Search results for: indoor air cleaner
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 581

Search results for: indoor air cleaner

491 Investigation of Thermal Comfort Conditions of Vernacular Buildings Taking into Consideration Various Use Patterns: A Case Study

Authors: Christina Kalogirou

Abstract:

The main goal of this paper is to explore the thermal comfort conditions in traditional buildings during all seasons of the year taking into consideration various use patterns. For this purpose a dwelling of vernacular architecture is selected and data regarding the indoor and outdoor air and surface temperature as well as the relative humidity are collected. These measurements are conducted in situ during the period of a year. Also, this building is occupied periodically and a calendar of occupancy was kept (duration of residence, hours of heating system operation, hours of natural ventilation, etc.) in order to correlate the indoor conditions recorded with the use patterns via statistical analysis. Furthermore, the effect of the high thermal inertia of the stone masonry walls and the different orientation of the rooms is addressed. Thus, this paper concludes in some interesting results on the effect of the users in the indoor climate conditions in the case of buildings with high thermal inertia envelops.

Keywords: thermal comfort, in situ measurements, occupant behaviour, vernacular architecture

Procedia PDF Downloads 418
490 Impact of Ozone Produced by Vehicular Emission on Chronic Obstructive Pulmonary Disease

Authors: Mohd Kamil Vakil

Abstract:

Air Pollution is caused by the introduction of chemicals in the biosphere. Primary pollutants on reaction with the components of the earth produce Secondary Pollutants like Smog. Ozone is the main ingredient of Smog. The ground level ozone is created by the chemical reactions between Nitrogen Oxides (NOx) and Volatile Organic Compounds (VOCs) in the presence of Sunlight. This ozone can enter inside and call as indoor ozone. The automobile emissions in both moving and idling conditions contribute to the indoor ozone formation. During engine ignition and shutdown, motor vehicles emit the ozone forming pollutants like NOx and VOCs, and the phenomena are called Cold Start and Hot-Soak respectively. Subjects like Chronic Obstructive Pulmonary Disease (COPD) and asthma associated with chronic respiratory diseases are susceptible to the harmful effects of Indoor Ozone. The most common cause of COPD other than smoking is the long-term contract with harmful pollutants like ground-level ozone. It is estimated by WHO that COPD will become the third leading cause of all deaths worldwide by 2030. In this paper, the cold-start and hot-soak vehicle emissions are studied in the context of accumulation of oxides of nitrogen at the outer walls of the building which may cause COPD. The titanium oxide coated building material is further discussed as an absorber of NOx when applied to the walls and roof.

Keywords: indoor air quality, cold start emission, hot-soak, ozone

Procedia PDF Downloads 177
489 Indoor Air Assessment and Health Risk of Volatile Organic Compounds in Secondary School Classrooms in Benin City, Edo State, Nigeria

Authors: Osayomwanbor E. Oghama, John O. Olomukoro

Abstract:

The school environment, apart from home, is probably the most important indoor environment for children. Children spend as much as 80-90% of their indoor time either at school or at home; an average of 35 - 40 hours per week in schools, hence are at the risk of indoor air pollutants such as volatile organic compounds (VOCs). Concentrations of VOCs vary widely but are generally higher indoors than outdoors. This research was, therefore, carried out to evaluate the levels of VOCs in secondary school classrooms in Benin City, Edo State. Samples were obtained from a total of 18 classrooms in 6 secondary schools. Samples were collected 3 times from each school and from 3 different classrooms in each school using Draeger ORSA 5 tubes. Samplers were left to stay for a school-week (5 days). The VOCs detected and analyzed were benzene, ethlybenzene, isopropylbenzene, naphthalene, n-butylbenzene, n-propylbenzene, toluene, m-xylene, p-xylene, o-xylene, styrene, chlorobenzene, chloroform, 1,2-dichloropropane, 2,2-dichloropropane, tetrachloroethane, tetrahydrofuran, isopropyl acetate, α-pinene, and camphene. The results showed that chloroform, o-xylene, and styrene were the most abundant while α-pinene and camphene were the least abundant. The health risk assessment was done in terms of carcinogenic (CRI) and non-carcinogenic risks (THR). The CRI values of the schools ranged from 1.03 × 10-5 to 1.36 × 10-5 μg/m³ (a mean of 1.16 × 10-5 μg/m³) with School 6 and School 3 having the highest and lowest values respectively. The THR values of the study schools ranged from 0.071-0.086 μg/m³ (a mean of 0.078 μg/m³) with School 3 and School 2 having the highest and lowest values respectively. The results show that all the schools pose a potential carcinogenic risks having CRI values greater than the recommended limit of 1 × 10-6 µg/m³ and no non-carcinogenic risk having THR values less than the USEPA hazard quotient of 1 µg/m³. It is recommended that school authorities should ensure adequate ventilation in their schools, supplementing natural ventilation with mechanical sources, where necessary. In addition, indoor air quality should be taken into consideration in the design and construction of classrooms.

