Search results for: insulin signaling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 658

Search results for: insulin signaling

568 Insulin-Producing Cells from Adult Human Bone Marrow Mesenchymal Stem Cells Control Chemically-Induced Diabetes in Dogs

Authors: Maha Azzam, Mahmoud Gabr, Mahmoud Zakaria, Ayman Refaie, Amani Ismail, Sherry Khater, Sylvia Ashamallah, Mohamed Ghoniem

Abstract:

Evidence was provided that human bone marrow-derived mesenhymal stem cells (HBM-MSCs) could be differentiated to form insulin-producing cells (IPCs). Transplantation of these cells was able to cure chemically-induced diabetes in nude mice. The efficacy of these cells to control diabetes in large animals was carried out to evaluate the sufficient number of cells needed/Kg body weight and to determine the functional longevity in vivo. Materials/Methods: Ten male mongrel dogs weighing 15-20 Kg were used in this study. Diabetes was chemically-induced in 7 dogs by a mixture of alloxan and streptozotocin. Three non-diabetic served as normal controls. Differentiated HBM-MSCs (5 million/Kg) were encapsulated in theracyte capsules and transplanted beneath the rectus sheath. Each dog received 2 capsules. One dog died 4 days postoperative from inhalation pneumonia. The remaining 6 dogs were followed up for 6-18 months. Results: Four dogs became normoglycemic within 6-8 weeks with normal glucose tolerance curves providing evidence that the transplanted cells were glucose-sensitive and insulin-responsive. In the remaining 2 dogs, fasting blood glucose was reduced but did not reach euglycemic levels. The sera of all transplanted dogs contained human insulin and c-peptide but negligible levels of canine insulin. When the HBM-MSCs loaded capsules were removed, rapid return of diabetic state was noted. The harvested capsules were examined by immunofluorescence. IPCs were seen and co-expression of with c-peptide was confirmed. Furthermore, all the pancreatic endocrine genes were expressed by the transplanted cells. Conclusions: This study provided evidence that theracyte capsules could protect the xenogenic HBM-MSCs from the host immune response. This is an important issue when clinical stem cell therapy is considered for definitive treatment for T1DM.

Keywords: diabetes, mesenchymal stem cells, dogs, Insulin-producing cells

Procedia PDF Downloads 170
567 Effects of Turmeric on Uterine Tissue in Rats with Metabolic Syndrome Induced by High Fructose Diet

Authors: Mesih Kocamuftuoglu, Gonca Ozan, Enver Ozan, Nalan Kaya, Sema Temizer Ozan

Abstract:

Metabolic Syndrome, one of the common metabolic disorder, occurs with co-development of insulin resistance, obesity, dislipidemia and hypertension problems. Insulin resistance appears to play a pathogenic role in the metabolic syndrome. Also, there is a relationship between insulin resistance and infertility as known. Turmeric (Curcuma longa L.) a polyphenolic chemical is widely used for its coloring, flavoring, and medicinal properties, and exhibits a strong antioxidant activity. In this study, we assess the effects of turmeric on rat uterine tissue in metabolic syndrome model induced by high fructose diet. Thirty-two adult female Wistar rats weighing 220±20 g were randomly divided into four groups (n=8) as follows; control, fructose, turmeric, and fructose plus turmeric. Metabolic syndrome was induced by fructose solution 20% (w/v) in tap water, and turmeric (C.Longa) administered at the dose of 80 mg/kg body weight every other day by oral gavage. After the experimental period of 8 weeks, rats were decapitated, serum and uterine tissues were removed. Serum lipid profile, glucose, insülin levels were measured. Uterine tissues were fixed for histological analyzes. The uterine tissue sections were stained with hematoxylin-eosin (H & E) stain, then examined and photographed on a light microscope (Novel N-800Mx20). As a result, fructose consumption effected serum lipids, insulin levels, and insulin resistance significantly. Endometrium and myometrium layers were observed in normal structure in control group of uterine tissues. Perivascular edema, peri glandular fibrosis, and inflammatory cell increase were detected in fructose group. Sections of the fructose plus turmeric group showed a significant improvement in findings when compared to the fructose group. Turmeric group cell structures were observed similar with the control group. These results demonstrated that high-fructose consumption could change the structure of the uterine tissue. On the other hand, turmeric administration has beneficial effects on uterine tissue at that dose and duration when administered with fructose.

Keywords: metabolic syndrome, rat, turmeric, uterus

Procedia PDF Downloads 151
566 Combination of Diane-35 and Metformin to Treat Early Endometrial Carcinoma in PCOS Women with Insulin Resistance

Authors: Xin Li, Yan-Rong Guo, Jin-Fang Lin, Yi Feng, Håkan Billig, Ruijin Shao

Abstract:

Background: Young women with polycystic ovary syndrome (PCOS) have a high risk of developing endometrial carcinoma. There is a need for the development of new medical therapies that can reduce the need for surgical intervention so as to preserve the fertility of these patients. The aim of the study was to describe and discuss cases of PCOS and insulin resistance (IR) women with early endometrial carcinoma while being co-treated with Diane-35 and metformin. Methods: Five PCOS-IR women who were scheduled for diagnosis and therapy for early endometrial carcinoma were recruited. The hospital records and endometrial pathology reports were reviewed. All patients were co-treated with Diane-35 and metformin for 6 months to reverse the endometrial carcinoma and preserve their fertility. Before, during, and after treatment, endometrial biopsies and blood samples were obtained and oral glucose tolerance tests were performed. Endometrial pathology was evaluated. Body weight (BW), body mass index (BMI), follicle-stimulating hormone (FSH), luteinizing hormone (LH), total testosterone (TT), sex hormone-binding globulin (SHBG), free androgen index (FAI), insulin area under curve (IAUC), and homeostasis model assessment of insulin resistance (HOMA-IR) were determined. Results: Clinical stage 1a, low grade endometrial carcinoma was confirmed before treatment. After 6 months of co-treatment, all patients showed normal epithelia. No evidence of atypical hyperplasia or endometrial carcinoma was found. Co-treatment resulted in significant decreases in BW, BMI, TT, FAI, IAUC, and HOMA-IR in parallel with a significant increase in SHBG. There were no differences in the FSH and LH levels after co-treatment. Conclusions: Combined treatment with Diane-35 and metformin has the potential to revert the endometrial carcinoma into normal endometrial cells in PCOS-IR women. The cellular and molecular mechanisms behind this effect merit further investigation.

Keywords: PCOS, progesterone resistance, insulin resistance, steroid hormone receptors, endometrial carcinoma

Procedia PDF Downloads 378
565 The Effect of High Intensity by Intervals Training on Plasma Interleukin 13 and Insulin Resistance in Patients with Attention Deficit Hyperactivity Disorder (ADHD)

Authors: Goodarzvand Fatemeh, Soori Rahman, Effatpanah Mohammad, Ajbarnejad Ali

Abstract:

Attention deficit hyperactivity disorder (ADHD) is characterized by a pervasive pattern of developmentally inappropriate inattentive, impulsive and hyperactive behaviors that typically begin during the preschool ages and often persist into adulthood. This disorder is related to autism and schizophrenia and other psychological disorders and clinical conditions such as insulin resistance and they may operate through common pathways, and treatments used exclusively for one of these conditions may prove beneficial for the others. While ADHD is not fully understood as developmental disorder with an etiopathogeny, but studies show that core symptom of disorder was associated with and increased by the interleukins IL-13, where relation of IL-13 with inattention was notable. Regular exercise improves functions associated with attention deficit hyperactivity disorder (ADHD). However, the impact of exercise on cytokines associated with the disease activity remains relatively unexplored. The aim of this study was to examine the effects of 6 weeks high intensity by intervals training (HIIT) on IL-13 levels and insulin resistance in boys with ADHD. Twenty eight boys with ADHD disease in a range of 12-18 year of old participated in this study as the subject. Subjects were divided into control group (n=10) and training group (n=18) randomly. The training group performed progressive HIIT program, 3 days a week for 6 weeks. The control group was in absolute rest at the same time. The results showed that after six weeks of HIIT, IL-13 decreased in the exercise group and these changes achieved (p= 0.002) statistical significance (p < 0.005). The results suggest HIIT with specific intensity and duration utilized in this study had not significant effect on insulin resistance levels in female patients with ADHD (p=0.39), while the difference in the average control and case group was decreased.

