a burgers vector and pyramidal family with a burgers vector. The twinning mechanism of plastic strain is not observed in Ti-6Al-4V, therefore, it is not considered in the present modeling. Nine representative elementary volumes (REV) are generated with Voronoi tessellations. For each individual equiaxed grain, the own crystallographic orientation vis-à-vis the loading is taken into account. The meshing strategy is optimized in a way to eliminate the meshing effects and at the same time to allow calculating the individual grain size. The stress and strain fields are determined in each Gauss point of the mesh element. A post-treatment is used to calculate the local behavior (in each grain) and then by appropriate homogenization, the macroscopic behavior is calculated. The developed model is validated by comparing the numerical simulation results with an experimental data reported in the literature. It is observed that the present model is able to predict the global mechanical behavior of Ti-6Al-4V alloy and investigate the microstructural parameters' effects. According to the simulations performed on the generated volumes (REV), the macroscopic mechanical behavior of Ti-6Al-4V is strongly linked to the active slip systems family (prismatic, basal or pyramidal). The crystallographic texture determines which family of slip systems can be activated; therefore it gives to the plastic strain a heterogeneous character thus an anisotropic macroscopic mechanical behavior. The average grains size influences also the Ti-6Al-4V mechanical proprieties, especially the yield stress; by decreasing of the average grains size, the yield strength increases according to Hall-Petch relationship. The grains sizes' distribution gives to the strain fields considerable heterogeneity. By increasing grain sizes, the scattering in the localization of plastic strain is observed, thus, in certain areas the stress concentrations are stronger than other regions.

Keywords: microstructural parameters, multi-scale modeling, crystal plasticity, Ti-6Al-4V alloy

Procedia PDF Downloads 96
39 Mesenchymal Stem Cells (MSC)-Derived Exosomes Could Alleviate Neuronal Damage and Neuroinflammation in Alzheimer’s Disease (AD) as Potential Therapy-Carrier Dual Roles

Authors: Huan Peng, Chenye Zeng, Zhao Wang

Abstract:

Alzheimer’s disease (AD) is an age-related neurodegenerative disease that is a leading cause of dementia syndromes and has become a huge burden on society and families. The main pathological features of AD involve excessive deposition of β-amyloid (Aβ) and Tau proteins in the brain, resulting in loss of neurons, expansion of neuroinflammation, and cognitive dysfunction in patients. Researchers have found effective drugs to clear the brain of error-accumulating proteins or to slow the loss of neurons, but their direct administration has key bottlenecks such as single-drug limitation, rapid blood clearance rate, impenetrable blood-brain barrier (BBB), and poor ability to target tissues and cells. Therefore, we are committed to seeking a suitable and efficient delivery system. Inspired by the possibility that exosomes may be involved in the secretion and transport mechanism of many signaling molecules or proteins in the brain, exosomes have attracted extensive attention as natural nanoscale drug carriers. We selected exosomes derived from bone marrow mesenchymal stem cells (MSC-EXO) with low immunogenicity and exosomes derived from hippocampal neurons (HT22-EXO) that may have excellent homing ability to overcome the deficiencies of oral or injectable pathways and bypass the BBB through nasal administration and evaluated their delivery ability and effect on AD. First, MSC-EXO and HT22 cells were isolated and cultured, and MSCs were identified by microimaging and flow cytometry. Then MSC-EXO and HT22-EXO were obtained by gradient centrifugation and qEV SEC separation column, and a series of physicochemical characterization were performed by transmission electron microscope, western blot, nanoparticle tracking analysis and dynamic light scattering. Next, exosomes labeled with lipophilic fluorescent dye were administered to WT mice and APP/PS1 mice to obtain fluorescence images of various organs at different times. Finally, APP/PS1 mice were administered intranasally with two exosomes 20 times over 40 days and 20 μL each time. Behavioral analysis and pathological section analysis of the hippocampus were performed after the experiment. The results showed that MSC-EXO and HT22-EXO were successfully isolated and characterized, and they had good biocompatibility. MSC-EXO showed excellent brain enrichment in APP/PS1 mice after intranasal administration, could improve the neuronal damage and reduce inflammation levels in the hippocampus of APP/PS1 mice, and the improvement effect was significantly better than HT22-EXO. However, intranasal administration of the two exosomes did not cause depression and anxious-like phenotypes in APP/PS1 mice, nor significantly improved the short-term or spatial learning and memory ability of APP/PS1 mice, and had no significant effect on the content of Aβ plaques in the hippocampus, which also meant that MSC-EXO could use their own advantages in combination with other drugs to clear Aβ plaques. The possibility of realizing highly effective non-invasive synergistic treatment for AD provides new strategies and ideas for clinical research.

Keywords: Alzheimer’s disease, exosomes derived from mesenchymal stem cell, intranasal administration, therapy-carrier dual roles

Procedia PDF Downloads 22
38 Real-Time Neuroimaging for Rehabilitation of Stroke Patients

Authors: Gerhard Gritsch, Ana Skupch, Manfred Hartmann, Wolfgang Frühwirt, Hannes Perko, Dieter Grossegger, Tilmann Kluge

Abstract:

Rehabilitation of stroke patients is dominated by classical physiotherapy. Nowadays, a field of research is the application of neurofeedback techniques in order to help stroke patients to get rid of their motor impairments. Especially, if a certain limb is completely paralyzed, neurofeedback is often the last option to cure the patient. Certain exercises, like the imagination of the impaired motor function, have to be performed to stimulate the neuroplasticity of the brain, such that in the neighboring parts of the injured cortex the corresponding activity takes place. During the exercises, it is very important to keep the motivation of the patient at a high level. For this reason, the missing natural feedback due to a movement of the effected limb may be replaced by a synthetic feedback based on the motor-related brain function. To generate such a synthetic feedback a system is needed which measures, detects, localizes and visualizes the motor related µ-rhythm. Fast therapeutic success can only be achieved if the feedback features high specificity, comes in real-time and without large delay. We describe such an approach that offers a 3D visualization of µ-rhythms in real time with a delay of 500ms. This is accomplished by combining smart EEG preprocessing in the frequency domain with source localization techniques. The algorithm first selects the EEG channel featuring the most prominent rhythm in the alpha frequency band from a so-called motor channel set (C4, CZ, C3; CP6, CP4, CP2, CP1, CP3, CP5). If the amplitude in the alpha frequency band of this certain electrode exceeds a threshold, a µ-rhythm is detected. To prevent detection of a mixture of posterior alpha activity and µ-activity, the amplitudes in the alpha band outside the motor channel set are not allowed to be in the same range as the main channel. The EEG signal of the main channel is used as template for calculating the spatial distribution of the µ - rhythm over all electrodes. This spatial distribution is the input for a inverse method which provides the 3D distribution of the µ - activity within the brain which is visualized in 3D as color coded activity map. This approach mitigates the influence of lid artifacts on the localization performance. The first results of several healthy subjects show that the system is capable of detecting and localizing the rarely appearing µ-rhythm. In most cases the results match with findings from visual EEG analysis. Frequent eye-lid artifacts have no influence on the system performance. Furthermore, the system will be able to run in real-time. Due to the design of the frequency transformation the processing delay is 500ms. First results are promising and we plan to extend the test data set to further evaluate the performance of the system. The relevance of the system with respect to the therapy of stroke patients has to be shown in studies with real patients after CE certification of the system. This work was performed within the project ‘LiveSolo’ funded by the Austrian Research Promotion Agency (FFG) (project number: 853263).

