Search results for: inductively coupled mass spectrometry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4800

Search results for: inductively coupled mass spectrometry

4770 Optimization of Ultrasound-Assisted Extraction and Microwave-Assisted Acid Digestion for the Determination of Heavy Metals in Tea Samples

Authors: Abu Harera Nadeem, Kingsley Donkor

Abstract:

Tea is a popular beverage due to its flavour, aroma and antioxidant properties—with the most consumed varieties being green and black tea. Antioxidants in tea can lower the risk of Alzheimer’s and heart disease and obesity. However, these teas contain heavy metals such as Hg, Cd, or Pb, which can cause autoimmune diseases like Graves disease. In this study, 11 heavy metals in various commercial green, black, and oolong tea samples were determined using inductively coupled plasma-mass spectrometry (ICP-MS). Two methods of sample preparation were compared for accuracy and precision, which were microwave-assisted digestion and ultrasonic-assisted extraction. The developed method was further validated by detection limit, precision, and accuracy. Results showed that the proposed method was highly sensitive with detection limits within parts-per-billion levels. Reasonable method accuracy was obtained by spiked experiments. The findings of this study can be used to delve into the link between tea consumption and disease and to provide information for future studies on metal determination in tea.

Keywords: ICP-MS, green tea, black tea, microwave-assisted acid digestion, ultrasound-assisted extraction

Procedia PDF Downloads 92
4769 New Method for the Determination of Montelukast in Human Plasma by Solid Phase Extraction Using Liquid Chromatography Tandem Mass Spectrometry

Authors: Vijayalakshmi Marella, NageswaraRaoPilli

Abstract:

This paper describes a simple, rapid and sensitive liquid chromatography / tandem mass spectrometry assay for the determination of montelukast in human plasma using montelukast d6 as an internal standard. Analyte and the internal standard were extracted from 50 µL of human plasma via solid phase extraction technique without evaporation, drying and reconstitution steps. The chromatographic separation was achieved on a C18 column by using a mixture of methanol and 5mM ammonium acetate (80:20, v/v) as the mobile phase at a flow rate of 0.8 mL/min. Good linearity results were obtained during the entire course of validation. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. A run time of 2.5 min for each sample made it possible to analyze more number of samples in short time, thus increasing the productivity. The proposed method was found to be applicable to clinical studies.

Keywords: Montelukast, tandem mass spectrometry, montelukast d6, FDA guidelines

Procedia PDF Downloads 287
4768 Biosorption of Lead (II) from Lead Acid Battery Industry Wastewater by Immobilized Dead Isolated Bacterial Biomass

Authors: Harikrishna Yadav Nanganuru, Narasimhulu Korrapati

Abstract:

Over the past many years, many sites in the world have been contaminated with heavy metals, which are the largest class of contaminants. Lead is one of the toxic heavy metals contaminated in the environment. Lead is not biodegradable, that’s why it is accumulated in the human body and impacts all the systems of the human body when it has been taken by humans. The accumulation of lead in the water environment has been showing adverse effects on the public health. So the removal of lead from the water environment by the biosorption process, which is emerged as a potential method for the lead removal, is an efficient approach. This work was focused to examine the removal of Lead [Pb (II)] ions from aqueous solution and effluent from battery industry. Lead contamination in water is a widespread problem throughout the world and mainly results from lead acid battery manufacturing effluent. In this work, isolated bacteria from wastewater of lead acid battery industry has been utilized for the removal of lead. First effluent from the lead acid battery industry was characterized by the inductively coupled plasma atomic emission spectrometry (ICP – AES). Then the bacteria was isolated from the effluent and used it’s immobilized dead mass for the biosorption of lead. Scanning electron microscopic (SEM) and Atomic force microscopy (AFM) studies clearly suggested that the Lead (Pb) was adsorbed efficiently. The adsorbed percentage of lead (II) from waste was 97.40 the concentration of lead (II) is measured by Atomic Absorption Spectroscopy (AAS). From the result of AAS it can be concluded that immobilized isolated dead mass was well efficient and useful for biosorption of lead contaminated waste water.

Keywords: biosorption, ICP-AES, lead (Pb), SEM

Procedia PDF Downloads 355
4767 Risk Prediction Based on Heavy Metal Distribution in Groundwater

Authors: Rama Bhattacharyya, S. N. Ojha, Umesh K. Singh

Abstract:

Anthropogenic control on groundwater chemistry has emerged as a critical concern now-a-days, especially in the industrial areas. In view of this, a comprehensive study on the distribution of the heavy metal in the groundwater was conducted to investigate the impact of urbanization in the aquatic media. Water samples either from well or borehole from Fourty different sites in and around, Durgapur, West Bengal were collected for this purpose. The samples were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for Calcium (Ca), Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Potassium (K), Magnesium (Mg), Manganese (Mn), Sodium (Na), Nickel (Ni), Lead (Pb), Zinc (Zn) content and the levels were compared with WHO specified maximum contaminant level as well as permissible limits given by the Bureau of Indian Standards (BIS). The result obtained from the present study indicates a significant risk to the population of this important emerging ‘smart city’ of eastern India. Because of the toxicity of these metals and the fact that for many tube-wells, dug-wells and bore-wells are the only sources of the water supply for a major fraction of the population in this environment. In this study, an attempt has been made to develop metal contamination risk map.