Keywords: attention deficit hyperactivity disorder, interleukin 13, insulin resistance, high intensity by intervals training

Procedia PDF Downloads 485
564 Cumulus Cells of Mature Local Goat Oocytes Vitrified with Insulin Transferrin Selenium and Heat Shock Protein 70

Authors: Izzatul Ulfana, Angga Pratomo Cahyadi, Rimayanti, Widjiati

Abstract:

Freezing oocyte could cause temperature stress. Temperature stress triggers cell damage. Insulin Transferrin Selenium (ITS) and Heat Shock Protein 70 (HSP70) had been used to prevent damage to the oocyte after freezing. ITS and HSP70 could cause the difference protective effect. The aim of this research was to obtain an effective cryoprotectant for freezing local goat oocyte in cumulus cells change. The research began by collecting the ovary from a local slaughterhouse in Indonesia, aspiration follicle, in vitro maturation and the freezing had been used vitrification method. Examination of the morphology cells by native staining method. Data on the calculation morphology oocyte analyzed by Kruskall-Wallis Test. After the Kruskall-Wallis Test which indicated significance, followed by Mann-Whitney Test to compare between treatment groups. As a result, cryoprotectant ITS has the best culumus cells after warming

Keywords: Insulin Transferrin Selenium, Heat Shock Protein 70, cryoprotectant, vitrification

Procedia PDF Downloads 208
563 Therapeutic Effect of Indane 1,3-Dione Derivatives in the Restoration of Insulin Resistance in Human Liver Cells and in Db/Db Mice Model: Biochemical, Physiological and Molecular Insights of Investigation

Authors: Gulnaz Khan, Meha F. Aftab, Munazza Murtaza, Rizwana S. Waraich

Abstract:

Advanced glycation end products (AGEs) precursor and its abnormal accumulation cause damage to various tissues and organs. AGEs have pathogenic implication in several diseases including diabetes. Existing AGEs inhibitors are not in clinical use, and there is a need for development of novel inhibitors. The present investigation aimed at identifying the novel AGEs inhibitors and assessing their mechanism of action for treating insulin resistance in mice model of diabetes. Novel derivatives of benzylidene of indan-1,3-dione were synthesized. The compounds were selected to study their action mechanism in improving insulin resistance, in vitro, in human hepatocytes and murine adipocytes and then, in vivo, in mice genetic model of diabetes (db/db). Mice were treated with novel derivatives of benzylidene of indane 1,3-dione. AGEs mediated ROS production was measured by dihydroethidium fluorescence assay. AGEs level in the serum of treated mice was observed by ELISA. Gene expression of receptor for AGEs (RAGE), PPAR-gamma, TNF-alpha and GLUT-4 was evaluated by RT-PCR. Glucose uptake was measured by fluorescent method. Microscopy was used to analyze glycogen synthesis in muscle. Among several derivatives of benzylidene of indan-1,3-dione, IDD-24, demonstrated highest inhibition of AGESs. IDD-24 significantly reduced AGEs formation and expression of receptor for advanced glycation end products (RAGE) in fat, liver of db/db mice. Suppression of AGEs mediated ROS production was also observed in hepatocytes and fat cell, after treatment with IDD-24. Glycogen synthesis was increased in muscle tissue of mice treated with IDD-24. In adipocytes, IDD-24 prevented AGEs induced reduced glucose uptake. Mice treated with IDD-24 exhibited increased glucose tolerance, serum adiponectin levels and decreased insulin resistance. The result of present study suggested that IDD-24 can be a possible treatment target to address glycotoxins induced insulin resistance.

Keywords: advance glycation end product, hyperglycemia, indan-1, 3-dione, insulin resistance

Procedia PDF Downloads 133
562 Trans-Activator of Transcription-Tagged Active AKT1 Variants for Delivery to Mammalian Cells

Authors: Tarana Siddika, Ilka U. Heinemann, Patrick O’Donoghue

Abstract:

Protein kinase B (AKT1) is a serine/threonine kinase and central transducer of cell survival pathways. Typical approaches to study AKT1 biology in cells rely on growth factor or insulin stimulation that activates AKT1 via phosphorylation at two key regulatory sites (Threonine308, Serine473), yet cell stimulation also activates many other kinases and fails to differentiate the effect of the two main activating sites of AKT1 on downstream substrate phosphorylation and cell growth. While both AKT1 activating sites are associated with disease and used as clinical markers, in some cancers, high levels of Threonine308 phosphorylation are associated with poor prognosis while in others poor survival correlates with high Serine473 levels. To produce cells with specific AKT1 activity, a system was developed to deliver active AKT1 to human cells. AKT1 phospho-variants were produced from Escherichia coli with programmed phosphorylation by genetic code expansion. Tagging of AKT1 with an N-terminal cell penetrating peptide tag derived from the human immunodeficiency virus trans-activator of transcription (TAT) helped to enter AKT1 proteins in mammalian cells. The TAT-tag did not alter AKT1 kinase activity and was necessary and sufficient to rapidly deliver AKT1 protein variants that persisted in human cells for 24 h without the need to use transfection reagents. TAT-pAKT1T308, TAT-pAKT1S473 and TAT-pAKT1T308S473 proteins induced selective phosphorylation of the known AKT1 substrate GSK-3αβ, and downstream stimulation of the AKT1 pathway as evidenced by phosphorylation of ribosomal protein S6 at Serine240/244 in transfected cells. Increase in cell growth and proliferation was observed due to the transfection of different phosphorylated AKT1 protein variants compared to cells with TAT-AKT1 protein. The data demonstrate efficient delivery of AKT1 with programmed phosphorylation to human cells, thus establishing a cell-based model system to investigate signaling that is dependent on specific AKT1 activity and phosphorylation.

Keywords: cell penetrating peptide, cell signaling, protein kinase b (AKT1), phosphorylation

Procedia PDF Downloads 79
561 A Case Study: Effect of Low Carbs High Fats Diet (Also Known as LCHF Diet) Combined with Fried Foods in Extra Virgin Olive Oil in Patient with Type 2 Diabetes and Central Obesity

Authors: Cristian Baldini

Abstract:

‘Diabesity’ is a term for diabetes occurring in the context of obesity. The positive effect of LCHF diets (low-carb, high-fat diets) is well documented: LCHF diets are at least as effective as other dietary strategies for reducing body weight, improving glycaemic control, and reducing both hyperinsulinaemia and blood glucose (reduction of HbA1c) in type 2 diabetes and have unique positive effects on blood lipid concentrations and cardiovascular risk factors. Also, in obese insulin-resistant women, food fried in extra-virgin olive oil significantly reduced both insulin and C-peptide responses after a meal. This case study shows that if combined, both dietary strategies produce a strong effect on blood glucose, resulting in a “forced” reduction of exogenous insulin injection to avoid the problem of hypoglycaemia. Blood tests after three months of this dietary treatment show how HbA1c, triglycerides, and blood lipid profile (LDL, HDL, Total Cholesterol) are improved despite the reduction of exogenous insulin injection of 80% with a parallel body weight decrease of 15%. For continuous glucose monitoring (CGM), the patient used FreeStyle Libre before and after the dietary treatment. In order to check general body functions and glycosuria, the patient used the urine test Multistix 10 SG Siemens.