Keywords: carcinogenic risk indicator, health risk, indoor air, non-carcinogenic risk indicator, secondary schools, volatile organic compounds

Procedia PDF Downloads 163
488 Simulation-Based Evaluation of Indoor Air Quality and Comfort Control in Non-Residential Buildings

Authors: Torsten Schwan, Rene Unger

Abstract:

Simulation of thermal and electrical building performance more and more becomes part of an integrative planning process. Increasing requirements on energy efficiency, the integration of volatile renewable energy, smart control and storage management often cause tremendous challenges for building engineers and architects. This mainly affects commercial or non-residential buildings. Their energy consumption characteristics significantly distinguish from residential ones. This work focuses on the many-objective optimization problem indoor air quality and comfort, especially in non-residential buildings. Based on a brief description of intermediate dependencies between different requirements on indoor air treatment it extends existing Modelica-based building physics models with additional system states to adequately represent indoor air conditions. Interfaces to corresponding HVAC (heating, ventilation, and air conditioning) system and control models enable closed-loop analyzes of occupants' requirements and energy efficiency as well as profitableness aspects. A complex application scenario of a nearly-zero-energy school building shows advantages of presented evaluation process for engineers and architects. This way, clear identification of air quality requirements in individual rooms together with realistic model-based description of occupants' behavior helps to optimize HVAC system already in early design stages. Building planning processes can be highly improved and accelerated by increasing integration of advanced simulation methods. Those methods mainly provide suitable answers on engineers' and architects' questions regarding more exuberant and complex variety of suitable energy supply solutions.

Keywords: indoor air quality, dynamic simulation, energy efficient control, non-residential buildings

Procedia PDF Downloads 202
487 Control of Indoor Carbon through Soft Approaches in Himachal Pradesh, India

Authors: Kopal Verma, Umesh C. Kulshrestha

Abstract:

The mountainous regions are very crucial for a country because of their importance for weather, water supply, forests, and various other socio-economic benefits. But the increasing population and its demand for energy and infrastructure have contributed very high loadings of air pollution. Various activities such as cooking, heating, manufacturing, transport, etc. contribute various particulate and gaseous pollutants in the atmosphere. This study was focused upon indoor air pollution and was carried out in four rural households of the Baggi village located in the Hamirpur District of the Himachal Pradesh state. The residents of Baggi village use biomass as fuel for cooking on traditional stove (Chullah). The biomass types include wood (mainly Beul, Grewia Optiva), crop residue and dung cakes. This study aimed to determine the organic carbon (OC), elemental carbon (EC), major cations and anions in the indoor air of each household. During non-cooking hours, it was found that the indoor air contained OC and EC as low as 21µg/m³ and 17µg/m³ respectively. But during cooking hours (with biomass burning), the levels of OC and EC were raised significantly by 91.2% and 85.4% respectively. Then the residents were advised to switch over as per our soft approach options. In the first approach change, they were asked to prepare the meal partially on Chullah using biomass and partially with liquefied petroleum gas (LPG). By doing this change, a considerable reduction in OC (53.1%) and in EC (41.8%) was noticed. The second change of approach included the cooking of entire meal by using LPG. This resulted in the reduction of OC (84.1%) and EC (73.3%) as compared to the values obtained during cooking entirely with biomass. The carbonaceous aerosol levels were higher in the morning hours than in the evening hours because of more biomass burning activity in the morning. According to a general survey done with the residents, the study provided them an awareness about the air pollution and the harmful effects of biomass burning. Some of them correlated their ailments like weakened eyesight, fatigue and respiratory problems with indoor air pollution. This study demonstrated that by replacing biomass with clean fuel such as LPG, the indoor concentrations of EC and OC can be reduced substantially.

Keywords: biomass burning, carbonaceous aerosol, elemental carbon, organic carbon, LPG

Procedia PDF Downloads 94
486 Computational Modeling of Thermal Comfort and CO2 Distribution in Common Room-Lecture Room by Using Hybrid Air Ventilation System, Thermoelectric-PV-Silica Gel under IAQ Standard

Authors: Jirod Chaisan, Somchai Maneewan, Chantana Punlek, Ninnart Rachapradit, Surapong Chirarattananon, Pattana Rakkwamsuk

Abstract:

In this paper, simulation modeling of heat transfer, air flow and distribution emitted from CO2 was performed in a regenerated air. The study room was divided in 3 types: common room, small lecture room and large lecture room under evaluated condition in two case: released and unreleased CO2 including of used hybrid air ventilation system for regenerated air under Thailand climate conditions. The carbon dioxide was located on the center of the room and released rate approximately 900-1200 ppm corresponded with indoor air quality standard (IAQs). The indoor air in the thermal comfort zone was calculated and simulated with the numerical method that using real data from the handbook guideline. The results of the study showed that in the case of hybrid air ventilation system explained thermal and CO2 distribution due to the system was adapted significantly in the comfort zone. The results showed that when CO2 released on the center of the other room, the CO2 high concentration in comfort zone so used hybrid air ventilation that decreased CO2 with regeneration air including of reduced temperature indoor. However, the study is simulation modeling and guideline only so the future should be the experiment of hybrid air ventilation system for evaluated comparison of the systems.