Keywords: heavy metals, ground water, maximum contamination level, ICP-MS

Procedia PDF Downloads 187
4766 Fuel Oxidation Reactions: Pathways and Reactive Intermediates Characterization via Synchrotron Photoionization Mass Spectrometry

Authors: Giovanni Meloni

Abstract:

Recent results are presented from experiments carried out at the Advanced Light Source (ALS) at the Chemical Dynamics Beamline of Lawrence Berkeley National Laboratory using multiplexed synchrotron photoionization mass spectrometry. The reaction mixture and a buffer gas (He) are introduced through individually calibrated mass flow controllers into a quartz slow flow reactor held at constant pressure and temperature. The gaseous mixture effuses through a 650 μm pinhole into a 1.5 mm skimmer, forming a molecular beam that enters a differentially pumped ionizing chamber. The molecular beam is orthogonally intersected by a tunable synchrotron radiation produced by the ALS in the 8-11 eV energy range. Resultant ions are accelerated, collimated, and focused into an orthogonal time-of-flight mass spectrometer. Reaction species are identified by their mass-to-charge ratios and photoionization (PI) spectra. Comparison of experimental PI spectra with literature and/or simulated curves is routinely done to assure the identity of a given species. With the aid of electronic structure calculations, potential energy surface scans are performed, and Franck-Condon spectral simulations are obtained. Examples of these experiments are discussed, ranging from new intermediates characterization to reaction mechanisms elucidation and biofuels oxidation pathways identification.

Keywords: mass spectrometry, reaction intermediates, synchrotron photoionization, oxidation reactions

Procedia PDF Downloads 44
4765 The Effect of Sodium Bicarbonate on the Mg and P Concentrations in Turkish Black and Green Tea

Authors: E. Moroydor Derun, T. Yalcin, O. Dere Ozdemir, S. Kipcak, N. Tugrul, S. Piskin

Abstract:

Tea is one of the most consumed beverages all over the world. Especially, black and green teas are preferred to consume. In Turkey, some local tea houses use sodium bicarbonate (SB) to obtain more infusion by using less amount of tea. Therefore, the addition of SB to black and green teas affects element concentrations of these teas. In this study, determination of magnesium (Mg) and phosphorus (P) contents in black and green teas is aimed for conscious consumption, after the addition of SB. Inductively coupled plasma optical emission spectrometry (ICP-OES) was used for these analysis. The results of this study showed that the concentrations of Mg and P decreased by adding SB from 11.020, 21.915 to 10.009, 17.520 in black tea and from 12.605, 14.550 to 8.118, 9.425 in green tea, respectively. The addition of SB on analyzed teas is not recommended as it reduces intake percentages of Mg and P from the essential elements.

Keywords: elements, ICP-OES, sodium bicarbonate, tea

Procedia PDF Downloads 353
4764 A Step-by-Step Analytical Protocol For Detecting and Identifying Minor Differences In Like Materials and Polymers Using Pyrolysis -Gas Chromatography/Mass Spectrometry Technique

Authors: Athena Nguyen, Rojin Belganeh

Abstract:

Detecting and identifying differences in like polymer materials are key factors in failure and deformulation analysis, and reverse engineering. Pyrolysis-GC/MS is an easy solid sample introduction technique which expands the application areas of gas chromatography and mass spectrometry. The Micro furnace pyrolyzer is directly interfaced with the GC injector preventing any potential of cold spot, carryover, and cross contamination. In this presentation, the analysis of the differences in three polystyrene samples is demonstrated. Although the three samples look very similar by Evolve gas analysis (EGA) and Flash pyrolysis, there are indications of small levels of other materials. By performing Thermal desorption-GC/MS, the additive compounds between samples show the differences. EGA, flash pyrolysis, and thermal desorption analysis are the different modes of operations of the micro-furnace pyrolyzer enabling users to perform multiple analytical techniques.

Keywords: Gas chromatography/Mass spectrometry, pyrolysis, pyrolyzer, thermal desorption-GC/MS

Procedia PDF Downloads 154
4763 Characterization of Coal Fly Ash with Potential Use in the Manufacture Geopolymers to Solidify/Stabilize Heavy Metal Ions

Authors: P. M. Fonseca Alfonso, E. A. Murillo Ruiz, M. Diaz Lagos

Abstract:

Understanding the physicochemical properties and mineralogy of fly ash from a particular source is essential for to protect the environment and considering its possible applications, specifically, in the production of geopolymeric materials that solidify/stabilize heavy metals ions. The results of the characterization of three fly ash samples are shown in this paper. The samples were produced in the TERMOPAIPA IV thermal power plant in the State of Boyaca, Colombia. The particle size distribution, chemical composition, mineralogy, and molecular structure of three samples were analyzed using laser diffraction, X-ray fluorescence, inductively coupled plasma mass spectrometry, X-ray diffraction, and infrared spectroscopy respectively. The particle size distribution of the three samples probably ranges from 0.128 to 211 μm. Approximately 59 elements have been identified in the three samples. It is noticeable that the ashes are made up of aluminum and silicon compounds. Besides, the iron phase in low content was also found. According to the results found in this study, the fly ash samples type F has a great potential to be used as raw material for the manufacture of geopolymers with potential use in the stabilization/solidification of heavy metals; mainly due to the presence of amorphous aluminosilicates typical of this type of ash, which react effectively with alkali-activator.