Keywords: diabetes, obesity, diabesity, fat, fried foods

Procedia PDF Downloads 38
560 Coffee Consumption Has No Acute Effects on Glucose Metabolism in Healthy Men: A Randomized Crossover Clinical Trial

Authors: Caio E. G. Reis, Sara Wassell, Adriana L. Porto, Angélica A. Amato, Leslie J. C. Bluck, Teresa H. M. da Costa

Abstract:

Background: Multiple epidemiologic studies have consistently reported association between increased coffee consumption and a lowered risk of Type 2 Diabetes Mellitus. However, the mechanisms behind this finding have not been fully elucidated. Objective: We investigate the effect of coffee (caffeinated and decaffeinated) on glucose effectiveness and insulin sensitivity using the stable isotope minimal model protocol with oral glucose administration in healthy men. Design: Fifteen healthy men underwent 5 arms randomized crossover single-blinding (researchers) clinical trial. They consumed decaffeinated coffee, caffeinated coffee (with and without sugar), and controls – water (with and without sugar) followed 1 hour by an oral glucose tolerance test (75 g of available carbohydrate) with intravenous labeled dosing interpreted by the two compartment minimal model (225 minutes). One-way ANOVA with Bonferroni adjustment were used to compare the effects of the tested beverages on glucose metabolism parameters. Results: Decaffeinated coffee resulted in 29% and 85% higher insulin sensitivity compared with caffeinated coffee and water, respectively, and the caffeinated coffee showed 15% and 60% higher glucose effectiveness compared with decaffeinated coffee and water, respectively. However, these differences were not significant (p > 0.10). In overall analyze (0 – 225 min) there were no significant differences on glucose effectiveness, insulin sensitivity, and glucose and insulin area under the curve between the groups. The beneficial effects of coffee did not seem to act in the short-term (hours) on glucose metabolism parameters mainly on insulin sensitivity indices. The benefits of coffee consumption occur in the long-term (years) as has been shown in the reduction of Type 2 Diabetes Mellitus risk in epidemiological studies. The clinical relevance of the present findings is that there is no need to avoid coffee as the drink choice for healthy people. Conclusions: The findings of this study demonstrate that the consumption of caffeinated and decaffeinated coffee with or without sugar has no acute effects on glucose metabolism in healthy men. Further researches, including long-term interventional studies, are needed to fully elucidate the mechanisms behind the coffee effects on reduced risk for Type 2 Diabetes Mellitus.

Keywords: coffee, diabetes mellitus type 2, glucose, insulin

Procedia PDF Downloads 404
559 Signaling Theory: An Investigation on the Informativeness of Dividends and Earnings Announcements

Authors: Faustina Masocha, Vusani Moyo

Abstract:

For decades, dividend announcements have been presumed to contain important signals about the future prospects of companies. Similarly, the same has been presumed about management earnings announcements. Despite both dividend and earnings announcements being considered informative, a number of researchers questioned their credibility and found both to contain short-term signals. Pertaining to dividend announcements, some authors argued that although they might contain important information that can result in changes in share prices, which consequently results in the accumulation of abnormal returns, their degree of informativeness is less compared to other signaling tools such as earnings announcements. Yet, this claim in favor has been refuted by other researchers who found the effect of earnings to be transitory and of little value to shareholders as indicated by the little abnormal returns earned during the period surrounding earnings announcements. Considering the above, it is apparent that both dividends and earnings have been hypothesized to have a signaling impact. This prompts one to question which between these two signaling tools is more informative. To answer this question, two follow-up questions were asked. The first question sought to determine the event which results in the most effect on share prices, while the second question focused on the event that influenced trading volume the most. To answer the first question and evaluate the effect that each of these events had on share prices, an event study methodology was employed on a sample made up of the top 10 JSE-listed companies for data collected from 2012 to 2019 to determine if shareholders gained abnormal returns (ARs) during announcement dates. The event that resulted in the most persistent and highest amount of ARs was considered to be more informative. Looking at the second follow-up question, an investigation was conducted to determine if either dividends or earnings announcements influenced trading patterns, resulting in abnormal trading volumes (ATV) around announcement time. The event that resulted in the most ATV was considered more informative. Using an estimation period of 20 days and an event window of 21 days, and hypothesis testing, it was found that announcements pertaining to the increase of earnings resulted in the most ARs, Cumulative Abnormal Returns (CARs) and had a lasting effect in comparison to dividend announcements whose effect lasted until day +3. This solidifies some empirical arguments that the signaling effect of dividends has become diminishing. It was also found that when reported earnings declined in comparison to the previous period, there was an increase in trading volume, resulting in ATV. Although dividend announcements did result in abnormal returns, they were lesser than those acquired during earnings announcements which refutes a number of theoretical and empirical arguments that found dividends to be more informative than earnings announcements.

Keywords: dividend signaling, event study methodology, information content of earnings, signaling theory

Procedia PDF Downloads 135
558 Caffeic Acid Methyl and Ethyl Esters Exhibit Beneficial Effect on Glucose and Lipid Metabolism in Cultured Murine Insulin-Sensitive Cells

Authors: Hoda M. Eid, Abir Nachar, Farah Thong, Gary Sweeney, Pierre S. Haddad

Abstract:

Caffeic acid methyl ester (CAME) and caffeic ethyl esters (CAEE) were previously reported to potently stimulate glucose uptake in cultured C2C12 skeletal muscle cells via insulin-independent mechanisms involving the activation of adenosine monophosphate-activated protein kinase (AMPK). In the present study, we investigated the effect of the two compounds on the translocation of glucose transporter GLUT4 in L6 skeletal muscle cells. The cells were treated with the optimum non-toxic concentration (50 µM) of either CAME or CAEE for 18 h. Levels of GLUT4myc at the cell surface were measured by O-phenylenediamine dihydrochloride (OPD) assay. The effects of CAME and CAEE on GLUT1 and GLUT4 protein content were also measured by western immunoblot. Our results show that CAME and CAEE significantly increased glucose uptake, GLUT4 translocation and GLUT4 protein content. Furthermore, the effect of the two CA esters on two insulin-sensitive cell lines: H4IIE rat hepatoma and 3T3-L1 adipocytes were investigated. CAME and CAEE reduced the enzymatic activity of the key hepatic gluconeogenic enzyme glucose-6-phosphatase in a concentration-dependent manner. In addition, they exerted a concentration-dependent antiadipogenic effect on 3T3-L1 cells. Mitotic clonal expansion (MCE), a prerequisite for adipocytes differentiation was also concentration-dependently inhibited. The two compounds abrogated lipid droplet accumulation, blocked MCE and maintained cells in fibroblast-like state when applied at the maximum non-toxic concentration (100 µM). In addition, the expression of the early key adipogenic transcription factors CCAAT enhancer-binding protein beta (C/EBP-β) and the master regulator of adipogenesis peroxisome-proliferator-activated receptor gamma (PPAR-γ) were inhibited. We, therefore, conclude that CAME and CAEE exert pleiotropic benefits in several insulin-sensitive cell lines through insulin-independent mechanisms involving AMPK, hence they may treat obesity, diabetes and other metabolic diseases.