Keywords: air ventilation, indoor air quality, thermal comfort, thermoelectric, photovoltaic, dehumidify

Procedia PDF Downloads 461
485 Portable Environmental Parameter Monitor Based on STM32

Authors: Liang Zhao, Chongquan Zhong

Abstract:

Introduction: According to statistics, people spend 80% to 90% of time indoor, so indoor air quality, either at home or in the office, greatly impacts the quality of life, health and work efficiency. Therefore, indoor air quality is very important to human activities. With the acceleration of urbanization, people are spending more time in indoor activity. The time in indoor environment, the living space, and the frequency interior decoration are all increasingly increased. However, housing decoration materials contain formaldehyde and other harmful substances, causing environmental and air quality problems, which have brought serious damage to countless families and attracted growing attention. According to World Health Organization statistics, the indoor environments in more than 30% of buildings in China are polluted by poisonous and harmful gases. Indoor pollution has caused various health problems, and these widespread public health problems can lead to respiratory diseases. Long-term inhalation of low-concentration formaldehyde would cause persistent headache, insomnia, weakness, palpitation, weight loss and vomiting, which are serious impacts on human health and safety. On the other hand, as for offices, some surveys show that good indoor air quality helps to enthuse the staff and improve the work efficiency by 2%-16%. Therefore, people need to further understand the living and working environments. There is a need for easy-to-use indoor environment monitoring instruments, with which users only have to power up and monitor the environmental parameters. The corresponding real-time data can be displayed on the screen for analysis. Environment monitoring should have the sensitive signal alarm function and send alarm when harmful gases such as formaldehyde, CO, SO2, are excessive to human body. System design: According to the monitoring requirements of various gases, temperature and humidity, we designed a portable, light, real-time and accurate monitor for various environmental parameters, including temperature, humidity, formaldehyde, methane, and CO. This monitor will generate an alarm signal when a target is beyond the standard. It can conveniently measure a variety of harmful gases and provide the alarm function. It also has the advantages of small volume, convenience to carry and use. It has a real-time display function, outputting the parameters on the LCD screen, and a real-time alarm function. Conclusions: This study is focused on the research and development of a portable parameter monitoring instrument for indoor environment. On the platform of an STM32 development board, the monitored data are collected through an external sensor. The STM32 platform is for data acquisition and processing procedures, and successfully monitors the real-time temperature, humidity, formaldehyde, CO, methane and other environmental parameters. Real-time data are displayed on the LCD screen. The system is stable and can be used in different indoor places such as family, hospital, and office. Meanwhile, the system adopts the idea of modular design and is superior in transplanting. The scheme is slightly modified and can be used similarly as the function of a monitoring system. This monitor has very high research and application values.

Keywords: indoor air quality, gas concentration detection, embedded system, sensor

Procedia PDF Downloads 209
484 The Reducing Agent of Glycerol for the Reduction of Metal Oxides under Microwave Heating

Authors: Kianoosh Shojae

Abstract:

In recent years, the environmental challenges due to the excessive use of fossil fuels have led to heightened greenhouse gas production. In response, biodiesel has emerged as a cleaner alternative, offering reduced pollutant emissions compared to traditional fuels. The large-scale production of biodiesel, involving ester exchange of animal fats or vegetable oils, results in a surplus of crude glycerin. With environmental regulations on the rise and an increasing demand for biodiesel, glycerin production has seen a significant upswing. This paper focuses on the economic significance of glycerin through its pyrolysis as a raw material, particularly in the synthesis of metals. As industries pivoted towards cleaner fuels, glycerin, as a byproduct of biodiesel production, is poised to remain a cost-effective and surplus product. In this work, for evaluating the possible performance of using the gaseous products from the pyrolysis reaction of glycerol, we concerned the glycerin pyrolysis reactions, emphasizing the catalytic role of activated carbon, various reaction pathways and the impact of carrier gas flow rate on hydrogen production, providing valuable insights into the evolving landscape of sustainable fuel alternatives.