Keywords: real-time EEG neuroimaging, neurofeedback, stroke, EEG–signal processing, rehabilitation

Procedia PDF Downloads 359
37 Regulation of Desaturation of Fatty Acid and Triglyceride Synthesis by Myostatin through Swine-Specific MEF2C/miR222/SCD5 Pathway

Authors: Wei Xiao, Gangzhi Cai, Xingliang Qin, Hongyan Ren, Zaidong Hua, Zhe Zhu, Hongwei Xiao, Ximin Zheng, Jie Yao, Yanzhen Bi

Abstract:

Myostatin (MSTN) is the master regulator of double muscling phenotype with overgrown muscle and decreased fatness in animals, but its action mode to regulate fat deposition remains to be elucidated. In this study a swin-specific pathway through which MSTN acts to regulate the fat deposition was deciphered. Deep sequenincing of the mRNA and miRNA of fat tissues of MSTN knockout (KO) and wildtype (WT) pigs discovered the positive correlation of myocyte enhancer factor 2C (MEF2C) and fat-inhibiting miR222 expression, and the inverse correlation of miR222 and stearoyl-CoA desaturase 5 (SCD5) expression. SCD5 is rodent-absent and expressed only in pig, sheep and cattle. Fatty acid spectrum of fat tissues revealed a lower percentage of oleoyl-CoA (18:1) and palmitoleyl CoA (16:1) in MSTN KO pigs, which are the catalyzing products of SCD5-mediated desaturation of steroyl CoA (18:0) and palmitoyl CoA (16:0). Blood metrics demonstrated a 45% decline of triglyceride (TG) content in MSTN KO pigs. In light of these observations we hypothesized that MSTN might act through MEF2C/miR222/SCD5 pathway to regulate desaturation of fatty acid as well as triglyceride synthesis in pigs. To this end, real-time PCR and Western blotting were carried out to detect the expression of the three genes stated above. These experiments showed that MEF2C expression was up-regulated by nearly 2-fold, miR222 up-regulated by nearly 3-fold and SCD5 down-regulated by nearly 50% in MSTN KO pigs. These data were consistent with the expression change in deep sequencing analysis. Dual luciferase reporter was then used to confirm the regulation of MEF2C upon the promoter of miR222. Ecotopic expression of MEF2C in preadipocyte cells enhanced miR222 expression by 3.48-fold. CHIP-PCR identified a putative binding site of MEF2C on -2077 to -2066 region of miR222 promoter. Electrophoretic mobility shift assay (EMSA) demonstrated the interaction of MEF2C and miR222 promoter in vitro. These data indicated that MEF2C transcriptionally regulates the expression of miR222. Next, the regulation of miR222 on SCD5 mRNA as well as its physiological consequences were examined. Dual luciferase reporter testing revealed the translational inhibition of miR222 upon the 3´ UTR (untranslated region) of SCD5 in preadipocyte cells. Transfection of miR222 mimics and inhibitors resulted in the down-regulation and up-regulation of SCD5 in preadipocyte cells respectively, consistent with the results from reporter testing. RNA interference of SCD5 in preadipocyte cells caused 26.2% reduction of TG, in agreement with the results of TG content in MSTN KO pigs. In summary, the results above supported the existence of a molecular pathway that MSTN signals through MEF2C/miR222/SCD5 to regulate the fat deposition in pigs. This swine-specific pathway offers potential molecular markers for the development and breeding of a new pig line with optimised fatty acid composition. This would benefit human health by decreasing the takeup of saturated fatty acid.

Keywords: fat deposition, MEF2C, miR222, myostatin, SCD5, pig

Procedia PDF Downloads 100
36 Zinc Oxide Varistor Performance: A 3D Network Model

Authors: Benjamin Kaufmann, Michael Hofstätter, Nadine Raidl, Peter Supancic

Abstract:

ZnO varistors are the leading overvoltage protection elements in today’s electronic industry. Their highly non-linear current-voltage characteristics, very fast response times, good reliability and attractive cost of production are unique in this field. There are challenges and questions unsolved. Especially, the urge to create even smaller, versatile and reliable parts, that fit industry’s demands, brings manufacturers to the limits of their abilities. Although, the varistor effect of sintered ZnO is known since the 1960’s, and a lot of work was done on this field to explain the sudden exponential increase of conductivity, the strict dependency on sinter parameters, as well as the influence of the complex microstructure, is not sufficiently understood. For further enhancement and down-scaling of varistors, a better understanding of the microscopic processes is needed. This work attempts a microscopic approach to investigate ZnO varistor performance. In order to cope with the polycrystalline varistor ceramic and in order to account for all possible current paths through the material, a preferably realistic model of the microstructure was set up in the form of three-dimensional networks where every grain has a constant electric potential, and voltage drop occurs only at the grain boundaries. The electro-thermal workload, depending on different grain size distributions, was investigated as well as the influence of the metal-semiconductor contact between the electrodes and the ZnO grains. A number of experimental methods are used, firstly, to feed the simulations with realistic parameters and, secondly, to verify the obtained results. These methods are: a micro 4-point probes method system (M4PPS) to investigate the current-voltage characteristics between single ZnO grains and between ZnO grains and the metal electrode inside the varistor, micro lock-in infrared thermography (MLIRT) to detect current paths, electron back scattering diffraction and piezoresponse force microscopy to determine grain orientations, atom probe to determine atomic substituents, Kelvin probe force microscopy for investigating grain surface potentials. The simulations showed that, within a critical voltage range, the current flow is localized along paths which represent only a tiny part of the available volume. This effect could be observed via MLIRT. Furthermore, the simulations exhibit that the electric power density, which is inversely proportional to the number of active current paths, since this number determines the electrical active volume, is dependent on the grain size distribution. M4PPS measurements showed that the electrode-grain contacts behave like Schottky diodes and are crucial for asymmetric current path development. Furthermore, evaluation of actual data suggests that current flow is influenced by grain orientations. The present results deepen the knowledge of influencing microscopic factors on ZnO varistor performance and can give some recommendations on fabrication for obtaining more reliable ZnO varistors.

Keywords: metal-semiconductor contact, Schottky diode, varistor, zinc oxide

Procedia PDF Downloads 257
35 Surface-Enhanced Raman Detection in Chip-Based Chromatography via a Droplet Interface

Authors: Renata Gerhardt, Detlev Belder

Abstract:

Raman spectroscopy has attracted much attention as a structurally descriptive and label-free detection method. It is particularly suited for chemical analysis given as it is non-destructive and molecules can be identified via the fingerprint region of the spectra. In this work possibilities are investigated how to integrate Raman spectroscopy as a detection method for chip-based chromatography, making use of a droplet interface. A demanding task in lab-on-a-chip applications is the specific and sensitive detection of low concentrated analytes in small volumes. Fluorescence detection is frequently utilized but restricted to fluorescent molecules. Furthermore, no structural information is provided. Another often applied technique is mass spectrometry which enables the identification of molecules based on their mass to charge ratio. Additionally, the obtained fragmentation pattern gives insight into the chemical structure. However, it is only applicable as an end-of-the-line detection because analytes are destroyed during measurements. In contrast to mass spectrometry, Raman spectroscopy can be applied on-chip and substances can be processed further downstream after detection. A major drawback of Raman spectroscopy is the inherent weakness of the Raman signal, which is due to the small cross-sections associated with the scattering process. Enhancement techniques, such as surface enhanced Raman spectroscopy (SERS), are employed to overcome the poor sensitivity even allowing detection on a single molecule level. In SERS measurements, Raman signal intensity is improved by several orders of magnitude if the analyte is in close proximity to nanostructured metal surfaces or nanoparticles. The main gain of lab-on-a-chip technology is the building block-like ability to seamlessly integrate different functionalities, such as synthesis, separation, derivatization and detection on a single device. We intend to utilize this powerful toolbox to realize Raman detection in chip-based chromatography. By interfacing on-chip separations with a droplet generator, the separated analytes are encapsulated into numerous discrete containers. These droplets can then be injected with a silver nanoparticle solution and investigated via Raman spectroscopy. Droplet microfluidics is a sub-discipline of microfluidics which instead of a continuous flow operates with the segmented flow. Segmented flow is created by merging two immiscible phases (usually an aqueous phase and oil) thus forming small discrete volumes of one phase in the carrier phase. The study surveys different chip designs to realize coupling of chip-based chromatography with droplet microfluidics. With regards to maintaining a sufficient flow rate for chromatographic separation and ensuring stable eluent flow over the column different flow rates of eluent and oil phase are tested. Furthermore, the detection of analytes in droplets with surface enhanced Raman spectroscopy is examined. The compartmentalization of separated compounds preserves the analytical resolution since the continuous phase restricts dispersion between the droplets. The droplets are ideal vessels for the insertion of silver colloids thus making use of the surface enhancement effect and improving the sensitivity of the detection. The long-term goal of this work is the first realization of coupling chip based chromatography with droplets microfluidics to employ surface enhanced Raman spectroscopy as means of detection.