Keywords: type 2 diabetes mellitus, insulin resistance, GLUT4, Akt, AMPK.

Procedia PDF Downloads 278
557 Control of IL-23 Release in Dendritic Cells Protects Mice from Imiquimod-Induced Psoriasis

Authors: Xingxin Wu, Fenli Shao, Tao Tan, Yang Tan, Yang Sun, Qiang Xu

Abstract:

Psoriasis is a chronic inflammatory skin disease that affects about 2% of the world's population. IL-23 signaling plays a key role in the pathogenesis of psoriasis. Control of IL-23 release by small molecule compounds during developing psoriasis has not been well established. Here, we show that compound 1, a small molecule nature product, protected mice from imiquimod-induced psoriasis with improved skin lesions, reduced skin thickness, and reduced IL-23 mRNA expression in the skin tissue. FACS results showed compound 1 reduced the number of dendritic cells in the skin. Interestingly, compound 1 was not able to ameliorate IL-23-induced psoriasis-like skin inflammation in mice. Further, compound 1 inhibited MyD88-dependent IL-23 mRNA expression induced by LPS, CpG and imiquimod in BMDC cells, but not MyD88-independent CD80 and CD86 expression induced by LPS. The methods included real-time PCR, western blot, H & E staining, FACS and ELISA et al. In conclusion, compound 1 regulates MyD88-dependent signaling to control IL-23 release in dendritic cells, which improves imiquimod-induced psoriasis.

Keywords: dendritic cells, IL-23, toll-like receptor signaling, psoriasis

Procedia PDF Downloads 611
556 A Basic Modeling Approach for the 3D Protein Structure of Insulin

Authors: Daniel Zarzo Montes, Manuel Zarzo Castelló

Abstract:

Proteins play a fundamental role in biology, but their structure is complex, and it is a challenge for teachers to conceptually explain the differences between their primary, secondary, tertiary, and quaternary structures. On the other hand, there are currently many computer programs to visualize the 3D structure of proteins, but they require advanced training and knowledge. Moreover, it becomes difficult to visualize the sequence of amino acids in these models, and how the protein conformation is reached. Given this drawback, a simple and instructive procedure is proposed in order to teach the protein structure to undergraduate and graduate students. For this purpose, insulin has been chosen because it is a protein that consists of 51 amino acids, a relatively small number. The methodology has consisted of the use of plastic atom models, which are frequently used in organic chemistry and biochemistry to explain the chirality of biomolecules. For didactic purposes, when the aim is to teach the biochemical foundations of proteins, a manipulative system seems convenient, starting from the chemical structure of amino acids. It has the advantage that the bonds between amino acids can be conveniently rotated, following the pattern marked by the 3D models. First, the 51 amino acids were modeled, and then they were linked according to the sequence of this protein. Next, the three disulfide bonds that characterize the stability of insulin have been established, and then the alpha-helix structure has been formed. In order to reach the tertiary 3D conformation of this protein, different interactive models available on the Internet have been visualized. In conclusion, the proposed methodology seems very suitable for biology and biochemistry students because they can learn the fundamentals of protein modeling by means of a manipulative procedure as a basis for understanding the functionality of proteins. This methodology would be conveniently useful for a biology or biochemistry laboratory practice, either at the pre-graduate or university level.

Keywords: protein structure, 3D model, insulin, biomolecule

Procedia PDF Downloads 16
555 Repeated Reuse of Insulin Injection Syringes and Incidence of Bacterial Contamination among Diabetic Patients in Jimma University Specialized Hospital, Jimma, Ethiopia

Authors: Muluneh Ademe, Zeleke Mekonnen

Abstract:

Objective: to determine the level of bacterial contamination of reused insulin syringes among diabetic patients. Method: A facility based cross-sectional study was conducted among diabetic patients. Data on socio-demographic variables, history of injection syringe reuse, and frequency of reuse of syringes were collected using predesigned questionnaire. Finally, the samples from the syringes were cultured according to standard microbiological techniques. Result: Eighteen diabetic patients at Jimma University Hospital participated. A total of 83.3% of participants reused a single injection syringe for >30 consecutive injections, while 16.7% reused for >30 injections. Our results showed 22.2% of syringes were contaminated with methicillin-resistant Staphylococcus aures. Conclusion: We conclude reuse of syringe is associated with microbial contamination. The findings that 4/18 syringes being contaminated with bacteria is an alarming situation. A mechanism should be designed for patients to get injection syringes with affordable price. If reusing is not avoidable, reducing number of injections per a single syringe and avoiding needle touching with hand or other non-sterile material may be an alternative to reduce the risk of contamination.

Keywords: diabetes mellitus, Ethiopia, subcutaneous insulin injection, syringe reuse

Procedia PDF Downloads 350
554 Analog Input Output Buffer Information Specification Modelling Techniques for Single Ended Inter-Integrated Circuit and Differential Low Voltage Differential Signaling I/O Interfaces

Authors: Monika Rawat, Rahul Kumar

Abstract:

Input output Buffer Information Specification (IBIS) models are used for describing the analog behavior of the Input Output (I/O) buffers of a digital device. They are widely used to perform signal integrity analysis. Advantages of using IBIS models include simple structure, IP protection and fast simulation time with reasonable accuracy. As design complexity of driver and receiver increases, capturing exact behavior from transistor level model into IBIS model becomes an essential task to achieve better accuracy. In this paper, an improvement in existing methodology of generating IBIS model for complex I/O interfaces such as Inter-Integrated Circuit (I2C) and Low Voltage Differential Signaling (LVDS) is proposed. Furthermore, the accuracy and computational performance of standard method and proposed approach with respect to SPICE are presented. The investigations will be useful to further improve the accuracy of IBIS models and to enhance their wider acceptance.

Keywords: IBIS, signal integrity, open-drain buffer, low voltage differential signaling, behavior modelling, transient simulation

Procedia PDF Downloads 154
553 Evaluation of Important Transcription Factors and Kinases in Regulating the Signaling Pathways of Cancer Stem Cells With Low and High Proliferation Rate Derived From Colorectal Cancer

Authors: Mohammad Hossein Habibi, Atena Sadat Hosseini

Abstract:

Colorectal cancer is the third leading cause of cancer-related death in the world. Colorectal cancer screening, early detection, and treatment programs could benefit from the most up-to-date information on the disease's burden, given the present worldwide trend of increasing colorectal cancer incidence. Tumor recurrence and resistance are exacerbated by the presence of chemotherapy-resistant cancer stem cells that can generate rapidly proliferating tumor cells. In addition, tumor cells can evolve chemoresistance through adaptation mechanisms. In this work, we used in silico analysis to select suitable GEO datasets. In this study, we compared slow-growing cancer stem cells with high-growth colorectal cancer-derived cancer stem cells. We then evaluated the signal pathways, transcription factors, and kinases associated with these two types of cancer stem cells. A total of 980 upregulated genes and 870 downregulated genes were clustered. MAPK signaling pathway, AGE-RAGE signaling pathway in diabetic complications, Fc gamma R-mediated phagocytosis, and Steroid biosynthesis signaling pathways were observed in upregulated genes. Also, caffeine metabolism, amino sugar and nucleotide sugar metabolism, TNF signaling pathway, and cytosolic DNA-sensing pathway were involved in downregulated genes. In the next step, we evaluated the best transcription factors and kinases in two types of cancer stem cells. In this regard, NR2F2, ZEB2, HEY1, and HDGF as transcription factors and PRDM5, SMAD, CBP, and KDM2B as critical kinases in upregulated genes. On the other hand, IRF1, SPDEF, NCOA1, and STAT1 transcription factors and CTNNB1 and CDH7 kinases were regulated low expression genes. Using bioinformatics analysis in the present study, we conducted an in-depth study of colorectal cancer stem cells at low and high growth rates so that we could take further steps to detect and even target these cells. Naturally, more additional tests are needed in this direction.