Keywords: fly ash, geopolymers, molecular structure, physicochemical properties.

Procedia PDF Downloads 93
4762 Catalytic Cracking of Hydrocarbon over Zeolite Based Catalysts

Authors: Debdut Roy, Vidyasagar Guggilla

Abstract:

In this research, we highlight our exploratory work on modified zeolite based catalysts for catalytic cracking of hydrocarbons for production of light olefin i.e. ethylene and propylene. The work is focused on understanding the catalyst structure and activity correlation. Catalysts are characterized by surface area and pore size distribution analysis, inductively coupled plasma optical emission spectrometry (ICP-OES), Temperature Programmed Desorption (TPD) of ammonia, pyridine Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Thermo-gravimetric Analysis (TGA) and correlated with the catalytic activity. It is observed that the yield of lighter olefins increases with increase of Bronsted acid strength.

Keywords: catalytic cracking, zeolite, propylene, structure-activity correlation

Procedia PDF Downloads 190
4761 De-Novo Structural Elucidation from Mass/NMR Spectra

Authors: Ismael Zamora, Elisabeth Ortega, Tatiana Radchenko, Guillem Plasencia

Abstract:

The structure elucidation based on Mass Spectra (MS) data of unknown substances is an unresolved problem that affects many different fields of application. The recent overview of software available for structure elucidation of small molecules has shown the demand for efficient computational tool that will be able to perform structure elucidation of unknown small molecules and peptides. We developed an algorithm for De-Novo fragment analysis based on MS data that proposes a set of scored and ranked structures that are compatible with the MS and MSMS spectra. Several different algorithms were developed depending on the initial set of fragments and the structure building processes. Also, in all cases, several scores for the final molecule ranking were computed. They were validated with small and middle databases (DB) with the eleven test set compounds. Similar results were obtained from any of the databases that contained the fragments of the expected compound. We presented an algorithm. Or De-Novo fragment analysis based on only mass spectrometry (MS) data only that proposed a set of scored/ranked structures that was validated on different types of databases and showed good results as proof of concept. Moreover, the solutions proposed by Mass Spectrometry were submitted to the prediction of NMR spectra in order to elucidate which of the proposed structures was compatible with the NMR spectra collected.

Keywords: De Novo, structure elucidation, mass spectrometry, NMR

Procedia PDF Downloads 260
4760 Multiclass Analysis of Pharmaceuticals in Fish and Shrimp Tissues by High-Performance Liquid Chromatography-Tandem Mass Spectrometry

Authors: Reza Pashaei, Reda Dzingelevičienė

Abstract:

An efficient, reliable, and sensitive multiclass analytical method has been expanded to simultaneously determine 15 human pharmaceutical residues in fish and shrimp tissue samples by ultra-high-performance liquid chromatography-tandem mass spectrometry. The investigated compounds comprise ten classes, namely analgesic, antibacterial, anticonvulsant, cardiovascular, fluoroquinolones, macrolides, nonsteroidal anti-inflammatory, penicillins, stimulant, and sulfonamide. A simple liquid extraction procedure based on 0.1% formic acid in methanol was developed. Chromatographic conditions were optimized, and mobile phase namely 0.1 % ammonium acetate (A), and acetonitrile (B): 0 – 2 min, 15% B; 2 – 5 min, linear to 95% B; 5 – 10 min, 95% B; and 10 – 12 min was obtained. Limits of detection and quantification ranged from 0.017 to 1.371 μg/kg and 0.051 to 4.113 μg/kg, respectively. Finally, amoxicillin, azithromycin, caffeine, carbamazepine, ciprofloxacin, clarithromycin, diclofenac, erythromycin, furosemide, ibuprofen, ketoprofen, naproxen, sulfamethoxazole, tetracycline, and triclosan were quantifiable in fish and shrimp samples.

Keywords: fish, liquid chromatography, mass spectrometry, pharmaceuticals, shrimp, solid-phase extraction

Procedia PDF Downloads 226
4759 A Method for Quantifying Arsenolipids in Sea Water by HPLC-High Resolution Mass Spectrometry

Authors: Muslim Khan, Kenneth B. Jensen, Kevin A. Francesconi

Abstract:

Trace amounts (ca 1 µg/L, 13 nM) of arsenic are present in sea water mostly as the oxyanion arsenate. In contrast, arsenic is present in marine biota (animals and algae) at very high levels (up to100,000 µg/kg) a significant portion of which is present as lipid-soluble compounds collectively termed arsenolipids. The complex nature of sea water presents an analytical challenge to detect trace compounds and monitor their environmental path. We developed a simple method using liquid-liquid extraction combined with HPLC-High Resolution Mass Spectrometer capable of detecting trace of arsenolipids (99 % of the sample matrix while recovering > 80 % of the six target arsenolipids with limit of detection of 0.003 µg/L.)