Keywords: chip-based separation, chip LC, droplets, Raman spectroscopy, SERS

Procedia PDF Downloads 221
34 Strength Properties of Ca-Based Alkali Activated Fly Ash System

Authors: Jung-Il Suh, Hong-Gun Park, Jae-Eun Oh

Abstract:

Recently, the use of long-span precast concrete (PC) construction has increased in modular construction such as storage buildings and parking facilities. When applying long span PC member, reducing weight of long span PC member should be conducted considering lifting capacity of crane and self-weight of PC member and use of structural lightweight concrete made by lightweight aggregate (LWA) can be considered. In the process of lightweight concrete production, segregation and bleeding could occur due to difference of specific gravity between cement (3.3) and lightweight aggregate (1.2~1.8) and reducing weight of binder is needed to prevent the segregation between binder and aggregate. Also, lightweight precast concrete made by cementitious materials such as fly ash and ground granulated blast furnace (GGBFS) which is lower than specific gravity of cement as a substitute for cement has been studied. When only using fly ash for cementless binder alkali-activation of fly ash is most important chemical process in which the original fly ash is dissolved by a strong alkaline medium in steam curing with high-temperature condition. Because curing condition is similar with environment of precast member production, additional process is not needed. Na-based chloride generally used as a strong alkali activator has a practical problem such as high pH toxicity and high manufacturing cost. Instead of Na-based alkali activator calcium hydroxide [Ca(OH)2] and sodium hydroxide [Na2CO3] might be used because it has a lower pH and less expensive than Na-based alkali activator. This study explored the influences on Ca(OH)2-Na2CO3-activated fly ash system in its microstructural aspects and strength and permeability using powder X-ray analysis (XRD), thermogravimetry (TGA), mercury intrusion porosimetry (MIP). On the basis of microstructural analysis, the conclusions are made as follows. Increase of Ca(OH)2/FA wt.% did not affect improvement of compressive strength. Also, Ca(OH)2/FA wt.% and Na2CO3/FA wt.% had little effect on specific gravity of saturated surface dry (SSD) and absolute dry (AD) condition to calculate water absorption. Especially, the binder is appropriate for structural lightweight concrete because specific gravity of the hardened paste has no difference with that of lightweight aggregate. The XRD and TGA/DTG results did not present considerable difference for the types and quantities of hydration products depending on w/b ratio, Ca(OH)2 wt.%, and Na2CO3 wt.%. In the case of higher molar quantity of Ca(OH)2 to Na2CO3, XRD peak indicated unreacted Ca(OH)2 while DTG peak was not presented because of small quantity. Thus, presence of unreacted Ca(OH)2 is too small quantity to effect on mechanical performance. As a result of MIP, the porosity volume related to capillary pore depends on the w/b ratio. In the same condition of w/b ratio, quantities of Ca(OH)2 and Na2CO3 have more influence on pore size distribution rather than total porosity. While average pore size decreased as Na2CO3/FA w.t% increased, the average pore size increased over 20 nm as Ca(OH)2/FA wt.% increased which has inverse proportional relationship between pore size and mechanical properties such as compressive strength and water permeability.

Keywords: Ca(OH)2, compressive strength, microstructure, fly ash, Na2CO3, water absorption

Procedia PDF Downloads 198
33 Association between Physical Inactivity and Sedentary Behaviours with Risk of Hypertension among Sedentary Occupation Workers: A Cross-Sectional Study

Authors: Hanan Badr, Fahad Manee, Rao Shashidhar, Omar Bayoumy

Abstract:

Introduction: Hypertension is the major risk factor for cardiovascular diseases and stroke and a universe leading cause of disability-adjusted life years and mortality. Adopting an unhealthy lifestyle is thought to be associated with developing hypertension regardless of predisposing genetic factors. This study aimed to examine the association between recreational physical activity (RPA), and sedentary behaviors with a risk of hypertension among ministry employees, where there is no role for occupational physical activity (PA), and to scrutinize participants’ time spent in RPA and sedentary behaviors on the working and weekend days. Methods: A cross-sectional study was conducted among randomly selected 2562 employees working at ten randomly selected ministries in Kuwait. To have a representative sample, the proportional allocation technique was used to define the number of participants in each ministry. A self-administered questionnaire was used to collect data about participants' socio-demographic characteristics, health status, and their 24 hours’ time use during a regular working day and a weekend day. The time use covered a list of 20 different activities practiced by a person daily. The New Zealand Physical Activity Questionnaire-Short Form (NZPAQ-SF) was used to assess the level of RPA. The scale generates three categories according to the number of hours spent in RPA/week: relatively inactive, relatively active, and highly active. Gender-matched trained nurses performed anthropometric measurements (weight and height) and measuring blood pressure (two readings) using an automatic blood pressure monitor (95% accuracy level compared to a calibrated mercury sphygmomanometer). Results: Participants’ mean age was 35.3±8.4 years, with almost equal gender distribution. About 13% of the participants were smokers, and 75% were overweight. Almost 10% reported doctor-diagnosed hypertension. Among those who did not, the mean systolic blood pressure was 119.9±14.2 and the mean diastolic blood pressure was 80.9±7.3. Moreover, 73.9% of participants were relatively physically inactive and 18% were highly active. Mean systolic and diastolic blood pressure showed a significant inverse association with the level of RPA (means of blood pressure measures were: 123.3/82.8 among relatively inactive, 119.7/80.4 among relatively active, and 116.6/79.6 among highly active). Furthermore, RPA occupied 1.6% and 1.8% of working and weekend days, respectively, while sedentary behaviors (watching TV, using electronics for social media or entertaining, etc.) occupied 11.2% and 13.1%, respectively. Sedentary behaviors were significantly associated with high levels of systolic and diastolic blood pressure. Binary logistic regression revealed that physical inactivity (OR=3.13, 95% CI: 2.25-4.35) and sedentary behaviors (OR=2.25, CI: 1.45-3.17) were independent risk factors for high systolic and diastolic blood pressure after adjustment for other covariates. Conclusions: Physical inactivity and sedentary lifestyle were associated with a high risk of hypertension. Further research to examine the independent role of RPA in improving blood pressure levels and cultural and occupational barriers for practicing RPA are recommended. Policies should be enacted in promoting PA in the workplace that might help in decreasing the risk of hypertension among sedentary occupation workers.

Keywords: physical activity, sedentary behaviors, hypertension, workplace

Procedia PDF Downloads 143
32 Hybrid Data-Driven Drilling Rate of Penetration Optimization Scheme Guided by Geological Formation and Historical Data

Authors: Ammar Alali, Mahmoud Abughaban, William Contreras Otalvora

Abstract:

Optimizing the drilling process for cost and efficiency requires the optimization of the rate of penetration (ROP). ROP is the measurement of the speed at which the wellbore is created, in units of feet per hour. It is the primary indicator of measuring drilling efficiency. Maximization of the ROP can indicate fast and cost-efficient drilling operations; however, high ROPs may induce unintended events, which may lead to nonproductive time (NPT) and higher net costs. The proposed ROP optimization solution is a hybrid, data-driven system that aims to improve the drilling process, maximize the ROP, and minimize NPT. The system consists of two phases: (1) utilizing existing geological and drilling data to train the model prior, and (2) real-time adjustments of the controllable dynamic drilling parameters [weight on bit (WOB), rotary speed (RPM), and pump flow rate (GPM)] that direct influence on the ROP. During the first phase of the system, geological and historical drilling data are aggregated. After, the top-rated wells, as a function of high instance ROP, are distinguished. Those wells are filtered based on NPT incidents, and a cross-plot is generated for the controllable dynamic drilling parameters per ROP value. Subsequently, the parameter values (WOB, GPM, RPM) are calculated as a conditioned mean based on physical distance, following Inverse Distance Weighting (IDW) interpolation methodology. The first phase is concluded by producing a model of drilling best practices from the offset wells, prioritizing the optimum ROP value. This phase is performed before the commencing of drilling. Starting with the model produced in phase one, the second phase runs an automated drill-off test, delivering live adjustments in real-time. Those adjustments are made by directing the driller to deviate two of the controllable parameters (WOB and RPM) by a small percentage (0-5%), following the Constrained Random Search (CRS) methodology. These minor incremental variations will reveal new drilling conditions, not explored before through offset wells. The data is then consolidated into a heat-map, as a function of ROP. A more optimum ROP performance is identified through the heat-map and amended in the model. The validation process involved the selection of a planned well in an onshore oil field with hundreds of offset wells. The first phase model was built by utilizing the data points from the top-performing historical wells (20 wells). The model allows drillers to enhance decision-making by leveraging existing data and blending it with live data in real-time. An empirical relationship between controllable dynamic parameters and ROP was derived using Artificial Neural Networks (ANN). The adjustments resulted in improved ROP efficiency by over 20%, translating to at least 10% saving in drilling costs. The novelty of the proposed system lays is its ability to integrate historical data, calibrate based geological formations, and run real-time global optimization through CRS. Those factors position the system to work for any newly drilled well in a developing field event.