Keywords: colorectal cancer, bioinformatics analysis, transcription factor, kinases, cancer stem cells

Procedia PDF Downloads 89
552 Inhibitory Effects of PPARγ Ligand, KR-62980, on Collagen-Stimulated Platelet Activation

Authors: Su Bin Wang, Jin Hee Ahn, Tong-Shin Chang

Abstract:

The peroxisome proliferator-activated receptors (PPARs) are member of nuclear receptor superfamily that act as a ligand-activated transcription factors. Although platelets lack a nucleus, previous studies have shown that PPARγ agonists, rosiglitazone, inhibited platelet activation induced by collagen. In this study, we investigated the inhibitory effects of KR-62980, a newly synthesized PPARγ agonist, on collagen receptor-stimulated platelet activation. The specific tyrosine phosphorylations of key components (Syk, Vav1, Btk and PLCγ2) for collagen receptor signaling pathways were suppressed by KR-62980. KR-62980 also attenuated downstream responses including cytosolic calcium elevation, P-selectin surface exposure, and integrin αIIbβ3 activation. PPARγ was found to associate with multiple proteins within the LAT signaling complex in collagen-stimulated platelets. This association was prevented by KR-62980, indicating a potential mechanism for PPARγ function in collagen-stimulated platelet activation. Furthermore, KR-62980 inhibited platelet aggregation and adhesion in response to collagen in vitro and prolonged in vivo thrombotic response in carotid arteries of mice. Collectively, these data suggest that KR-62980 inhibits collagen-stimulated platelet activation and thrombus formation through modulating the collagen receptor signaling pathways.

Keywords: KR-62980, PPARγ, antiplatelet, thrombosis

Procedia PDF Downloads 303
551 The Ameliorative Effects of Nanoencapsulated Triterpenoids from Petri-Dish Cultured Antrodia cinnamomea on Reproductive Function of Diabetic Male Rats

Authors: Sabri Sudirman, Yuan-Hua Hsu, Zwe-Ling Kong

Abstract:

Male reproductive dysfunction is predominantly due to insulin resistance and hyperglycemia result in inflammation and oxidative stress. Furthermore, nanotechnology provides an alternative approach to improve the bioavailability of natural active food ingredients. Therefore, the aim of this study were to investigate nanoencapsulated triterpenoids from petri-dish cultured Antrodia cinnamomea (PAC) nanoparticles whether it could increase the bioavailability; in addition, the anti-inflammatory and anti-oxidative effects could more effectively ameliorate the reproductive function of diabetic male rats. First, PAC encapsulated in chitosan-silica nanoparticles (Nano-PAC) were prepared by biosilicification method. Scanning electron micrographs confirm the average particle size is about 30 nm, and the encapsulation efficiency is 83.7% by HPLC. Diabetic male Sprague-Dawley rats were induced by high fat diet (40% kcal from fat) and streptozotocin (35 mg/kg). Nano-PAC was administered by oral gavage in three doses (4, 8 and 20 mg/kg) for 6 weeks. Besides, metformin (300 mg/kg) and nanoparticles (Nano) were treated as the positive and negative control respectively. Results indicated that 4 mg/kg Nano-PAC administration for 6 weeks improved hyperglycemia, insulin resistance, and also reduced advanced glycation end products in plasma. In addition, 8 mg/kg Nano-PAC ameliorated morphological of testicular seminiferous tubules, sperm morphology and motility, reactive oxygen species production and mitochondrial membrane potential. Moreover, 20 mg/kg Nano-PAC restored reproductive endocrine system function and increased KiSS-1 level in plasma. In plasma or testis anti-oxidant superoxide dismutase, glutathione peroxidase and catalase were increased whereas malondialdehyde, as well as pro-inflammatory cytokines tumor necrosis factor-α, interleukin-6, and interferon-gamma, decreased. Most importantly, 8 mg/kg Nano-PAC down-regulated the oxidative stress induced c-Jun N-terminal kinase (JNK) signaling pathway. Our study successfully nanoencapsulated PAC to form nanoparticles and low-dose Nano-PAC improved diabetes-induced hyperglycemia, inflammation and oxidative stress to ameliorate the reproductive function of diabetic male rats.

Keywords: Antrodia cinnamomea, diabetes mellitus, male reproduction, nanoparticles

Procedia PDF Downloads 198
550 The Effect of Vitamin D Supplements and Aerobic Exercise on Hunger and Serum Insulin Levels in Adolescents With Metabolic Syndrome

Authors: Vahab Behmanesh

Abstract:

Metabolic syndrome is defined as having at least three of the five metabolic risk factors, including abdominal obesity, high blood pressure, high triglycerides, low HDL, and insulin resistance. Lifestyle changes towards reducing physical activity, unhealthy eating habits Especially the high-fat and high-carbohydrate diet is directly related to metabolic syndrome, and due to the epidemic of overweight and sedentary life, metabolic syndrome is a serious problem worldwide. On the other hand, vitamin D deficiency is considered as one of the most common problems in the world, which is related to the dysfunction of beta cells and insulin resistance, and therefore, vitamin D deficiency is considered as a factor in the occurrence of metabolic syndrome. 40 subjects (age: 16.12 ± 4.4 years and body mass index 25.61 ± 4.4 kg/m2) were randomly assigned to groups of aerobic exercise and placebo, aerobic exercise and vitamin D and placebo (no exercise) were divided. Vitamin D was taken at a dose of 50,000 units per week in a double-blind format for eight weeks, and the daily aerobic exercise program was performed for 50 to 60 minutes, three doses per week, with an intensity of 50-60% of the maximum heart rate. From one-way analysis of variance, Factorial variance analysis (2x2) repeated measurement and correlated t-test were used for data analysis. Aerobic exercise and vitamin D intake reduced all metabolic risk indicators and blood insulin (P < 0.05). However, the subjective feeling of hunger did not change significantly (P < 0.05). Regarding waist circumference and blood glucose, the effect of exercise combined with vitamin D consumption was greater than the corresponding effect in the vitamin D group (P < 0.05). Aerobic exercises and vitamin D intake are safe and effective for improving cardiometabolic health, Imam adds vitamin D to the exercise program has more benefits for weight and blood sugar control, which suggests prescribing it for patients with metabolic syndrome.