Keywords: arsenolipids, sea water, HPLC-high resolution mass spectrometry

Procedia PDF Downloads 340
4758 Adverse Impacts of Poor Wastewater Management Practices on Water Quality in Gebeng Industrial Area, Pahang, Malaysia

Authors: I. M. Sujaul, M. A. Sobahan, A. A. Edriyana, F. M. Yahaya, R. M. Yunus

Abstract:

This study was carried out to investigate the adverse effect of industrial waste water on surface water quality in Gebeng industrial estate, Pahang, Malaysia. Surface water was collected from 6 sampling stations. Physico-chemical parameters were characterized based on in-situ and ex-situ analysis according to standard methods by American Public Health Association (APHA). Selected heavy metals were determined by using Inductively Coupled Plasma Mass Spectrometry (ICP MS). The result reveled that the concentration of heavy metals such as Pb, Cu, Cd, Cr and Hg were high in samples. The result showed that the value of Pb and Hg were higher in the wet season in comparison to dry season. According to Malaysia National Water Quality Standard (NWQS) and Water Quality Index (WQI) all the sampling station were categorized as class IV (highly polluted). The present study reveled that the adverse effects of careless disposal of wastes and directly discharge of effluents affected on surface water quality. Therefore, the authorities should implement the laws to ensure the proper practices of waste water management for environmental sustainability around the study area.

Keywords: water, heavy metals, water quality index, Gebeng

Procedia PDF Downloads 351
4757 Investigation on Polymer Based Nano-Silver as Food Packaging Materials

Authors: A. M. Metak, T. T. Ajaal, Amal Metak, Tawfik Ajaal

Abstract:

Commercial nanocomposite food packaging type nano-silver containers were characterised using scanning electron microscopy (SEM) and energy-dispersive X-Ray spectroscopy (EDX). The presence of nanoparticles consistent with the incorporation of 1% nano-silver (Ag) and 0.1% titanium dioxide (TiO2) nanoparticle into polymeric materials formed into food containers was confirmed. Both nanomaterials used in this type of packaging appear to be embedded in a layered configuration within the bulk polymer. The dimensions of the incorporated nanoparticles were investigated using X-Ray diffraction (XRD) and determined by calculation using the Scherrer Formula; these were consistent with Ag and TiO2 nanoparticles in the size range 20-70nm both were spherical shape nanoparticles. Antimicrobial assessment of the nanocomposite container has also been performed and the results confirm the antimicrobial activity of Ag and TiO2 nanoparticles in food packaging containers. Migration assessments were performed in a wide range of food matrices to determine the migration of nanoparticles from the packages. The analysis was based on the relevant European safety directives and involved the application of inductively coupled plasma mass spectrometry (ICP-MS) to identify the range of migration risk. The data pertain to insignificance levels of migration of Ag and TiO2 nanoparticles into the selected food matrices.

Keywords: nano-silver, antimicrobial food packaging, migration, titanium dioxide

Procedia PDF Downloads 335
4756 Synthetic Cannabinoids: Extraction, Identification and Purification

Authors: Niki K. Burns, James R. Pearson, Paul G. Stevenson, Xavier A. Conlan

Abstract:

In Australian state Victoria, synthetic cannabinoids have recently been made illegal under an amendment to the drugs, poisons and controlled substances act 1981. Identification of synthetic cannabinoids in popular brands of ‘incense’ and ‘potpourri’ has been a difficult and challenging task due to the sample complexity and changes observed in the chemical composition of the cannabinoids of interest. This study has developed analytical methodology for the targeted extraction and determination of synthetic cannabinoids available pre-ban. A simple solvent extraction and solid phase extraction methodology was developed that selectively extracted the cannabinoid of interest. High performance liquid chromatography coupled with UV‐visible and chemiluminescence detection (acidic potassium permanganate and tris (2,2‐bipyridine) ruthenium(III)) were used to interrogate the synthetic cannabinoid products. Mass spectrometry and nuclear magnetic resonance spectroscopy were used for structural elucidation of the synthetic cannabinoids. The tris(2,2‐bipyridine)ruthenium(III) detection was found to offer better sensitivity than the permanganate based reagents. In twelve different brands of herbal incense, cannabinoids were extracted and identified including UR‐144, XLR 11, AM2201, 5‐F‐AKB48 and A796‐260.

Keywords: electrospray mass spectrometry, high performance liquid chromatography, solid phase extraction, synthetic cannabinoids

Procedia PDF Downloads 429
4755 Stability of Essential Oils in Pang-Rum by Gas Chromatography-Mass Spectrometry

Authors: K. Jarmkom, P. Eakwaropas, W. Khobjai, S. Techaeoi

Abstract:

Ancient Thai perfumed powder was used as a fragrance for clothing, food, and the body. Plant-based natural Thai perfume products are known as Pang-Rum. The objective of this study was to evaluate the stability of essential oils after six months of incubation. The chemical compositions were determined by gas chromatography-mass spectrometry (GC-MS), in terms of the qualitative composition of the isolated essential oil. The isolation of the essential oil of natural products by incubate sample for 5 min at 40 ºC is described. The volatile components were identified by percentage of total peak areas comparing their retention times of GC chromatograph with NIST mass spectral library. The results show no significant difference in the seven chromatograms of perfumed powder (Pang-Rum) both with binder and without binder. Further identification was done by GC-MS. Some components of Pang-Rum with/without binder were changed by temperature and time.