Keywords: drilling optimization, geological formations, machine learning, rate of penetration

Procedia PDF Downloads 96
31 Environmentally Sustainable Transparent Wood: A Fully Green Approach from Bleaching to Impregnation for Energy-Efficient Engineered Wood Components

Authors: Francesca Gullo, Paola Palmero, Massimo Messori

Abstract:

Transparent wood is considered a promising structural material for the development of environmentally friendly, energy-efficient engineered components. To obtain transparent wood from natural wood materials two approaches can be used: i) bottom-up and ii) top-down. Through the second method, the color of natural wood samples is lightened through a chemical bleaching process that acts on chromophore groups of lignin, such as the benzene ring, quinonoid, vinyl, phenolics, and carbonyl groups. These chromophoric units form complex conjugate systems responsible for the brown color of wood. There are two strategies to remove color and increase the whiteness of wood: i) lignin removal and ii) lignin bleaching. In the lignin removal strategy, strong chemicals containing chlorine (chlorine, hypochlorite, and chlorine dioxide) and oxidizers (oxygen, ozone, and peroxide) are used to completely destroy and dissolve the lignin. In lignin bleaching methods, a moderate reductive (hydrosulfite) or oxidative (hydrogen peroxide) is commonly used to alter or remove the groups and chromophore systems of lignin, selectively discoloring the lignin while keeping the macrostructure intact. It is, therefore, essential to manipulate nanostructured wood by precisely controlling the nanopores in the cell walls by monitoring both chemical treatments and process conditions, for instance, the treatment time, the concentration of chemical solutions, the pH value, and the temperature. The elimination of wood light scattering is the second step in the fabrication of transparent wood materials, which can be achieved through two-step approaches: i) the polymer impregnation method and ii) the densification method. For the polymer impregnation method, the wood scaffold is treated with polymers having a corresponding refractive index (e.g., PMMA and epoxy resins) under vacuum to obtain the transparent composite material, which can finally be pressed to align the cellulose fibers and reduce interfacial defects in order to have a finished product with high transmittance (>90%) and excellent light-guiding. However, both the solution-based bleaching and the impregnation processes used to produce transparent wood generally consume large amounts of energy and chemicals, including some toxic or pollutant agents, and are difficult to scale up industrially. Here, we report a method to produce optically transparent wood by modifying the lignin structure with a chemical reaction at room temperature using small amounts of hydrogen peroxide in an alkaline environment. This method preserves the lignin, which results only deconjugated and acts as a binder, providing both a strong wood scaffold and suitable porosity for infiltration of biobased polymers while reducing chemical consumption, the toxicity of the reagents used, polluting waste, petroleum by-products, energy and processing time. The resulting transparent wood demonstrates high transmittance and low thermal conductivity. Through the combination of process efficiency and scalability, the obtained materials are promising candidates for application in the field of construction for modern energy-efficient buildings.

Keywords: bleached wood, energy-efficient components, hydrogen peroxide, transparent wood, wood composites

Procedia PDF Downloads 20
30 Formulation of a Submicron Delivery System including a Platelet Lysate to Be Administered in Damaged Skin

Authors: Sergio A. Bernal-Chavez, Sergio Alcalá-Alcalá, Doris A. Cerecedo-Mercado, Adriana Ganem-Rondero

Abstract:

The prevalence of people with chronic wounds has increased dramatically by many factors including smoking, obesity and chronic diseases, such as diabetes, that can slow the healing process and increase the risk of becoming chronic. Because of this situation, the improvement of chronic wound treatments is a necessity, which has led to the scientific community to focus on improving the effectiveness of current therapies and the development of new treatments. The wound formation is a physiological complex process, which is characterized by an inflammatory stage with the presence of proinflammatory cells that create a proteolytic microenvironment during the healing process, which includes the degradation of important growth factors and cytokines. This decrease of growth factors and cytokines provides an interesting strategy for wound healing if they are administered externally. The use of nanometric drug delivery systems, such as polymer nanoparticles (NP), also offers an interesting alternative around dermal systems. An interesting strategy would be to propose a formulation based on a thermosensitive hydrogel loaded with polymeric nanoparticles that allows the inclusion and application of a platelet lysate (PL) on damaged skin, with the aim of promoting wound healing. In this work, NP were prepared by a double emulsion-solvent evaporation technique, using polylactic-co-glycolic acid (PLGA) as biodegradable polymer. Firstly, an aqueous solution of PL was emulsified into a PLGA organic solution, previously prepared in dichloromethane (DCM). Then, this disperse system (W/O) was poured into a polyvinyl alcohol (PVA) solution to get the double emulsion (W/O/W), finally the DCM was evaporated by magnetic stirring resulting in the NP formation containing PL. Once the NP were obtained, these systems were characterized by morphology, particle size, Z-potential, encapsulation efficiency (%EE), physical stability, infrared spectrum, calorimetric studies (DSC) and in vitro release profile. The optimized nanoparticles were included in a thermosensitive gel formulation of Pluronic® F-127. The gel was prepared by the cold method at 4 °C and 20% of polymer concentration. Viscosity, sol-gel phase transition, time of no flow solid-gel at wound temperature, changes in particle size by temperature-effect using dynamic light scattering (DLS), occlusive effect, gel degradation, infrared spectrum and micellar point by DSC were evaluated in all gel formulations. PLGA NP of 267 ± 10.5 nm and Z-potential of -29.1 ± 1 mV were obtained. TEM micrographs verified the size of NP and evidenced their spherical shape. The %EE for the system was around 99%. Thermograms and in infrared spectra mark the presence of PL in NP. The systems did not show significant changes in the parameters mentioned above, during the stability studies. Regarding the gel formulation, the transition sol-gel occurred at 28 °C with a time of no flow solid-gel of 7 min at 33°C (common wound temperature). Calorimetric, DLS and infrared studies corroborated the physical properties of a thermosensitive gel, such as the micellar point. In conclusion, the thermosensitive gel described in this work, contains therapeutic amounts of PL and fulfills the technological properties to be used in damaged skin, with potential application in wound healing and tissue regeneration.

Keywords: growth factors, polymeric nanoparticles, thermosensitive hydrogels, tissue regeneration

Procedia PDF Downloads 142
29 Non-Invasive Characterization of the Mechanical Properties of Arterial Walls

Authors: Bruno RamaëL, GwenaëL Page, Catherine Knopf-Lenoir, Olivier Baledent, Anne-Virginie Salsac

Abstract:

No routine technique currently exists for clinicians to measure the mechanical properties of vascular walls non-invasively. Most of the data available in the literature come from traction or dilatation tests conducted ex vivo on native blood vessels. The objective of the study is to develop a non-invasive characterization technique based on Magnetic Resonance Imaging (MRI) measurements of the deformation of vascular walls under pulsating blood flow conditions. The goal is to determine the mechanical properties of the vessels by inverse analysis, coupling imaging measurements and numerical simulations of the fluid-structure interactions. The hyperelastic properties are identified using Solidworks and Ansys workbench (ANSYS Inc.) solving an optimization technique. The vessel of interest targeted in the study is the common carotid artery. In vivo MRI measurements of the vessel anatomy and inlet velocity profiles was acquired along the facial vascular network on a cohort of 30 healthy volunteers: - The time-evolution of the blood vessel contours and, thus, of the cross-section surface area was measured by 3D imaging angiography sequences of phase-contrast MRI. - The blood flow velocity was measured using a 2D CINE MRI phase contrast (PC-MRI) method. Reference arterial pressure waveforms were simultaneously measured in the brachial artery using a sphygmomanometer. The three-dimensional (3D) geometry of the arterial network was reconstructed by first creating an STL file from the raw MRI data using the open source imaging software ITK-SNAP. The resulting geometry was then transformed with Solidworks into volumes that are compatible with Ansys softwares. Tetrahedral meshes of the wall and fluid domains were built using the ANSYS Meshing software, with a near-wall mesh refinement method in the case of the fluid domain to improve the accuracy of the fluid flow calculations. Ansys Structural was used for the numerical simulation of the vessel deformation and Ansys CFX for the simulation of the blood flow. The fluid structure interaction simulations showed that the systolic and diastolic blood pressures of the common carotid artery could be taken as reference pressures to identify the mechanical properties of the different arteries of the network. The coefficients of the hyperelastic law were identified using Ansys Design model for the common carotid. Under large deformations, a stiffness of 800 kPa is measured, which is of the same order of magnitude as the Young modulus of collagen fibers. Areas of maximum deformations were highlighted near bifurcations. This study is a first step towards patient-specific characterization of the mechanical properties of the facial vessels. The method is currently applied on patients suffering from facial vascular malformations and on patients scheduled for facial reconstruction. Information on the blood flow velocity as well as on the vessel anatomy and deformability will be key to improve surgical planning in the case of such vascular pathologies.