Keywords: biodiesel, glycerin pyrolysis, activated carbon catalysis, syngas

Procedia PDF Downloads 27
483 Accurate Positioning Method of Indoor Plastering Robot Based on Line Laser

Authors: Guanqiao Wang, Hongyang Yu

Abstract:

There is a lot of repetitive work in the traditional construction industry. These repetitive tasks can significantly improve production efficiency by replacing manual tasks with robots. There- fore, robots appear more and more frequently in the construction industry. Navigation and positioning are very important tasks for construction robots, and the requirements for accuracy of positioning are very high. Traditional indoor robots mainly use radiofrequency or vision methods for positioning. Compared with ordinary robots, the indoor plastering robot needs to be positioned closer to the wall for wall plastering, so the requirements for construction positioning accuracy are higher, and the traditional navigation positioning method has a large error, which will cause the robot to move. Without the exact position, the wall cannot be plastered, or the error of plastering the wall is large. A new positioning method is proposed, which is assisted by line lasers and uses image processing-based positioning to perform more accurate positioning on the traditional positioning work. In actual work, filter, edge detection, Hough transform and other operations are performed on the images captured by the camera. Each time the position of the laser line is found, it is compared with the standard value, and the position of the robot is moved or rotated to complete the positioning work. The experimental results show that the actual positioning error is reduced to less than 0.5 mm by this accurate positioning method.

Keywords: indoor plastering robot, navigation, precise positioning, line laser, image processing

Procedia PDF Downloads 120
482 An Experimental Study on Intellectual Concentration Influenced by Indoor Airflow

Authors: Kyoko Ito, Shinya Furuta, Daisuke Kamihigashi, Kimi Ueda, Hirotake Ishii, Hiroshi Shimoda, Fumiaki Obayashi, Kazuhiro Taniguchi

Abstract:

In order to improve intellectual concentration, few studies have verified the effect of indoor airflow among the thermal environment conditions, and the differences of the season in effects have not been studied. In this study, in order to investigate the influence of the airflow in winter on the intellectual concentration, an evaluation experiment was conducted. In the previous study, an effective airflow in summer was proposed and the improvement of intellectual concentration by evaluation experiment was confirmed. Therefore, an airflow profile in winter was proposed with reference to the airflow profile in summer. The airflows are a combination of a simulative airflow and mild airflow. An experiment has been conducted to investigate the influence of a room airflow in winter on intellectual concentration. As a result of comparison with no airflow condition, no significant difference was found. Based on the results, it is a future task to ask preliminary preference in advance and to establish a mechanism that can provide controllable airflow for each individual, taking into account the preference for airflow to be different for each individual.

Keywords: concentration time ratio, CTR, indoor airflow, intellectual concentration, workplace environment

Procedia PDF Downloads 210
481 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms

Authors: Selim M. Khan

Abstract:

Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.

Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America

Procedia PDF Downloads 73
480 Existence of Nano-Organic Carbon Particles below the Size Range of 10 nm in the Indoor Air Environment

Authors: Bireswar Paul, Amitava Datta

Abstract:

Indoor air environment is a big concern in the last few decades in the developing countries, with increased focus on monitoring the air quality. In this work, an experimental study has been conducted to establish the existence of carbon nanoparticles below the size range of 10 nm in the non-sooting zone of a LPG/air partially premixed flame. Mainly, four optical techniques, UV absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering and TEM have been used to characterize and measure the size of carbon nanoparticles in the sampled materials collected from the inner surface of the flame front. The existence of the carbon nanoparticles in the sampled material has been confirmed with the typical nature of the absorption and fluorescence spectra already reported in the literature. The band gap energy shows that the particles are made up of three to six aromatic rings. The size measurement by DLS technique also shows that the particles below the size range of 10 nm. The results of DLS are also corroborated by the TEM image of the same material. 

Keywords: indoor air, carbon nanoparticle, lpg, partially premixed flame, optical techniques

Procedia PDF Downloads 242
479 A Comparative Analysis of the Indoor Thermal Environment of a Room with and without Transitional Space or Threshold in Traditional Row Houses Adjacent to a Narrow Alley 'Rupchan Lane' in Old Dhaka, Bangladesh

Authors: Fatema Tasmia, Brishti Majumder, Atiqur Rahman

Abstract:

Attaining appropriate thermal comfort conditions in a place where the climate is hot and humid can be perplexing. Especially, when it resides at a congested place like old Dhaka Bangladesh, the provision of giving cross ventilation and building with proper orientation is quite difficult. This paper aims to investigate the indoor thermal environment of a room with and without transitional space or threshold in traditional row houses adjacent to a narrow alley of old Dhaka through field measurements. Transitional spaces are the part of buildings which are used for semi-outdoor household activities, social gathering and it is also proved to provide an indoor thermal effect. The field study was conducted by collecting thermal data (temperature, humidity and airflow) respectively, among the outdoor narrow alley, transitional space and adjacent indoor. This east-west elongated alley has an average width of 2.13 meter (varies from 1.5 to 2.6 meter) holding row houses on both sides. Among different aspects of thermal environment, the study of this paper is based on the analysis of temperature of corresponding cases. Other aspects and their variables were considered as constant (especially material) for accuracy and avoidance of confusion. This study focuses on the outcome that can ultimately contribute to the configuration of row houses with transitional spaces and in its relation to the adjacent outdoor space while achieving thermal comfort.