Keywords: GC-MS analysis, essential oils, stability, Pang-Rum

Procedia PDF Downloads 239
4754 Chemical Fingerprinting of Complex Samples With the Aid of Parallel Outlet Flow Chromatography

Authors: Xavier A. Conlan

Abstract:

Speed of analysis is a significant limitation to current high-performance liquid chromatography/mass spectrometry (HPLC/MS) and ultra-high-pressure liquid chromatography (UHPLC)/MS systems both of which are used in many forensic investigations. The flow rate limitations of MS detection require a compromise in the chromatographic flow rate, which in turn reduces throughput, and when using modern columns, a reduction in separation efficiency. Commonly, this restriction is combated through the post-column splitting of flow prior to entry into the mass spectrometer. However, this results in a loss of sensitivity and a loss in efficiency due to the post-extra column dead volume. A new chromatographic column format known as 'parallel segmented flow' involves the splitting of eluent flow within the column outlet end fitting, and in this study we present its application in order to interrogate the provenience of methamphetamine samples with mass spectrometry detection. Using parallel segmented flow, column flow rates as high as 3 mL/min were employed in the analysis of amino acids without post-column splitting to the mass spectrometer. Furthermore, when parallel segmented flow chromatography columns were employed, the sensitivity was more than twice that of conventional systems with post-column splitting when the same volume of mobile phase was passed through the detector. These finding suggest that this type of column technology will particularly enhance the capabilities of modern LC/MS enabling both high-throughput and sensitive mass spectral detection.

Keywords: chromatography, mass spectrometry methamphetamine, parallel segmented outlet flow column, forensic sciences

Procedia PDF Downloads 460
4753 Determination of Rare Earth Element Patterns in Uranium Matrix for Nuclear Forensics Application: Method Development for Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Measurements

Authors: Bernadett Henn, Katalin Tálos, Éva Kováss Széles

Abstract:

During the last 50 years, the worldwide permeation of the nuclear techniques induces several new problems in the environmental and in the human life. Nowadays, due to the increasing of the risk of terrorism worldwide, the potential occurrence of terrorist attacks using also weapon of mass destruction containing radioactive or nuclear materials as e.g. dirty bombs, is a real threat. For instance, the uranium pellets are one of the potential nuclear materials which are suitable for making special weapons. The nuclear forensics mainly focuses on the determination of the origin of the confiscated or found nuclear and other radioactive materials, which could be used for making any radioactive dispersive device. One of the most important signatures in nuclear forensics to find the origin of the material is the determination of the rare earth element patterns (REE) in the seized or found radioactive or nuclear samples. The concentration and the normalized pattern of the REE can be used as an evidence of uranium origin. The REE are the fourteen Lanthanides in addition scandium and yttrium what are mostly found together and really low concentration in uranium pellets. The problems of the REE determination using ICP-MS technique are the uranium matrix (high concentration of uranium) and the interferences among Lanthanides. In this work, our aim was to develop an effective chemical sample preparation process using extraction chromatography for separation the uranium matrix and the rare earth elements from each other following some publications can be found in the literature and modified them. Secondly, our purpose was the optimization of the ICP-MS measuring process for REE concentration. During method development, in the first step, a REE model solution was used in two different types of extraction chromatographic resins (LN® and TRU®) and different acidic media for environmental testing the Lanthanides separation. Uranium matrix was added to the model solution and was proved in the same conditions. Methods were tested and validated using REE UOC (uranium ore concentrate) reference materials. Samples were analyzed by sector field mass spectrometer (ICP-SFMS).

Keywords: extraction chromatography, nuclear forensics, rare earth elements, uranium

Procedia PDF Downloads 275
4752 Spatial Variability of Heavy Metals in Sediments of Two Streams of the Olifants River System, South Africa

Authors: Abraham Addo-Bediako, Sophy Nukeri, Tebatso Mmako

Abstract:

Many freshwater ecosystems have been subjected to prolonged and cumulative pollution as a result of human activities such as mining, agricultural, industrial and human settlements in their catchments. The objective of this study was to investigate spatial variability of heavy metal pollution of sediments and possible sources of pollutants in two streams of the Olifants River System, South Africa. Stream sediments were collected and analysed for Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Nickel (Ni) and Zinc (Zn) concentrations using inductively coupled plasma-mass mass spectrometry (ICP-MS). In both rivers, As, Cd, Cu, Pb and Zn fell within the concentration ranges recommended by CCME and ANZECC, while the concentrations of Cr and Ni exceeded the standards; the results indicated that Cr and Ni in the sediments originated from human activities and not from natural geological background. The index of geo-accumulation (Igeo) was used to assess the degree of pollution. The results of the geo-accumulation index evaluation showed that Cr and Ni were present in the sediments of the rivers at moderately to extremely polluted levels, while As, Cd, Cu, Pb and Zn existed at unpolluted to moderately polluted levels. Generally, heavy metal concentrations increased along the gradient in the rivers. The high concentrations of Cr and Ni in both rivers are of great concern, as previously these two rivers were classified to be supplying the Olifants River with water of good quality. There is a critical need, therefore to monitor heavy metal concentrations and distributions, as well as a comprehensive plan to prevent health risks, especially those communities still reliant on untreated water from the rivers, as sediment pollution may pose a risk of secondary water pollution under sediment disturbance and/or changes in the geo-chemistry of sediments.