Keywords: identification, mechanical properties, arterial walls, MRI measurements, numerical simulations

Procedia PDF Downloads 289
28 Fiber Stiffness Detection of GFRP Using Combined ABAQUS and Genetic Algorithms

Authors: Gyu-Dong Kim, Wuk-Jae Yoo, Sang-Youl Lee

Abstract:

Composite structures offer numerous advantages over conventional structural systems in the form of higher specific stiffness and strength, lower life-cycle costs, and benefits such as easy installation and improved safety. Recently, there has been a considerable increase in the use of composites in engineering applications and as wraps for seismic upgrading and repairs. However, these composites deteriorate with time because of outdated materials, excessive use, repetitive loading, climatic conditions, manufacturing errors, and deficiencies in inspection methods. In particular, damaged fibers in a composite result in significant degradation of structural performance. In order to reduce the failure probability of composites in service, techniques to assess the condition of the composites to prevent continual growth of fiber damage are required. Condition assessment technology and nondestructive evaluation (NDE) techniques have provided various solutions for the safety of structures by means of detecting damage or defects from static or dynamic responses induced by external loading. A variety of techniques based on detecting the changes in static or dynamic behavior of isotropic structures has been developed in the last two decades. These methods, based on analytical approaches, are limited in their capabilities in dealing with complex systems, primarily because of their limitations in handling different loading and boundary conditions. Recently, investigators have introduced direct search methods based on metaheuristics techniques and artificial intelligence, such as genetic algorithms (GA), simulated annealing (SA) methods, and neural networks (NN), and have promisingly applied these methods to the field of structural identification. Among them, GAs attract our attention because they do not require a considerable amount of data in advance in dealing with complex problems and can make a global solution search possible as opposed to classical gradient-based optimization techniques. In this study, we propose an alternative damage-detection technique that can determine the degraded stiffness distribution of vibrating laminated composites made of Glass Fiber-reinforced Polymer (GFRP). The proposed method uses a modified form of the bivariate Gaussian distribution function to detect degraded stiffness characteristics. In addition, this study presents a method to detect the fiber property variation of laminated composite plates from the micromechanical point of view. The finite element model is used to study free vibrations of laminated composite plates for fiber stiffness degradation. In order to solve the inverse problem using the combined method, this study uses only first mode shapes in a structure for the measured frequency data. In particular, this study focuses on the effect of the interaction among various parameters, such as fiber angles, layup sequences, and damage distributions, on fiber-stiffness damage detection.

Keywords: stiffness detection, fiber damage, genetic algorithm, layup sequences

Procedia PDF Downloads 238
27 3D Seismic Acquisition Challenges in the NW Ghadames Basin Libya, an Integrated Geophysical Sedimentological and Subsurface Studies Approach as a Solution

Authors: S. Sharma, Gaballa Aqeelah, Tawfig Alghbaili, Ali Elmessmari

Abstract:

There were abrupt discontinuities in the Brute Stack in the northernmost locations during the acquisition of 2D (2007) and 3D (2021) seismic data in the northwest region of the Ghadames Basin, Libya. In both campaigns, complete fluid circulation loss was seen in these regions during up-hole drilling. Geophysics, sedimentology and shallow subsurface geology were all integrated to look into what was causing the seismic signal to disappear at shallow depths. The Upper Cretaceous Nalut Formation is the near-surface or surface formation in the studied area. It is distinguished by abnormally high resistivity in all the neighboring wells. The Nalut Formation in all the nearby wells from the present study and previous outcrop study suggests lithology of dolomite and chert/flint in nodular or layered forms. There are also reports of karstic caverns, vugs, and thick cracks, which all work together to produce the high resistivity. Four up-hole samples that were analyzed for microfacies revealed a near-coastal to tidal environment. Algal (Chara) infested deposits up to 30 feet thick and monotonous, very porous, are seen in two up-hole sediments; these deposits are interpreted to be scattered, continental algal travertine mounds. Chert/flint, dolomite, and calcite in varying amounts are confirmed by XRD analysis. Regional tracking of the high resistivity of the Nalut Formation, which is thought to be connected to the sea level drop that created the paleokarst layer, is possible. It is abruptly overlain by a blanket marine transgressive deposit caused by rapid sea level rise, which is a regional, relatively high radioactive layer of argillaceous limestone. The examined area's close proximity to the mountainous, E-W trending ridges of northern Libya made it easier for recent freshwater circulation, which later enhanced cavern development and mineralization in the paleokarst layer. Seismic signal loss at shallow depth is caused by extremely heterogeneous mineralogy of pore- filling or lack thereof. Scattering effect of shallow karstic layer on seismic signal has been well documented. Higher velocity inflection points at shallower depths in the northern part and deeper intervals in the southern part, in both cases at Nalut level, demonstrate the layer's influence on the seismic signal. During the Permian-Carboniferous, the Ghadames Basin underwent uplift and extensive erosion, which resulted in this karstic layer of the Nalut Formation uplifted to a shallow depth in the northern part of the studied area weakening the acoustic signal, whereas in the southern part of the 3D acquisition area the Nalut Formation remained at the deeper interval without affecting the seismic signal. Results from actions taken during seismic processing to deal with this signal loss are visible and have improved. This study recommends using denser spacing or dynamite to circumvent the karst layer in a comparable geographic area in order to prevent signal loss at lesser depths.

Keywords: well logging, seismic data acquisition, sesimic data processing, up-holes

Procedia PDF Downloads 50
26 Improving a Stagnant River Reach Water Quality by Combining Jet Water Flow and Ultrasonic Irradiation

Authors: A. K. Tekile, I. L. Kim, J. Y. Lee

Abstract:

Human activities put freshwater quality under risk, mainly due to expansion of agriculture and industries, damming, diversion and discharge of inadequately treated wastewaters. The rapid human population growth and climate change escalated the problem. External controlling actions on point and non-point pollution sources are long-term solution to manage water quality. To have a holistic approach, these mechanisms should be coupled with the in-water control strategies. The available in-lake or river methods are either costly or they have some adverse effect on the ecological system that the search for an alternative and effective solution with a reasonable balance is still going on. This study aimed at the physical and chemical water quality improvement in a stagnant Yeo-cheon River reach (Korea), which has recently shown sign of water quality problems such as scum formation and fish death. The river water quality was monitored, for the duration of three months by operating only water flow generator in the first two weeks and then ultrasonic irradiation device was coupled to the flow unit for the remaining duration of the experiment. In addition to assessing the water quality improvement, the correlation among the parameters was analyzed to explain the contribution of the ultra-sonication. Generally, the combined strategy showed localized improvement of water quality in terms of dissolved oxygen, Chlorophyll-a and dissolved reactive phosphate. At locations under limited influence of the system operation, chlorophyll-a was highly increased, but within 25 m of operation the low initial value was maintained. The inverse correlation coefficient between dissolved oxygen and chlorophyll-a decreased from 0.51 to 0.37 when ultrasonic irradiation unit was used with the flow, showing that ultrasonic treatment reduced chlorophyll-a concentration and it inhibited photosynthesis. The relationship between dissolved oxygen and reactive phosphate also indicated that influence of ultra-sonication was higher than flow on the reactive phosphate concentration. Even though flow increased turbidity by suspending sediments, ultrasonic waves canceled out the effect due to the agglomeration of suspended particles and the follow-up settling out. There has also been variation of interaction in the water column as the decrease of pH and dissolved oxygen from surface to the bottom played a role in phosphorus release into the water column. The variation of nitrogen and dissolved organic carbon concentrations showed mixed trend probably due to the complex chemical reactions subsequent to the operation. Besides, the intensive rainfall and strong wind around the end of the field trial had apparent impact on the result. The combined effect of water flow and ultrasonic irradiation was a cumulative water quality improvement and it maintained the dissolved oxygen and chlorophyll-a requirement of the river for healthy ecological interaction. However, the overall improvement of water quality is not guaranteed as effectiveness of ultrasonic technology requires long-term monitoring of water quality before, during and after treatment. Even though, the short duration of the study conducted here has limited nutrient pattern realization, the use of ultrasound at field scale to improve water quality is promising.