Keywords: alley, Old-Dhaka, row houses, temperature, thermal comfort, threshold, transitional space

Procedia PDF Downloads 152
478 The Impact and Performances of Controlled Ventilation Strategy on Thermal Comfort and Indoor Atmosphere in Building

Authors: Selma Bouasria, Mahi Abdelkader, Abbès Azzi, Herouz Keltoum

Abstract:

Ventilation in buildings is a key element to provide high indoor air quality. Its efficiency appears as one of the most important factors in maintaining thermal comfort for occupants of buildings. Personal displacement ventilation is a new ventilation concept that combines the positive features of displacement ventilation with those of task conditioning or personalized ventilation. This work aims to study numerically the supply air flow in a room to optimize a comfortable microclimate for an occupant. The room is heated, and a dummy is designed to simulate the occupant. Two types of configurations were studied. The first consist of a room without windows; and the second one is a local equipped with a window. The influence of the blowing speed and the solar radiation coming from the window on the thermal comfort of the occupant is studied. To conduct this study we used the turbulence models, namely the high Reynolds k-e, the RNG and the SST models. The numerical tool used is based on the finite volume method. The numerical simulation of the supply air flow in a room can predict and provide a significant information about indoor comfort.

Keywords: local, comfort, thermique, ventilation, internal environment

Procedia PDF Downloads 383
477 Implementing of Indoor Air Quality Index in Hong Kong

Authors: Kwok W. Mui, Ling T. Wong, Tsz W. Tsang

Abstract:

Many Hong Kong people nowadays spend most of their lifetime working indoor. Since poor Indoor Air Quality (IAQ) potentially leads to discomfort, ill health, low productivity and even absenteeism in workplaces, a call for establishing statutory IAQ control to safeguard the well-being of residents is urgently required. Although policies, strategies, and guidelines for workplace IAQ diagnosis have been developed elsewhere and followed with remedial works, some of those workplaces or buildings have relatively late stage of the IAQ problems when the investigation or remedial work started. Screening for IAQ problems should be initiated as it will provide information as a minimum provision of IAQ baseline requisite to the resolution of the problems. It is not practical to sample all air pollutants that exit. Nevertheless, as a statutory control, reliable, rapid screening is essential in accordance with a compromise strategy, which balances costs against detection of key pollutants. This study investigates the feasibility of using an IAQ index as a parameter of IAQ control in Hong Kong. The index is a screening parameter to identify the unsatisfactory workplace IAQ and will highlight where a fully effective IAQ monitoring and assessment is needed for an intensive diagnosis. There already exist a number of representative common indoor pollutants based on some extensive IAQ assessments. The selection of pollutants is surrogate to IAQ control consists of dilution, mitigation, and emission control. The IAQ Index and assessment will look at high fractional quantities of these common measurement parameters. With the support of the existing comprehensive regional IAQ database and the IAQ Index by the research team as the pre-assessment probability, and the unsatisfactory IAQ prevalence as the post-assessment probability from this study, thresholds of maintaining the current measures and performing a further IAQ test or IAQ remedial measures will be proposed. With justified resources, the proposed IAQ Index and assessment protocol might be a useful tool for setting up a practical public IAQ surveillance programme and policy in Hong Kong.

Keywords: assessment, index, indoor air quality, surveillance programme

Procedia PDF Downloads 231
476 Analysis of Indoor Air Quality and Sick Building Syndrome in Control Room Oil Gas Refinery

Authors: Dessy Laksyana Utami

Abstract:

The sick building syndrome comprises of various nonspecific symptoms that occur in the occupants of a building. It is commonly increases sickness absenteeism and causes a decrease in productivity of the workers. Evidence suggests that what is called the Sick Building Syndrome are at least three separate entities, which has at least one cause. The following are some of the factors that might be primarily responsible for Sick Building Syndrome such as: Chemical contaminants, Biological contaminants, Inadequate ventilation and Electromagnetic radiation. In many cases it is due to insufficient maintenance of the HVAC (heating, ventilation, air conditioning) system in the building. As this syndrome is increasingly becoming a major occupational hazard. It was used the analytic cross-sectional design. Based on data obtained 80% of respondents reported significant ongoing health problems in the eyes, head, and the nose. 60% had bad symptoms in the throat, the stomach and cough, 50% had gastrointestinal disorders, 40% fatigue and 25% occurred all symptoms sick building syndrome. The 40 respondents were recruited to the study, with a mean age of 35 years (range 20-55). To support the evidence of Sick Building Syndrome, further checks are needed for some of the factors in next research, i.e. measurement of Chemical contaminants, Biological contaminants, inadequate ventilation & Electromagnetic radiation.