Keywords: vitamin D, aerobic exercise, metabolic control, adolescents

Procedia PDF Downloads 79
549 Liraglutide Augments Extra Body Weight Loss after Sleeve Gastrectomy without Change in Intrahepatic and Intra-Pancreatic Fat in Obese Individuals: Randomized, Controlled Study

Authors: Ashu Rastogi, Uttam Thakur, Jimmy Pathak, Rajesh Gupta, Anil Bhansali

Abstract:

Introduction: Liraglutide is known to induce weight loss and metabolic benefits in obese individuals. However, its effect after sleeve gastrectomy are not known. Methods: People with obesity (BMI>27.5 kg/m2) underwent LSG. Subsequently, participants were randomized to receive either 0.6mg liraglutide subcutaneously daily from 6 week post to be continued till 24 week (L-L group) or placebo (L-P group). Patients were assessed before surgery (baseline) and 6 weeks, 12weeks, 18weeks and 24weeks after surgery for height, weight, waist and hip circumference, BMI, body fat percentage, HbA1c, fasting C-peptide, fasting insulin, HOMA-IR, HOMA-β, GLP-1 levels (after standard OGTT). MRI abdomen was performed prior to surgery and at 24weeks post operatively for the estimation of intrapancreatic and intrahepatic fat content. Outcome measures: Primary outcomes were changes in metabolic variables of fasting and stimulated GLP-1 levels, insulin, c-peptide, plasma glucose levels. Secondary variables were indices of insulin resistance HOMA-IR, Matsuda index; and pancreatic and hepatic steatosis. Results: Thirty-eight patients undergoing LSG were screened and 29 participants were enrolled. Two patients withdrew consent and one patient died of acute coronary event. 26 patients were randomized and data analysed. Median BMI was 40.73±3.66 and 46.25±6.51; EBW of 49.225±11.14 and 651.48±4.85 in the L-P and L-L group, respectively. Baseline FPG was 132±51.48, 125±39.68; fasting insulin 21.5±13.99, 13.15±9.20, fasting GLP-1 2.4± .37, 2.4± .32, AUC GLP-1 340.78± 44 and 332.32 ± 44.1, HOMA-IR 7.0±4.2 and 4.42±4.5 in the L-P and L-L group, respectively. EBW loss was 47± 13.20 and 65.59± 24.20 (p<0.05) in the placebo versus liraglutide group. However, we did not observe inter-group difference in metabolic parameters between the groups in spite of significant intra-group changes after 6 months of LSG. Intra-pancreatic fat prior to surgery was 3.21±1.7 and 2.2±0.9 (p=0.38) that decreased to 2.14±1.8 and 1.06±0.8 (p=0.25) at 6 months in L-P and L-L group, respectively. Similarly, intra-pancreatic fat was 1.97±0.27 and 1.88±0.36 (p=0.361) at baseline that decreased to 1.14±0.44 and 1.36±0.47 (p=0.465) at 6 months in L-P and L-L group, respectively. Conclusion: Liraglutide augments extra body weight loss after sleeve gastrectomy. A decrease in intra-pancreatic and intra-hepatic fat is noticed after bariatric surgery without additive benefit of liraglutide administration.

Keywords: sleeve gastrectomy, liraglutide, intra-pancreatic fat, insulin

Procedia PDF Downloads 165
548 Associations between Surrogate Insulin Resistance Indices and the Risk of Metabolic Syndrome in Children

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

A well-defined insulin resistance (IR) is one of the requirements for the good understanding and evaluation of metabolic syndrome (MetS). However, underlying causes for the development of IR are not clear. Endothelial dysfunction also participates in the pathogenesis of this disease. IR indices are being determined in various obesity groups and also in diagnosing MetS. Components of MetS have been well established and used in adult studies. However, there are some ambiguities particularly in the field of pediatrics. The aims of this study were to compare the performance of fasting blood glucose (FBG), one of MetS components, with some other IR indices and check whether FBG may be replaced by some other parameter or ratio for a better evaluation of pediatric MetS. Five-hundred and forty-nine children were involved in the study. Five groups were constituted. Groups 109, 40, 100, 166, 110, 24 children were included in normal-body mass index (N-BMI), overweight (OW), obese (OB), morbid obese (MO), MetS with two components (MetS2) and MetS with three components (MetS3) groups, respectively. Age and sex-adjusted BMI percentiles tabulated by World Health Organization were used for the classification of obesity groups. MetS components were determined. Aside from one of the MetS components-FBG, eight measures of IR [homeostatic model assessment of IR (HOMA-IR), homeostatic model assessment of beta cell function (HOMA-%β), alanine transaminase-to-aspartate transaminase ratio (ALT/AST), alanine transaminase (ALT), insulin (INS), insulin-to-FBG ratio (INS/FBG), the product of fasting triglyceride and glucose (TyG) index, McAuley index] were evaluated. Statistical analyses were performed. A p value less than 0.05 was accepted as the statistically significance degree. Mean values for BMI of the groups were 15.7 kg/m2, 21.0 kg/m2, 24.7 kg/m2, 27.1 kg/m2, 28.7 kg/m2, 30.4 kg/m2 for N-BMI, OW, OB, MO, MetS2, MetS3, respectively. Differences between the groups were significant (p < 0.001). The only exception was MetS2-MetS3 couple, in spite of an increase detected in MetS3 group. Waist-to-hip circumference ratios significantly differed only for N-BMI vs, OB, MO, MetS2; OW vs MO; OB vs MO, MetS2 couples. ALT and ALT/AST did not differ significantly among MO-MetS2-MetS3. HOMA-%β differed only between MO and MetS2. INS/FBG, McAuley index and TyG were not significant between MetS2 and MetS3. HOMA-IR and FBG were not significant between MO and MetS2. INS was the only parameter, which showed statistically significant differences between MO-MetS2, MO-MetS3, and MetS2-MetS3. In conclusion, these findings have suggested that FBG presently considered as one of the five MetS components, may be replaced by INS during the evaluation of pediatric morbid obesity and MetS.

Keywords: children, insulin resistance indices, metabolic syndrome, obesity

Procedia PDF Downloads 97
547 Mutational Analysis of DNase I Gene in Diabetic Patients

Authors: Hateem Zafar Kayani, Nageen Hussain

Abstract:

The main aim is to analyze the mutations of DNASE I gene in diabetic patients. A total of 120 diabetes patients and 120 controls were sampled. The total number of male diabetic patients included in the study was 79 (66%) while female patients were 41 (34%) in number. Exon 8 of the DNASE I gene was amplified by using thermo cycler. The possible band of interest was located at 165 base pairs. Two samples showed similar missense mutations at 127th position of exon 8 which replaced amino acid Arginine (Arg) to Glutamine (Gln). All controls showed no mutations. The association of diabetes with different levels of blood pressure and body mass index (BMI) were found to be significant.

Keywords: deoxyribonuclease I, polymerase chain reaction, insulin-dependent diabetes mellitus, non-insulin dependent diabetes mellitus

Procedia PDF Downloads 299
546 Biologically Synthesised Silver Nanoparticles Induces Autophagy and JNK Signaling as a Pro-Survival Response by Abrogating Reactive Oxygen Species Accumulation in Cancer Cells

Authors: Sudeshna Mukherjee, Leena Fageria, R. Venkataramana Dilip, Rajdeep Chowdhury, Jitendra Panwar

Abstract:

Metal nanoparticles in recent years have gained importance in cancer therapy due to their enhanced permeability retention effect. Among various nanomaterials, silver nanoparticles (AgNPs) have received considerable attention due to their unique properties like conductivity, chemical stability, relative lower toxicity and outstanding therapeutic potential, such as anti-inflammatory, antimicrobial and anti-cancerous activities. In this study, we took a greener approach to synthesize silver nanoparticle from fungus and analyze its effects on both epithelial and mesenchymal derived cancer cells. Much research has been done on nanoparticle-induced apoptosis, but little is known about its role in autophagy. In our study, the silver nanoparticles were seen to induce autophagy which was analyzed by studying the expression of several autophagy markers like, LC3B-II and ATG genes. Monodansylcadaverine (MDC) assay also revealed the induction of autophagy upon treatment with AgNPs. Inhibition of autophagy by chloroquine resulted in increased cell death suggesting autophagy as a survival strategy adopted by the cells. In parallel to autophagy induction, silver nanoparticles induced ROS accumulation. Interestingly, autophagy inhibition by chloroquine increased ROS level, resulting in enhanced cell death. We further analyzed MAPK signaling upon AgNP treatment. It was observed that along with autophagy, activation of JNK signaling served as pro-survival while ERK signaling served as a pro-death signal. Our results provide valuable insights into the role of autophagy upon AgNP exposure and provide cues to probabilistic strategies to effectively sensitize cancer cells.