Keywords: stagnant, ultrasonic irradiation, water flow, water quality

Procedia PDF Downloads 173
25 Development of Wound Dressing System Based on Hydrogel Matrix Incorporated with pH-Sensitive Nanocarrier-Drug Systems

Authors: Dagmara Malina, Katarzyna Bialik-Wąs, Klaudia Pluta

Abstract:

The growing significance of transdermal systems, in which skin is a route for systemic drug delivery, has generated a considerable amount of data which has resulted in a deeper understanding of the mechanisms of transport across the skin in the context of the controlled and prolonged release of active substances. One of such solutions may be the use of carrier systems based on intelligent polymers with different physicochemical properties. In these systems, active substances, e.g. drugs, can be conjugated (attached), immobilized, or encapsulated in a polymer matrix that is sensitive to specific environmental conditions (e.g. pH or temperature changes). Intelligent polymers can be divided according to their sensitivity to specific environmental stimuli such as temperature, pH, light, electric, magnetic, sound, or electromagnetic fields. Materials & methods—The first stage of the presented research concerned the synthesis of pH-sensitive polymeric carriers by a radical polymerization reaction. Then, the selected active substance (hydrocortisone) was introduced into polymeric carriers. In a further stage, bio-hybrid sodium alginate/poly(vinyl alcohol) – SA/PVA-based hydrogel matrices modified with various carrier-drug systems were prepared with the chemical cross-linking method. The conducted research included the assessment of physicochemical properties of obtained materials i.e. degree of hydrogel swelling and degradation studies as a function of pH in distilled water and phosphate-buffered saline (PBS) at 37°C in time. The gel fraction represents the insoluble gel fraction as a result of inter-molecule cross-linking formation was also measured. Additionally, the chemical structure of obtained hydrogels was confirmed using FT-IR spectroscopic technique. The dynamic light scattering (DLS) technique was used for the analysis of the average particle size of polymer-carriers and carrier-drug systems. The nanocarriers morphology was observed using SEM microscopy. Results & Discussion—The analysis of the encapsulated polymeric carriers showed that it was possible to obtain the time-stable empty pH-sensitive carrier with an average size 479 nm and the encapsulated system containing hydrocortisone with an average 543 nm, which was introduced into hydrogel structure. Bio-hybrid hydrogel matrices are stable materials, and the presence of an additional component: pH-sensitive carrier – hydrocortisone system, does not reduce the degree of cross-linking of the matrix nor its swelling ability. Moreover, the results of swelling tests indicate that systems containing higher concentrations of the drug have a slightly higher sorption capacity in each of the media used. All analyzed materials show stable and statically changing swelling values in simulated body fluids - there is no sudden fluid uptake and no rapid release from the material. The analysis of FT-IR spectra confirms the chemical structure of the obtained bio-hybrid hydrogel matrices. In the case of modifications with a pH-sensitive carrier, a much more intense band can be observed in the 3200-3500 cm⁻¹ range, which most likely originates from the strong hydrogen interactions that occur between individual components.

Keywords: hydrogels, polymer nanocarriers, sodium alginate/poly(vinyl alcohol) matrices, wound dressings.

Procedia PDF Downloads 120
24 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text

Authors: Duncan Wallace, M-Tahar Kechadi

Abstract:

In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.

Keywords: artificial neural networks, data-mining, machine learning, medical informatics

Procedia PDF Downloads 102
23 A Novel Concept of Optical Immunosensor Based on High-Affinity Recombinant Protein Binders for Tailored Target-Specific Detection

Authors: Alena Semeradtova, Marcel Stofik, Lucie Mareckova, Petr Maly, Ondrej Stanek, Jan Maly

Abstract:

Recently, novel strategies based on so-called molecular evolution were shown to be effective for the production of various peptide ligand libraries with high affinities to molecular targets of interest comparable or even better than monoclonal antibodies. The major advantage of these peptide scaffolds is mainly their prevailing low molecular weight and simple structure. This study describes a new high-affinity binding molecules based immunesensor using a simple optical system for human serum albumin (HSA) detection as a model molecule. We present a comparison of two variants of recombinant binders based on albumin binding domain of the protein G (ABD) performed on micropatterned glass chip. Binding domains may be tailored to any specific target of interest by molecular evolution. Micropatterened glass chips were prepared using UV-photolithography on chromium sputtered glasses. Glass surface was modified by (3-aminopropyl)trietoxysilane and biotin-PEG-acid using EDC/NHS chemistry. Two variants of high-affinity binding molecules were used to detect target molecule. Firstly, a variant is based on ABD domain fused with TolA chain. This molecule is in vivo biotinylated and each molecule contains one molecule of biotin and one ABD domain. Secondly, the variant is ABD domain based on streptavidin molecule and contains four gaps for biotin and four ABD domains. These high-affinity molecules were immobilized to the chip surface via biotin-streptavidin chemistry. To eliminate nonspecific binding 1% bovine serum albumin (BSA) or 6% fetal bovine serum (FBS) were used in every step. For both variants range of measured concentrations of fluorescently labelled HSA was 0 – 30 µg/ml. As a control, we performed a simultaneous assay without high-affinity binding molecules. Fluorescent signal was measured using inverse fluorescent microscope Olympus IX 70 with COOL LED pE 4000 as a light source, related filters, and camera Retiga 2000R as a detector. The fluorescent signal from non-modified areas was substracted from the signal of the fluorescent areas. Results were presented in graphs showing the dependence of measured grayscale value on the log-scale of HSA concentration. For the TolA variant the limit of detection (LOD) of the optical immunosensor proposed in this study is calculated to be 0,20 µg/ml for HSA detection in 1% BSA and 0,24 µg/ml in 6% FBS. In the case of streptavidin-based molecule, it was 0,04 µg/ml and 0,07 µg/ml respectively. The dynamical range of the immunosensor was possible to estimate just in the case of TolA variant and it was calculated to be 0,49 – 3,75 µg/ml and 0,73-1,88 µg/ml respectively. In the case of the streptavidin-based the variant we didn´t reach the surface saturation even with the 480 ug/ml concentration and the upper value of dynamical range was not estimated. Lower value was calculated to be 0,14 µg/ml and 0,17 µg/ml respectively. Based on the obtained results, it´s clear that both variants are useful for creating the bio-recognizing layer on immunosensors. For this particular system, it is obvious that the variant based on streptavidin molecule is more useful for biosensing on glass planar surfaces. Immunosensors based on this variant would exhibit better limit of detection and wide dynamical range.