Keywords: indoor air pollution, sick building syndrome, indoor air quality, oil gas polution

Procedia PDF Downloads 109
475 Indoor Visible Light Communication Channel Characterization for User Mobility: A Use-Case Study

Authors: Pooja Sanathkumar, Srinidhi Murali, Sethuraman TV, Saravanan M, Paventhan Arumugam, Ashwin Ashok

Abstract:

The last decade has witnessed a significant interest in visible light communication (VLC) technology, as VLC can potentially achieve high data rate links and secure communication channels. However, the use of VLC under mobile settings is fundamentally limited as its a line-of-sight (LOS) technology and there has been limited breakthroughs in realizing VLC for mobile settings. In this regard, this work targets to study the VLC channel under mobility. Through a use-case study analysis with experiment data traces this paper presents an empirical VLC channel study considering the application of VLC for smart lighting in an indoor room environment. This paper contributes a calibration study of a prototype VLC smart lighting system in an indoor environment and through the inferences gained from the calibration, and considering a user is carrying a mobile device fit with a VLC receiver, this work presents recommendations for user's position adjustments, with the goal to ensure maximum connectivity across the room.

Keywords: visible light communication, mobility, empirical study, channel characterization

Procedia PDF Downloads 101
474 Baby Cot’s Indoor Air Quality

Authors: Wim Zeiler

Abstract:

The indoor quality of occupied space is very important for the well-being of its occupants, especially in the case of babies. The lungs of a young child are still growing and adverse conditions could affect this development. Presently little children spend a lot of their time in day care centers while parents are at work. Little is known about the effects of different indoor environmental factors present in these day care centers and the quality of air of baby cots in which the babies are accommodated in these day care centers. Therefore this research investigated the quality of the accommodation of Dutch day care centers. Besides an extensive literature research actual measurements were performed in baby cots within three-day care center. Some experiments were performed to find out the importance of the configuration and types of baby cots. This research investigated the quality of the accommodation of a Dutch day care center which led to a tool describing the quality needs (e.g., quality standard) for the accommodation of day care centers. The results of our detailed studies were compared with the results of earlier Dutch more global studies in day care centers, in which more than 60 day care centers were investigated. Also the results are compared with the outcomes of research on school ventilation. The results proved that the situation in day care centers is even worse than that of schools within the Netherlands. More attention is needed to improve the current situation.

Keywords: ventilation, baby cots, day care centers, case study

Procedia PDF Downloads 441
473 Simulation of Natural Ventilation Strategies as a Comparison Method for Two Different Climates

Authors: Fulya Ozbey, Ecehan Ozmehmet

Abstract:

Health and living in a healthy environment are important for all the living creatures. Healthy buildings are the part of the healthy environment and the ones that people and sometimes the animals spend most of their times in it. Therefore, healthy buildings are important subject for everybody. There are many elements of the healthy buildings from material choice to the thermal comfort including indoor air quality. The aim of this study is, to simulate two natural ventilation strategies which are used as a cooling method in Mediterranean climate, by applying to a residential building and compare the results for Asian climate. Fulltime natural and night-time ventilation strategies are simulated for three days during the summertime in Mediterranean climate. The results show that one of the chosen passive cooling strategies worked on both climates good enough without using additional shading element and cooling device, however, the other ventilation strategy did not provide comfortable indoor temperature enough. Finally, both of the ventilation strategies worked better on the Asian climate than the Mediterranean in terms of the total overheating hours during the chosen period of year.

Keywords: Asian climate, indoor air quality, Mediterranean climate, natural ventilation simulation, thermal comfort

Procedia PDF Downloads 208
472 Status of the European Atlas of Natural Radiation

Authors: G. Cinelli, T. Tollefsen, P. Bossew, V. Gruber, R. Braga, M. A. Hernández-Ceballos, M. De Cort

Abstract:

In 2006, the Joint Research Centre (JRC) of the European Commission started the project of the 'European Atlas of Natural Radiation'. The Atlas aims at preparing a collection of maps of Europe displaying the levels of natural radioactivity caused by different sources (indoor and outdoor radon, cosmic radiation, terrestrial radionuclides, terrestrial gamma radiation, etc). The overall goal of the project is to estimate, in geographical resolution, the annual dose that the public may receive from natural radioactivity, combining all the information from the different radiation components. The first map which has been developed is the European map of indoor radon (Rn) since in most cases Rn is the most important contribution to exposure. New versions of the map are realised when new countries join the project or when already participating countries send new data. We show the latest status of this map which currently includes 25 European countries. Second, the JRC has undertaken to map a variable which measures 'what earth delivers' in terms of Rn. The corresponding quantity is called geogenic radon potential (RP). Due to the heterogeneity of data sources across the Europe there is need to develop a harmonized quantity which at the one hand adequately measures or classifies the RP, and on the other hand is suited to accommodate the variety of input data used to estimate this target quantity. Candidates for input quantities which may serve as predictors of the RP, and for which data are available across Europe, to different extent, are Uranium (U) concentration in rocks and soils, soil gas radon and soil permeability, terrestrial gamma dose rate, geological information and indoor data from ground floor. The European Geogenic Radon Map gives the possibility to characterize areas, on European geographical scale, for radon hazard where indoor radon measurements are not available. Parallel to ongoing work on the European Indoor Radon, Geogenic Radon and Cosmic Radiation Maps, we made progress in the development of maps of terrestrial gamma radiation and U, Th and K concentrations in soil and bedrock. We show the first, preliminary map of the terrestrial gamma dose rate, estimated using the data of ambient dose equivalent rate available from the EURDEP system (about 5000 fixed monitoring stations across Europe). Also, the first maps of U, Th, and K concentrations in soil and bedrock are shown in the present work.