Keywords: geo-accumulation index, heavy metals, sediment pollution, water quality

Procedia PDF Downloads 123
4751 Heat and Mass Transfer Study of Supercooled Large Droplet Icing

Authors: Du Yanxia, Stephan E. Bansmer, Gui Yewei, Xiao Guangming, Yang Xiaofeng

Abstract:

The heat and mass transfer characteristics of icing coupled with film flow is studied and the coupled model of the thermal behavior with the flow simulation by single-step method is developed. The behavior of ice and water was analyzed. The results show that under supercooled large droplet (SLD) icing conditions, the film flow is an important phonomena in icing accretion process. The pressure gradient, gravity and shear stress are the main factors affecting the film flow on icing surface, which has important influence on the shape and rate of icing. To predict SLD ice accretion accurately, the heat and mass transfer of ice and film flow should be taken into account.

Keywords: SLD, aircraft, icing, heat and mass transfer

Procedia PDF Downloads 603
4750 Determination and Comparison of Some Elements in Different Types of Orange Juices and Investigation of Health Effect

Authors: F. Demir, A. S. Kipcak, O. Dere Ozdemir, E. M. Derun, S. Piskin

Abstract:

Fruit juices play important roles in human health as being a key part of nutrition.Juice and nectar are two categories of drinks with so many variations for consumers, regardless of age, lifestyle and taste preferences, which they can find their favorites. Juices contain 100% pulp when pulp content of ‘nectar’ changes between 25%-50%. In this study, potassium (K), magnesium (Mg), and phosphorus (P) contents in orange juice and nectar is determined for conscious consumption. For this purpose inductively coupled plasma optical emission spectrometry (ICP-OES) is used to find out potassium (K), magnesium (Mg), and phosphorus (P) contents in orange juices and nectar. Furthermore, the daily intake of elements from orange juice and nectar that affects human health is also investigated. From the results of experiments K, Mg and P contents are found in orange juice as 1351; 73,25; 89,27 ppm and in orange nectar as 986; 33,76; 51,30 respectively.

Keywords: element, health, ICP-OES, orange juice

Procedia PDF Downloads 488
4749 Simultaneous Quantification of Glycols in New and Recycled Anti-Freeze Liquids by GC-MS

Authors: George Madalin Danila, Mihaiella Cretu, Cristian Puscasu

Abstract:

Glycol-based anti-freeze liquids, commonly composed of ethylene glycol or propylene glycol, have important uses in automotive cooling, but they should be handled with care due to their toxicity; ethylene glycol is highly toxic to humans and animals. A fast, accurate, precise, and robust method was developed for the simultaneous quantification of 7 most important glycols and their isomers. Glycols were analyzed from diluted sample solution of coolants using gas-chromatography coupled with mass spectrometry in single ion monitoring mode. Results: The method was developed and validated for 7 individual glycols (ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol and tripropylene glycol). Limits of detection (1-2 μg/mL) and limit of quantification (10 μg/mL) obtained were appropriate. The present method was applied for the determination of glycols in 10 different anti-freeze liquids commercially available on the Romanian market, proving to be reliable. A method that requires only a two-step dilution of anti-freeze samples combined with direct liquid injection GC-MS was validated for the simultaneous quantification of 7 glycols (and their isomers) in 10 different types of anti-freeze liquids. The results obtained in the validation procedure proved that the GC-MS method is sensitive and precise for the quantification of glycols.

Keywords: glycols, anti-freeze, gas-chromatography, mass spectrometry, validation, recycle

Procedia PDF Downloads 29
4748 Use of Fabric Phase Sorptive Extraction with Gas Chromatography-Mass Spectrometry for the Determination of Organochlorine Pesticides in Various Aqueous and Juice Samples

Authors: Ramandeep Kaur, Ashok Kumar Malik

Abstract:

Fabric Phase Sorptive Extraction (FPSE) combined with Gas chromatography Mass Spectrometry (GCMS) has been developed for the determination of nineteen organochlorine pesticides in various aqueous samples. The method consolidates the features of sol-gel derived microextraction sorbents with rich surface chemistry of cellulose fabric substrate which could directly extract sample from complex sample matrices and incredibly improve the operation with decreased pretreatment time. Some vital parameters such as kind and volume of extraction solvent and extraction time were examinedand optimized. Calibration curves were obtained in the concentration range 0.5-500 ng/mL. Under the optimum conditions, the limits of detection (LODs) were in the range 0.033 ng/mL to 0.136 ng/mL. The relative standard deviations (RSDs) for extraction of 10 ng/mL 0f OCPs were less than 10%. The developed method has been applied for the quantification of these compounds in aqueous and fruit juice samples. The results obtained proved the present method to be rapid and feasible for the determination of organochlorine pesticides in aqueous samples.