Keywords: high affinity binding molecules, human serum albumin, optical immunosensor, protein G, UV-photolitography

Procedia PDF Downloads 339
22 Blood Chemo-Profiling in Workers Exposed to Occupational Pyrethroid Pesticides to Identify Associated Diseases

Authors: O. O. Sufyani, M. E. Oraiby, S. A. Qumaiy, A. I. Alaamri, Z. M. Eisa, A. M. Hakami, M. A. Attafi, O. M. Alhassan, W. M. Elsideeg, E. M. Noureldin, Y. A. Hobani, Y. Q. Majrabi, I. A. Khardali, A. B. Maashi, A. A. Al Mane, A. H. Hakami, I. M. Alkhyat, A. A. Sahly, I. M. Attafi

Abstract:

According to the Food and Agriculture Organization (FAO) Pesticides Use Database, pesticide use in agriculture in Saudi Arabia has more than doubled from 4539 tons in 2009 to 10496 tons in 2019. Among pesticides, pyrethroids is commonly used in Saudi Arabia. Pesticides may increase susceptibility to a variety of diseases, particularly among pesticide workers, due to their extensive use, indiscriminate use, and long-term exposure. Therefore, analyzing blood chemo-profiles and evaluating the detected substances as biomarkers for pyrethroid pesticide exposure may assist to identify and predicting adverse effects of exposure, which may be used for both preventative and risk assessment purposes. The purpose of this study was to (a) analyze chemo-profiling by Gas Chromatography-Mass Spectrometry (GC-MS) analysis, (b) identify the most commonly detected chemicals in a time-exposure-dependent manner using a Venn diagram, and (c) identify their associated disease among pesticide workers using analyzer tools on the Comparative Toxicogenomics Database (CTD) website, (250 healthy male volunteers (20-60 years old) who deal with pesticides in the Jazan region of Saudi Arabia (exposure intervals: 1-2, 4-6, 6-8, more than 8 years) were included in the study. A questionnaire was used to collect demographic information, the duration of pesticide exposure, and the existence of chronic conditions. Blood samples were collected for biochemistry analysis and extracted by solid-phase extraction for gas chromatography-mass spectrometry (GC-MS) analysis. Biochemistry analysis reveals no significant changes in response to the exposure period; however, an inverse association between the albumin level and the exposure interval was observed. The blood chemo-profiling was differentially expressed in an exposure time-dependent manner. This analysis identified the common chemical set associated with each group and their associated significant occupational diseases. While some of these chemicals are associated with a variety of diseases, the distinguishing feature of these chemically associated disorders is their applicability for prevention measures. The most interesting finding was the identification of several chemicals; erucic acid, pelargonic acid, alpha-linolenic acid, dibutyl phthalate, diisobutyl phthalate, dodecanol, myristic Acid, pyrene, and 8,11,14-eicosatrienoic acid, associated with pneumoconiosis, asbestosis, asthma, silicosis and berylliosis. Chemical-disease association study also found that cancer, digestive system disease, nervous system disease, and metabolic disease were the most often recognized disease categories in the common chemical set. The hierarchical clustering approach was used to compare the expression patterns and exposure intervals of the chemicals found commonly. More study is needed to validate these chemicals as early markers of pyrethroid insecticide-related occupational disease, which might assist evaluate and reducing risk. The current study contributes valuable data and recommendations to public health.

Keywords: occupational, toxicology, chemo-profiling, pesticide, pyrethroid, GC-MS

Procedia PDF Downloads 64
21 Genome-Wide Analysis Identifies Locus Associated with Parathyroid Hormone Levels

Authors: Antonela Matana, Dubravka Brdar, Vesela Torlak, Marijana Popovic, Ivana Gunjaca, Ozren Polasek, Vesna Boraska Perica, Maja Barbalic, Ante Punda, Caroline Hayward, Tatijana Zemunik

Abstract:

Parathyroid hormone (PTH) plays a critical role in the regulation of bone mineral metabolism and calcium homeostasis. Higher PTH levels are associated with heart failure, hypertension, coronary artery disease, cardiovascular mortality and poorer bone health. A twin study estimated that 60% of the variation in PTH concentrations is genetically determined. Only one GWAS of PTH concentration has been reported to date. Identified loci explained 4.5% of the variance in circulating PTH, suggesting that additional genetic variants remain undiscovered. Therefore, the aim of this study was to identify novel genetic variants associated with PTH levels in a general population. We have performed a GWAS meta-analysis on 2596 individuals originating from three Croatian cohorts: City of Split and the Islands of Korčula and Vis, within a large-scale project of “10,001 Dalmatians”. A total of 7 411 206 variants, imputed using the 1000 Genomes reference panel, with minor allele frequency ≥ 1% and Rsq ≥ 0.5 were analyzed for the association. GWAS within each data set was performed under an additive model, controlling for age, gender and relatedness. Meta-analysis was conducted using the inverse-variance fixed-effects method. Furthermore, to identify sex-specific effects, we have conducted GWAS meta-analyses analyzing males and females separately. In addition, we have performed biological pathway analysis. Four SNPs, representing one locus, reached genome-wide significance. The most significant SNP was rs11099476 on chromosome 4 (P=1.15x10-8), which explained 1.14 % of the variance in PTH. The SNP is located near the protein-coding gene RASGEF1B. Additionally, we detected suggestive association with SNPs, rs77178854 located on chromosome 2 in the DPP10 gene (P=2.46x10-7) and rs481121 located on chromosome 1 (P=3.58x10-7) near the GRIK1 gene. One of the top hits detected in the main meta-analysis, intron variant rs77178854 located within DPP10 gene, reached genome-wide significance in females (P=2.21x10-9). No single locus was identified in the meta-analysis in males. Fifteen biological pathways were functionally enriched at a P<0.01, including muscle contraction, ion homeostasis and cardiac conduction as the most significant pathways. RASGEF1B is the guanine nucleotide exchange factor, known to be associated with height, bone density, and hip. DPP10 encodes a membrane protein that is a member of the serine proteases family, which binds specific voltage-gated potassium channels and alters their expression and biophysical properties. In conclusion, we identified 2 novel loci associated with PTH levels in a general population, providing us with further insights into the genetics of this complex trait.

Keywords: general population, genome-wide association analysis, parathyroid hormone, single nucleotide polymorphisms.

Procedia PDF Downloads 200
20 Manual Wheelchair Propulsion Efficiency on Different Slopes

Authors: A. Boonpratatong, J. Pantong, S. Kiattisaksophon, W. Senavongse

Abstract:

In this study, an integrated sensing and modeling system for manual wheelchair propulsion measurement and propulsion efficiency calculation was used to indicate the level of overuse. Seven subjects participated in the measurement. On the level surface, the propulsion efficiencies were not different significantly as the riding speed increased. By contrast, the propulsion efficiencies on the 15-degree incline were restricted to around 0.5. The results are supported by previously reported wheeling resistance and propulsion torque relationships implying margin of the overuse. Upper limb musculoskeletal injuries and syndromes in manual wheelchair riders are common, chronic, and may be caused at different levels by the overuse i.e. repetitive riding on steep incline. The qualitative analysis such as the mechanical effectiveness on manual wheeling to establish the relationship between the riding difficulties, mechanical efforts and propulsion outputs is scarce, possibly due to the challenge of simultaneous measurement of those factors in conventional manual wheelchairs and everyday environments. In this study, the integrated sensing and modeling system were used to measure manual wheelchair propulsion efficiency in conventional manual wheelchairs and everyday environments. The sensing unit is comprised of the contact pressure and inertia sensors which are portable and universal. Four healthy male and three healthy female subjects participated in the measurement on level and 15-degree incline surface. Subjects were asked to perform manual wheelchair ridings with three different self-selected speeds on level surface and only preferred speed on the 15-degree incline. Five trials were performed in each condition. The kinematic data of the subject’s dominant hand and a spoke and the trunk of the wheelchair were collected through the inertia sensors. The compression force applied from the thumb of the dominant hand to the push rim was collected through the contact pressure sensors. The signals from all sensors were recorded synchronously. The subject-selected speeds for slow, preferred and fast riding on level surface and subject-preferred speed on 15-degree incline were recorded. The propulsion efficiency as a ratio between the pushing force in tangential direction to the push rim and the net force as a result of the three-dimensional riding motion were derived by inverse dynamic problem solving in the modeling unit. The intra-subject variability of the riding speed was not different significantly as the self-selected speed increased on the level surface. Since the riding speed on the 15-degree incline was difficult to regulate, the intra-subject variability was not applied. On the level surface, the propulsion efficiencies were not different significantly as the riding speed increased. However, the propulsion efficiencies on the 15-degree incline were restricted to around 0.5 for all subjects on their preferred speed. The results are supported by the previously reported relationship between the wheeling resistance and propulsion torque in which the wheelchair axle torque increased but the muscle activities were not increased when the resistance is high. This implies the margin of dynamic efforts on the relatively high resistance being similar to the margin of the overuse indicated by the restricted propulsion efficiency on the 15-degree incline.