Keywords: autophagy, JNK signalling, reactive oxygen species, silver nanoparticles

Procedia PDF Downloads 329
545 Modelling Optimal Control of Diabetes in the Workplace

Authors: Eunice Christabel Chukwu

Abstract:

Introduction: Diabetes is a chronic medical condition which is characterized by high levels of glucose in the blood and urine; it is usually diagnosed by means of a glucose tolerance test (GTT). Diabetes can cause a range of health problems if left unmanaged, as it can lead to serious complications. It is essential to manage the condition effectively, particularly in the workplace where the impact on work productivity can be significant. This paper discusses the modelling of optimal control of diabetes in the workplace using a control theory approach. Background: Diabetes mellitus is a condition caused by too much glucose in the blood. Insulin, a hormone produced by the pancreas, controls the blood sugar level by regulating the production and storage of glucose. In diabetes, there may be a decrease in the body’s ability to respond to insulin or a decrease in insulin produced by the pancreas which will lead to abnormalities in the metabolism of carbohydrates, proteins, and fats. In addition to the health implications, the condition can also have a significant impact on work productivity, as employees with uncontrolled diabetes are at risk of absenteeism, reduced performance, and increased healthcare costs. While several interventions are available to manage diabetes, the most effective approach is to control blood glucose levels through a combination of lifestyle modifications and medication. Methodology: The control theory approach involves modelling the dynamics of the system and designing a controller that can regulate the system to achieve optimal performance. In the case of diabetes, the system dynamics can be modelled using a mathematical model that describes the relationship between insulin, glucose, and other variables. The controller can then be designed to regulate the glucose levels to maintain them within a healthy range. Results: The modelling of optimal control of diabetes in the workplace using a control theory approach has shown promising results. The model has been able to predict the optimal dose of insulin required to maintain glucose levels within a healthy range, taking into account the individual’s lifestyle, medication regimen, and other relevant factors. The approach has also been used to design interventions that can improve diabetes management in the workplace, such as regular glucose monitoring and education programs. Conclusion: The modelling of optimal control of diabetes in the workplace using a control theory approach has significant potential to improve diabetes management and work productivity. By using a mathematical model and a controller to regulate glucose levels, the approach can help individuals with diabetes to achieve optimal health outcomes while minimizing the impact of the condition on their work performance. Further research is needed to validate the model and develop interventions that can be implemented in the workplace.

Keywords: mathematical model, blood, insulin, pancreas, model, glucose

Procedia PDF Downloads 38
544 Application of Mesenchymal Stem Cells in Diabetic Therapy

Authors: K. J. Keerthi, Vasundhara Kamineni, A. Ravi Shanker, T. Rammurthy, A. Vijaya Lakshmi, Q. Hasan

Abstract:

Pancreatic β-cells are the predominant insulin-producing cell types within the Islets of Langerhans and insulin is the primary hormone which regulates carbohydrate and fat metabolism. Apoptosis of β-cells or insufficient insulin production leads to Diabetes Mellitus (DM). Current therapy for diabetes includes either medical management or insulin replacement and regular monitoring. Replacement of β- cells is an attractive treatment option for both Type-1 and Type-2 DM in view of the recent paper which indicates that β-cells apoptosis is the common underlying cause for both the Types of DM. With the development of Edmonton protocol, pancreatic β-cells allo-transplantation became possible, but this is still not considered as standard of care due to subsequent requirement of lifelong immunosuppression and the scarcity of suitable healthy organs to retrieve pancreatic β-cell. Fetal pancreatic cells from abortuses were developed as a possible therapeutic option for Diabetes, however, this posed several ethical issues. Hence, in the present study Mesenchymal stem cells (MSCs) were differentiated into insulin producing cells which were isolated from Human Umbilical cord (HUC) tissue. MSCs have already made their mark in the growing field of regenerative medicine, and their therapeutic worth has already been validated for a number of conditions. HUC samples were collected with prior informed consent as approved by the Institutional ethical committee. HUC (n=26) were processed using a combination of both mechanical and enzymatic (collagenase-II, 100 U/ml, Gibco ) methods to obtain MSCs which were cultured in-vitro in L-DMEM (Low glucose Dulbecco's Modified Eagle's Medium, Sigma, 4.5 mM glucose/L), 10% FBS in 5% CO2 incubator at 37°C. After reaching 80-90% confluency, MSCs were characterized with Flowcytometry and Immunocytochemistry for specific cell surface antigens. Cells expressed CD90+, CD73+, CD105+, CD34-, CD45-, HLA-DR-/Low and Vimentin+. These cells were differentiated to β-cells by using H-DMEM (High glucose Dulbecco's Modified Eagle's Medium,25 mM glucose/L, Gibco), β-Mercaptoethanol (0.1mM, Hi-Media), basic Fibroblast growth factor (10 µg /L,Gibco), and Nicotinamide (10 mmol/L, Hi-Media). Pancreatic β-cells were confirmed by positive Dithizone staining and were found to be functionally active as they released 8 IU/ml insulin on glucose stimulation. Isolating MSCs from usually discarded, abundantly available HUC tissue, expanding and differentiating to β-cells may be the most feasible cell therapy option for the millions of people suffering from DM globally.

Keywords: diabetes mellitus, human umbilical cord, mesenchymal stem cells, differentiation

Procedia PDF Downloads 233
543 Comparing the Efficacy of Minimally Supervised Home-Based and Closely Supervised Gym Based Exercise Programs on Weight Reduction and Insulin Resistance after Bariatric Surgery

Authors: Haleh Dadgostar, Sara Kaviani, Hanieh Adib, Ali Mazaherinezhad, Masoud Solaymani-Dodaran, Fahimeh Soheilipour, Abdolreza Pazouki

Abstract:

Background and Objectives: Effectiveness of various exercise protocols in weight reduction after bariatric surgery has not been sufficiently explored in the literature. We compared the effect of minimally supervised home-based and closely supervised Gym based exercise programs on weight reduction and insulin resistance after bariatric surgery. Methods: Women undergoing gastric bypass surgery were invited to participate in an exercise program and were randomly allocated into two groups. They were either offered a minimally supervised home-based (MSHB) or closely supervised Gym-based (CSGB) exercise program. The CSGB protocol constitute two sessions per week of training under ACSM guidelines. In the MSHB protocol participants received a notebook containing a list of recommended aerobic and resistance exercises, a log to record their activity and a schedule of follow up phone calls and clinic visits. Both groups received a pedometer. We measured their weight, BMI, lipid profile, FBS, and insulin level at the baseline and after 20 weeks of exercise and were compared at the end of the study. Results: A total of 80 patients completed our study (MSHB=38 and CSGB=42). The baseline comparison showed that the two groups are similar. Using the ANCOVA method of analysis the mean change in BMI (covariate: BMI at the beginning of the study) was slightly better in CSGB compared with the MSHB (between-group mean difference: 3.33 (95%CI 4.718 to 1.943, F: 22.844 p < 0.001)). Conclusion: Our results showed that both MSHB and CSGB exercise methods are somewhat equally effective in improvement of studied factors in the two groups. With considerably lower costs of Minimally Supervised Home Based exercise programs, these methods should be considered when adequate funding are not available.