Keywords: fabric phase sorptive extraction, gas chromatography-mass spectrometry, organochlorine pesticides, sample pretreatment

Procedia PDF Downloads 457
4747 Trace Metals in Natural Bottled Water on Montenegrin Market and Comaparison with Tap Water in Podgorica

Authors: Katarina Živković, Ivana Joksimović

Abstract:

Many different chemicals may occur in drinking water and cause significant human health risks after prolonged periods of exposure. In particular concern are contaminants that have cumulative toxic properties, such as heavy metals. This investigation was done to clarify concerns about chemical quality and safety of drinking tap water in Podgorica. For comparison, all available natural bottled water on Montenegrin market were bought. All samples (bottled water and tap water from Podgorica) were analyzed using ICP –OES on contents of Al, Cd, Pb, Cu, Zn,Cr, Fe, As and Mn. All results compared with the maximum concentration levels allowed by international standards and World Health Organization (WHO) guidelines. The results of analysis showed that all trace of heavy metals were very low and in same time below MCL according to WHO and International standard.

Keywords: inductively coupled plasma - optical emission spectrometry (ICP-OES), Montenegro (Podgorica), natural bottled water, tap water , trace of heavy metal

Procedia PDF Downloads 425
4746 Comprehending the Relationship between the Red Blood Cells of a Protein 4.1 -/- Patient and Those of Healthy Controls: A Comprehensive Analysis of Tandem Mass Spectrometry Data

Authors: Ahmed M. Hjazi, Bader M. Hjazi

Abstract:

Protein 4.1 is a crucial component of complex interactions between the cytoskeleton and other junctional complex proteins. When the gene encoding this protein is altered, resulting in reduced expression, or when the protein is absent, the red cell undergoes a significant structural change. This research aims to achieve a deeper comprehension of the biochemical effects of red cell protein deficiency. A Tandem Mass Spectrometry Analysis (TMT-MS/MS) of patient cells lacking protein 4.1 compared to three healthy controls was achieved by the Proteomics Institute of the University of Bristol. The SDS-PAGE and Western blotting were utilized on the original patient sample and controls to partially confirm TMT MS/MS data analysis of the protein-4.1-deficient cells. Compared to healthy controls, protein levels in samples lacking protein 4.1 had a significantly higher concentration of proteins that probably originated from reticulocytes. This could occur if the patient has an elevated reticulocyte count. The increase in chaperone and reticulocyte-associated proteins was most notable in this study. This may result from elevated quantities of reticulocytes in patients with hereditary elliptocytosis.

Keywords: hereditary elliptocytosis, protein 4.1, red cells, tandem mass spectrometry data.

Procedia PDF Downloads 53
4745 Determination of Heavy Metals (Cd, Pb, Hg, Cu, Fe, Mn, Al, As, Ni and Zn) in 6 Important Commercial Fish Species in North of Hormoz Strait

Authors: Majid Afkhami, Maryam Ehsanpour, Zahra Khoshnood

Abstract:

The concentrations of 10 heavy metals (Cd, Pb, Hg, Cu, Fe, Mn, Al, As, Ni, Zn) were measured in muscle, gill and liver of 6 species from Hormoz Strait in north coast of Persian Gulf in 12 months (April 2009 – March 2010). All samples were analyzed three times for Cd, Pb, Cu, Fe, Mn, Al, As, Ni, Zn by inductively coupled plasma-atomic emission spectrometry (ICP-AES) and for Hg by LECO AMA254 Advanced Mercury Analyzer. Results of this study showed that iron had the highest concentration (total mean concentration) in all species, followed by Zn, Cu, Ni, Al, Pb, Mn, Cd, Hg and lowest concentration in three tissues was As. In addition, the accumulation of metals was species-dependent, and was higher in Scomberomorous commerson and Scomberomorous guttatus (p<0.05) and the lowest concentration was record in Pampus argenteus (p<0.05).

Keywords: Persian Gulf, heavy metals, Hormoz strait, Scomberomorous guttatus, Scomberomorous commerson, Pampus argenteus

Procedia PDF Downloads 617
4744 The Preparation of Silicon and Aluminum Extracts from Tuncbilek and Orhaneli Fly Ashes by Alkali Fusion

Authors: M. Sari Yilmaz, N. Karamahmut Mermer

Abstract:

Coal fly ash is formed as a solid waste product from the combustion of coal in coal fired power stations. Huge amounts of fly ash are produced globally every year and are predicted to increase. Nowadays, less than half of the fly ash is used as a raw material for cement manufacturing, construction and the rest of it is disposed as a waste causing yet another environmental concern. For this reason, the recycling of this kind of slurries into useful materials is quite important in terms of economical and environmental aspects. The purpose of this study is to evaluate the Orhaneli and Tuncbilek coal fly ashes for utilization in some industrial applications. Therefore the mineralogical and chemical compositions of these fly ashes were analyzed by X-ray fluorescence (XRF) spectroscopy and X-ray diffraction (XRD). The silicon (Si) and aluminum (Al) in the fly ashes were activated by alkali fusion technique with sodium hydroxide. The obtained extracts were analyzed for Si and Al content by inductively coupled plasma optical emission spectrometry (ICP-OES).