Keywords: Europe, natural radiation, mapping, indoor radon

Procedia PDF Downloads 269
471 A Power Management System for Indoor Micro-Drones in GPS-Denied Environments

Authors: Yendo Hu, Xu-Yu Wu, Dylan Oh

Abstract:

GPS-Denied drones open the possibility of indoor applications, including dynamic arial surveillance, inspection, safety enforcement, and discovery. Indoor swarming further enhances these applications in accuracy, robustness, operational time, and coverage. For micro-drones, power management becomes a critical issue, given the battery payload restriction. This paper proposes an application enabling battery replacement solution that extends the micro-drone active phase without human intervention. First, a framework to quantify the effectiveness of a power management solution for a drone fleet is proposed. The operation-to-non-operation ratio, ONR, gives one a quantitative benchmark to measure the effectiveness of a power management solution. Second, a survey was carried out to evaluate the ONR performance for the various solutions. Third, through analysis, this paper proposes a solution tailored to the indoor micro-drone, suitable for swarming applications. The proposed automated battery replacement solution, along with a modified micro-drone architecture, was implemented along with the associated micro-drone. Fourth, the system was tested and compared with the various solutions within the industry. Results show that the proposed solution achieves an ONR value of 31, which is a 1-fold improvement of the best alternative option. The cost analysis shows a manufacturing cost of $25, which makes this approach viable for cost-sensitive markets (e.g., consumer). Further challenges remain in the area of drone design for automated battery replacement, landing pad/drone production, high-precision landing control, and ONR improvements.

Keywords: micro-drone, battery swap, battery replacement, battery recharge, landing pad, power management

Procedia PDF Downloads 71
470 Ray Tracing Modified 3D Image Method Simulation of Picocellular Propagation Channel Environment

Authors: Fathi Alwafie

Abstract:

In this paper we present the simulation of the propagation characteristics of the picocellular propagation channel environment. The first aim has been to find a correct description of the environment for received wave. The result of the first investigations is that the environment of the indoor wave significantly changes as we change the electric parameters of material constructions. A modified 3D ray tracing image method tool has been utilized for the coverage prediction. A detailed analysis of the dependence of the indoor wave on the wide-band characteristics of the channel: Root Mean Square (RMS) delay spread characteristics and mean excess delay, is also investigated.

Keywords: propagation, ray tracing, network, mobile computing

Procedia PDF Downloads 370
469 Basic Study on a Thermal Model for Evaluating The Environment of Infant Facilities

Authors: Xin Yuan, Yuji Ryu

Abstract:

The indoor environment has a significant impact on occupants and a suitable indoor thermal environment can improve the children’s physical health and study efficiency during school hours. In this study, we explored the thermal environment in infant facilities classrooms for infants and children aged 1-5 and evaluated their thermal comfort. An infant facility in Fukuoka, Japan was selected for a case study to capture the infant and children’s thermal comfort characteristics in summer and winter from August 2019 to February 2020. Previous studies have pointed out using PMV indices to evaluate the thermal comfort for children could create errors that may lead to misleading results. Thus, to grasp the actual thermal environment and thermal comfort characteristics of infants and children, we retrieved the operative temperature of each child through the thermal model, based on the sensible heat transfer from the skin to the environment, and the measured classroom indoor temperature, relative humidity, and pocket temperature of children’s shorts. The statistical and comparative analysis of the results shows that (1) the operative temperature showed a large individual difference among children, with the maximum reached 6.25 °C. (2) The children might feel slightly cold in the classrooms in summer, with the frequencies of operative temperature within the interval of 26-28 ºC were only 5.33% and 16.6% for children respectively. (3) The thermal environment around children is more complicated in winter the operative temperature could exceed or fail to reach the thermal comfort temperature zone (20-23 ºC interval). (4) The environmental conditions surrounding the children may account for the reduction of their thermal comfort. The findings contribute to improving the understanding of the infant and children’s thermal comfort and provide valuable information for designers and governments to develop effective strategies for the indoor thermal environment considering the perspective of children.

Keywords: infant and children, thermal environment, thermal model, operative temperature.