Keywords: postoperative exercise, insulin resistance, bariatric surgery, morbid obesity

Procedia PDF Downloads 253
542 Genome-Wide Functional Analysis of Phosphatase in Cryptococcus neoformans

Authors: Jae-Hyung Jin, Kyung-Tae Lee, Yee-Seul So, Eunji Jeong, Yeonseon Lee, Dongpil Lee, Dong-Gi Lee, Yong-Sun Bahn

Abstract:

Cryptococcus neoformans causes cryptococcal meningoencephalitis mainly in immunocompromised patients as well as immunocompetent people. But therapeutic options are limited to treat cryptococcosis. Some signaling pathways including cyclic AMP pathway, MAPK pathway, and calcineurin pathway play a central role in the regulation of the growth, differentiation, and virulence of C. neoformans. To understand signaling networks regulating the virulence of C. neoformans, we selected the 114 putative phosphatase genes, one of the major components of signaling networks, in the genome of C. neoformans. We identified putative phosphatases based on annotation in C. neoformans var. grubii genome database provided by the Broad Institute and National Center for Biotechnology Information (NCBI) and performed a BLAST search of phosphatases of Saccharomyces cerevisiae, Aspergillus nidulans, Candida albicans and Fusarium graminearum to Cryptococcus neoformans. We classified putative phosphatases into 14 groups based on InterPro phosphatase domain annotation. Here, we constructed 170 signature-tagged gene-deletion strains through homologous recombination methods for 91 putative phosphatases. We examined their phenotypic traits under 30 different in vitro conditions, including growth, differentiation, stress response, antifungal resistance and virulence-factor production.

Keywords: human fungal pathogen, phosphatase, deletion library, functional genomics

Procedia PDF Downloads 331
541 Promoting Authenticity in Employer Brands to Address the Global-Local Problem in Complex Organisations: The Case of a Developing Country

Authors: Saud Al Taj

Abstract:

Employer branding is considered as a useful tool for addressing the global-local problem facing complex organisations that have operations scattered across the globe and face challenges of dealing with the local environment alongside. Despite being an established field of study within the Western developed world, there is little empirical evidence concerning the relevance of employer branding to global companies that operate in the under-developed economies. This paper fills this gap by gaining rich insight into the implementation of employer branding programs in a foreign multinational operating in Pakistan dealing with the global-local problem. The study is qualitative in nature and employs semi-structured and focus group interviews with senior/middle managers and local frontline employees to deeply examine the phenomenon in case organisation. Findings suggest that authenticity is required in employer brands to enable them to respond to the local needs thereby leading to the resolution of the global-local problem. However, the role of signaling theory is key to the development of authentic employer brands as it stresses on the need to establish an efficient and effective signaling environment wherein signals travel in both directions (from signal designers to receivers and backwards) and facilitate firms with the global-local problem. The paper also identifies future avenues of research for the employer branding field.

Keywords: authenticity, counter-signals, employer branding, global-local problem, signaling theory

Procedia PDF Downloads 338
540 Production of Single-Chain Antibodies against Common Epitopes of ErbB1 and ErbB2 Using Phage Display Antibody Library

Authors: Gholamreza Hashemitabr, Reza Valadan, Alireza Rafiei, Mohammad Reza Bassami

Abstract:

Breast cancer is the most common malignancy among women worldwide. Cancer cells use a complex multilayer network of epidermal growth factor receptors (EGFRs) signaling pathways to support their survival and growth. The overlapping networks of EGFRs signaling pathways account for the failure of most ErbB-targeted therapies. The aim of this study was to enrich a pool of recombinant antibody fragments against common epitopes of ErbB1 and ErbB2 in order to simultaneous blockade of ErbBs signaling pathways. ErbB1 and ErbB2 were expressed stably in VERO cells. Selection of recombinant antibodies was performed on live cells expressing either of ErbB1 and ErbB2 receptors using subtractive phage display approach. The results of PCR and DNA fingerprinting in the last round of panning showed that most clones contained insert (80% and 85% for ErbB1 and ErbB2 respectively) with an identical restriction pattern. The selected clones showed positive reaction to both ErbB1 and ErbB2 receptors in phage-ELISA test. Furthermore, the resulting soluble antibody fragments recognized common epitopes of both immunoprecipitated ErbB1 and ErbB2 in western blot. Additionally, the antibodies directed against the dimerization domain of ErbB1 demonstrated a significant absorbance in EGF-stimulated VERO/ErbB1 cells than non-stimulated cells (1.91 and 1.09 respectively). Moreover, the results of dimerization inhibition test showed that these antibodies blocked ErbB1 and ErbB2 dimerization on the surface of ErbB1 and ErbB2 expressing VERO cells. Regarding the importance of pan-ErbB approach to cancer therapy, the antibodies developed here might provide novel therapeutics for simultaneous blockade of ErbBs signaling pathways.

Keywords: breast cancer, single-chain antibody, ErbB1, ErbB2, epitope

Procedia PDF Downloads 608
539 Sirt1 Promotes C2C12 Myoblast Cell Proliferation by Myostatin Signaling Pathway

Authors: Cuili Yang, Chengcao Sun, Ruilin Xue, Yongyong Xi, Liang Wang, Dejia Li

Abstract:

Backgrounds: Previous studies showed that Sirt1 plays an important role in C2C12 myoblast cell proliferation, but the mechanism(s) involved in this process remains unclear. This work was undertaken to determine if Myostatin participates in the regulation of C2C12 proliferation by Sirt1. Methods: We administrated the Sirt1 activator resveratrol, inhibitor Nicotinamide (NAM) and Myostatin inhibitor SB431542 on C2C12 myoblast cells. Cell viability was evaluated by CCK8 assay. The expression of Sirt1 and MyoD were detected by qRT-PCR. Utilizing western blot to determinate the expression of myostatin, P107 and p-P107. Results: Our results showed that resveratrol promoted the proliferation of C2C12 myoblast cells, while NAM suppressed the proliferation of C2C12 myoblast cells; SB431542 promoted the proliferation of C2C12 myoblast cells and attenuated the inhibition effect of NAM on C2C12 myoblast cells proliferation; Resveratrol can significantly increase the expression of Sirt1 and MyoD, decrease the expression of Myostatin, while NAM can significantly down-regulate the expression of Sirt1, MyoD and the phosphorylation of P107(p-P107), but up-regulate the expression of Myostatin and the protein P107; SB431542 can significantly mitigate the effect of NAM on the expression of MyoD, P107, and p-P107. Conclusions: Taken together, these results indicate that Sirt1 promotes the proliferation of C2C12 myoblast cells via Myostatin signaling pathway.

Keywords: Sirt1, C2C12 cells, proliferation, myostatin signaling pathway

Procedia PDF Downloads 423