Keywords: contact pressure sensor, inertia sensor, integrating sensing and modeling system, manual wheelchair propulsion efficiency, manual wheelchair propulsion measurement, tangential force, resultant force, three-dimensional riding motion

Procedia PDF Downloads 259
19 A Case Study Report on Acoustic Impact Assessment and Mitigation of the Hyprob Research Plant

Authors: D. Bianco, A. Sollazzo, M. Barbarino, G. Elia, A. Smoraldi, N. Favaloro

Abstract:

The activities, described in the present paper, have been conducted in the framework of the HYPROB-New Program, carried out by the Italian Aerospace Research Centre (CIRA) promoted and funded by the Italian Ministry of University and Research (MIUR) in order to improve the National background on rocket engine systems for space applications. The Program has the strategic objective to improve National system and technology capabilities in the field of liquid rocket engines (LRE) for future Space Propulsion Systems applications, with specific regard to LOX/LCH4 technology. The main purpose of the HYPROB program is to design and build a Propulsion Test Facility (HIMP) allowing test activities on Liquid Thrusters. The development of skills in liquid rocket propulsion can only pass through extensive test campaign. Following its mission, CIRA has planned the development of new testing facilities and infrastructures for space propulsion characterized by adequate sizes and instrumentation. The IMP test cell is devoted to testing articles representative of small combustion chambers, fed with oxygen and methane, both in liquid and gaseous phase. This article describes the activities that have been carried out for the evaluation of the acoustic impact, and its consequent mitigation. The impact of the simulated acoustic disturbance has been evaluated, first, using an approximated method based on experimental data by Baumann and Coney, included in “Noise and Vibration Control Engineering” edited by Vér and Beranek. This methodology, used to evaluate the free-field radiation of jet in ideal acoustical medium, analyzes in details the jet noise and assumes sources acting at the same time. It considers as principal radiation sources the jet mixing noise, caused by the turbulent mixing of jet gas and the ambient medium. Empirical models, allowing a direct calculation of the Sound Pressure Level, are commonly used for rocket noise simulation. The model named after K. Eldred is probably one of the most exploited in this area. In this paper, an improvement of the Eldred Standard model has been used for a detailed investigation of the acoustical impact of the Hyprob facility. This new formulation contains an explicit expression for the acoustic pressure of each equivalent noise source, in terms of amplitude and phase, allowing the investigation of the sources correlation effects and their propagation through wave equations. In order to enhance the evaluation of the facility acoustic impact, including an assessment of the mitigation strategies to be set in place, a more advanced simulation campaign has been conducted using both an in-house code for noise propagation and scattering, and a commercial code for industrial noise environmental impact, CadnaA. The noise prediction obtained with the revised Eldred-based model has then been used for formulating an empirical/BEM (Boundary Element Method) hybrid approach allowing the evaluation of the barrier mitigation effect, at the design. This approach has been compared with the analogous empirical/ray-acoustics approach, implemented within CadnaA using a customized definition of sources and directivity factor. The resulting impact evaluation study is reported here, along with the design-level barrier optimization for noise mitigation.

Keywords: acoustic impact, industrial noise, mitigation, rocket noise

Procedia PDF Downloads 118
18 Small Scale Mobile Robot Auto-Parking Using Deep Learning, Image Processing, and Kinematics-Based Target Prediction

Authors: Mingxin Li, Liya Ni

Abstract:

Autonomous parking is a valuable feature applicable to many robotics applications such as tour guide robots, UV sanitizing robots, food delivery robots, and warehouse robots. With auto-parking, the robot will be able to park at the charging zone and charge itself without human intervention. As compared to self-driving vehicles, auto-parking is more challenging for a small-scale mobile robot only equipped with a front camera due to the camera view limited by the robot’s height and the narrow Field of View (FOV) of the inexpensive camera. In this research, auto-parking of a small-scale mobile robot with a front camera only was achieved in a four-step process: Firstly, transfer learning was performed on the AlexNet, a popular pre-trained convolutional neural network (CNN). It was trained with 150 pictures of empty parking slots and 150 pictures of occupied parking slots from the view angle of a small-scale robot. The dataset of images was divided into a group of 70% images for training and the remaining 30% images for validation. An average success rate of 95% was achieved. Secondly, the image of detected empty parking space was processed with edge detection followed by the computation of parametric representations of the boundary lines using the Hough Transform algorithm. Thirdly, the positions of the entrance point and center of available parking space were predicted based on the robot kinematic model as the robot was driving closer to the parking space because the boundary lines disappeared partially or completely from its camera view due to the height and FOV limitations. The robot used its wheel speeds to compute the positions of the parking space with respect to its changing local frame as it moved along, based on its kinematic model. Lastly, the predicted entrance point of the parking space was used as the reference for the motion control of the robot until it was replaced by the actual center when it became visible again by the robot. The linear and angular velocities of the robot chassis center were computed based on the error between the current chassis center and the reference point. Then the left and right wheel speeds were obtained using inverse kinematics and sent to the motor driver. The above-mentioned four subtasks were all successfully accomplished, with the transformed learning, image processing, and target prediction performed in MATLAB, while the motion control and image capture conducted on a self-built small scale differential drive mobile robot. The small-scale robot employs a Raspberry Pi board, a Pi camera, an L298N dual H-bridge motor driver, a USB power module, a power bank, four wheels, and a chassis. Future research includes three areas: the integration of all four subsystems into one hardware/software platform with the upgrade to an Nvidia Jetson Nano board that provides superior performance for deep learning and image processing; more testing and validation on the identification of available parking space and its boundary lines; improvement of performance after the hardware/software integration is completed.

Keywords: autonomous parking, convolutional neural network, image processing, kinematics-based prediction, transfer learning

Procedia PDF Downloads 106
17 Children’s Experience of the Built Environment in the Initial Stages of a Settlement Formation: Case Study of Shahid-Keshvari New Settlement, Isfahan, Iran

Authors: Hassan Sheikh, Mehdi Nilipour, Amiraslan Fila

Abstract:

Many conventional town planning processes do little to give children and young people a voice on what is important about the urban environment. As a result of paying little attention to the children, their physical, social and mental needs are hardly met in urban environments. Therefore, urban spaces are impotent to attract children, while their recreational space has been confined to home or virtual spaces. Since children are just taking the first steps to learn the world beyond house borders, their living environment will profoundly influence almost all aspects of their lives. This puts a great deal of responsibility on the shoulders of planners, who need to balance a number of different issues in urban design to make places more child-friendly. The main purpose of present research is to analyze and plan a child-friendly environment in an on-going urban settlement development for the benefit of all residents. Assessing children’s needs and regard them in development strategies and policies will help to “plan for children”. Following this purpose, based on child-friendly environment studies, indicators of child-friendly environments were collected. Then three distinct characteristics of case study, which are being under-construction, lack of social ties between dwellers and high-rise building, determined seven indicators included basic services, Urban and environmental qualities, Family, kin, peers and community, Sense of belonging and continuity, participation, Safety, security and freedom of movement and human scale. With the survey, Informal observation and participation in small communities, essential data has been collected and analyzed by SPSS software. The field study is Shahid-Keshvari town in Isfahan, Iran. Eighty-six middle childhood, children (ages 8-13) participated. The results show Children's satisfaction is correlated with basic services and the quality of the environment, social environment and the safety and security. The considerable number of children and youth (55%) like to live somewhere other than the town. Satisfaction and sense of belonging and continuity have a strong inverse correlation with age. In other words, as age increases, satisfaction and consequently a sense of belonging will be reduced; thus children and youth consider their future somewhere out of the town. The main reason for dissatisfaction was the basic services and social environment. More than half of children (55%) expressed their wish to develop basic services in terms of availability, hierarchy, and quality. Among all recreational places, children showed more interest to the parks. About three-quarters (76%) considered building a park as a crucial item for residents. The significant number of children (54%) want to have a relationship with more friends. This could be due to the serious shortage of the leisure spaces such as parks or playgrounds. Also, the space around the house or space between the apartments has not been designed for play or children’s activities. Moreover, the presence of strangers and construction workers have a negative impact on children's sense of peace and security; 60% of children are afraid of theft and 36% of children found strangers as a menace. The analysis of children’s issues and suggestions provides an insight to plan and design of child-friendly environment in new towns.

Keywords: child-friendly city (CFC), child-friendly environment, child participation, under-construction environment, Isfahan Shahid-Keshvari Town

Procedia PDF Downloads 349