Keywords: extraction, fly ash, fusion, XRD

Procedia PDF Downloads 299
4743 Urinary Volatile Organic Compound Testing in Fast-Track Patients with Suspected Colorectal Cancer

Authors: Godwin Dennison, C. E. Boulind, O. Gould, B. de Lacy Costello, J. Allison, P. White, P. Ewings, A. Wicaksono, N. J. Curtis, A. Pullyblank, D. Jayne, J. A. Covington, N. Ratcliffe, N. K. Francis

Abstract:

Background: Colorectal symptoms are common but only infrequently represent serious pathology, including colorectal cancer (CRC). A large number of invasive tests are presently performed for reassurance. We investigated the feasibility of urinary volatile organic compound (VOC) testing as a potential triage tool in patients fast-tracked for assessment for possible CRC. Methods: A prospective, multi-centre, observational feasibility study was performed across three sites. Patients referred on NHS fast-track pathways for potential CRC provided a urine sample which underwent Gas Chromatography Mass Spectrometry (GC-MS), Field Asymmetric Ion Mobility Spectrometry (FAIMS) and Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) analysis. Patients underwent colonoscopy and/or CT colonography and were grouped as either CRC, adenomatous polyp(s), or controls to explore the diagnostic accuracy of VOC output data supported by an artificial neural network (ANN) model. Results: 558 patients participated with 23 (4.1%) CRC diagnosed. 59% of colonoscopies and 86% of CT colonographies showed no abnormalities. Urinary VOC testing was feasible, acceptable to patients, and applicable within the clinical fast track pathway. GC-MS showed the highest clinical utility for CRC and polyp detection vs. controls (sensitivity=0.878, specificity=0.882, AUROC=0.884). Conclusion: Urinary VOC testing and analysis are feasible within NHS fast-track CRC pathways. Clinically meaningful differences between patients with cancer, polyps, or no pathology were identified therefore suggesting VOC analysis may have future utility as a triage tool. Acknowledgment: Funding: NIHR Research for Patient Benefit grant (ref: PB-PG-0416-20022).

Keywords: colorectal cancer, volatile organic compound, gas chromatography mass spectrometry, field asymmetric ion mobility spectrometry, selected ion flow tube mass spectrometry

Procedia PDF Downloads 56
4742 [Keynote Talk]: Determination of Metal Content in the Surface Sediments of the Istanbul Bosphorus Strait

Authors: Durata Haciu, Elif Sena Tekin, Gokce Ozturk, Patricia Ramey Balcı

Abstract:

Coastal zones are under increasing threat due to anthropogenic activities that introduce considerable pollutants such as heavy metals into marine ecosystems. As part of a larger experimental study examining species responses to contaminated marine sediments, surface sediments (top 5cm) were analysed for major trace elements at three locations in Istanbul Straight. Samples were randomly collected by divers (May 2018) using hand-corers from Istinye (n=4), Garipce (n=10) and Poyrazköy (n=6), at water depths of 4-8m. Twelve metals were examined: As, arsenic; Pb, lead; Cd, cadmium; Cr, chromium; Cu, Copper; Fe, Iron; Ni, Nickel; Zn, Zinc; V, vanadium; Mn, Manganese; Ba, Barium; and Ag, silver by wavelength-dispersive X-ray fluorescence spectrometry (WDXRF) and Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS). Preliminary results indicate that the average concentrations of metals (mg kg⁻¹) varied considerably among locations. In general, concentrations were relatively lower at Garipce compared to either Istinye or Poyrazköy. For most metals mean concentrations were highest at Poyrazköy and Ag and Cd were below detection limits (exception= Ag in a few samples). While Cd and As were undetected in all stations, the concentrations of Fe and Ni fall in the criteria of moderately polluted range and the rest of the metals in the range of low polluted range as compared to Effects Range Low (ERL) and Effects Range median (ERM) values determined by US Environmental Protection Agency (EPA).

Keywords: effect-range classification, ICP/MS, marine sediments, XRF

Procedia PDF Downloads 105
4741 Demetallization of Crude Oil: Comparative Analysis of Deasphalting and Electrochemical Removal Methods of Ni and V

Authors: Nurlan Akhmetov, Abilmansur Yeshmuratov, Aliya Kurbanova, Gulnar Sugurbekova, Murat Baisariyev

Abstract:

Extraction of the vanadium and nickel compounds is complex due to the high stability of porphyrin, nickel is catalytic poison which deactivates catalysis during the catalytic cracking of the oil, while vanadyl is abrasive and valuable metal. Thus, high concentration of the Ni and V in the crude oil makes their removal relevant. Two methods of the demetallization of crude oil were tested, therefore, the present research is conducted for comparative analysis of the deasphalting with organic solvents (cyclohexane, carbon tetrachloride, chloroform) and electrochemical method. Percentage of Ni extraction reached maximum of approximately 55% by using the electrochemical method in electrolysis cell, which was developed for this research and consists of three sections: oil and protonating agent (EtOH) solution between two conducting membranes which divides it from two capsules of 10% sulfuric acid and two graphite electrodes which cover all three parts in electrical circuit. Ions of metals pass through membranes and remain in acid solutions. The best result was obtained in 60 minutes with ethanol to oil ratio 25% to 75% respectively, current fits in to the range from 0.3A to 0.4A, voltage changed from 12.8V to 17.3V. Maximum efficiency of deasphalting, with cyclohexane as the solvent, in Soxhlet extractor was 66.4% for Ni and 51.2% for V. Thus, applying the voltammetry, ICP MS (Inductively coupled plasma mass spectrometry) and AAS (atomic absorption spectroscopy), these mentioned types of metal extraction methods were compared in this paper.

Keywords: electrochemistry, deasphalting of crude oil, demetallization of crude oil, petrolium engineering

Procedia PDF Downloads 208