Procedia PDF Downloads 83
468 Improved Multilevel Inverter with Hybrid Power Selector and Solar Panel Cleaner in a Solar System

Authors: S. Oladoyinbo, A. A. Tijani

Abstract:

Multilevel inverters (MLI) are used at high power application based on their operation. There are 3 main types of multilevel inverters (MLI); diode clamped, flying capacitor and cascaded MLI. A cascaded MLI requires the least number of components to achieve same number of voltage levels when compared to other types of MLI while the flying capacitor has the minimum harmonic distortion. However, maximizing the advantage of cascaded H-bridge MLI and flying capacitor MLI, an improved MLI can be achieved with fewer components and better performance. In this paper an improved MLI is presented by asymmetrically integrating a flying capacitor to a cascaded H-bridge MLI also integrating an auxiliary transformer to the main transformer to decrease the total harmonics distortion (THD) with increased number of output voltage levels. Furthermore, the system is incorporated with a hybrid time and climate based solar panel cleaner and power selector which intelligently manage the input of the MLI and clean the solar panel weekly ensuring the environmental factor effect on the panel is reduced to minimum.

Keywords: multilevel inverter, total harmonics distortion, cascaded h-bridge inverter, flying capacitor

Procedia PDF Downloads 334
467 Multi-Stage Optimization of Local Environmental Quality by Comprehensive Computer Simulated Person as Sensor for Air Conditioning Control

Authors: Sung-Jun Yoo, Kazuhide Ito

Abstract:

In this study, a comprehensive computer simulated person (CSP) that integrates computational human model (virtual manikin) and respiratory tract model (virtual airway), was applied for estimation of indoor environmental quality. Moreover, an inclusive prediction method was established by integrating computational fluid dynamics (CFD) analysis with advanced CSP which is combined with physiologically-based pharmacokinetic (PBPK) model, unsteady thermoregulation model for analysis targeting micro-climate around human body and respiratory area with high accuracy. This comprehensive method can estimate not only the contaminant inhalation but also constant interaction in the contaminant transfer between indoor spaces, i.e., a target area for indoor air quality (IAQ) assessment, and respiratory zone for health risk assessment. This study focused on the usage of the CSP as an air/thermal quality sensor in indoors, which means the application of comprehensive model for assessment of IAQ and thermal environmental quality. Demonstrative analysis was performed in order to examine the applicability of the comprehensive model to the heating, ventilation, air conditioning (HVAC) control scheme. CSP was located at the center of the simple model room which has dimension of 3m×3m×3m. Formaldehyde which is generated from floor material was assumed as a target contaminant, and flow field, sensible/latent heat and contaminant transfer analysis in indoor space were conducted by using CFD simulation coupled with CSP. In this analysis, thermal comfort was evaluated by thermoregulatory analysis, and respiratory exposure risks represented by adsorption flux/concentration at airway wall surface were estimated by PBPK-CFD hybrid analysis. These Analysis results concerning IAQ and thermal comfort will be fed back to the HVAC control and could be used to find a suitable ventilation rate and energy requirement for air conditioning system.

Keywords: CFD simulation, computer simulated person, HVAC control, indoor environmental quality

Procedia PDF Downloads 323
466 Indoor Environment Quality and Occupant Resilience Toward Climate Change: A Case Study from Gold Coast, Australia

Authors: Soheil Roumi, Fan Zhang, Rodney Stewart

Abstract:

Indoor environmental quality (IEQ) indexes represented the suitability of a place to study, work, and live. Many indexes have been introduced based on the physical measurement or occupant surveys in commercial buildings. The earlier studies did not elaborate on the relationship between energy consumption and IEQ in office buildings. Such a relationship can provide a comprehensive overview of the building's performance. Also, it would find the potential of already constructed buildings under the upcoming climate change. A commercial building in southeast Queensland, Australia, was evaluated in this study. Physical measurements of IEQ and Energy areconducted, and their relationship will be determined using statistical analysis. The case study building is modelled in TRNSys software, and it will be validatedusingthe actual building's BMS data. Then, the modelled buildingwill be simulated by predicted weather data developed by the commonwealth scientific and industrial research organisation of Australia to investigate the occupant resilience and energy consumption. Finally, recommendations will be presented to consume less energy while providinga proper indoor environment for office occupants.

Keywords: IEQ, office buildings, thermal comfort, occupant resilience

Procedia PDF Downloads 79
465 Optimizing Resource Allocation and Indoor Location Using Bluetooth Low Energy

Authors: Néstor Álvarez-Díaz, Pino Caballero-Gil, Héctor Reboso-Morales, Francisco Martín-Fernández

Abstract:

The recent tendency of "Internet of Things" (IoT) has developed in the last years, causing the emergence of innovative communication methods among multiple devices. The appearance of Bluetooth Low Energy (BLE) has allowed a push to IoT in relation to smartphones. In this moment, a set of new applications related to several topics like entertainment and advertisement has begun to be developed but not much has been done till now to take advantage of the potential that these technologies can offer on many business areas and in everyday tasks. In the present work, the application of BLE technology and smartphones is proposed on some business areas related to the optimization of resource allocation in huge facilities like airports. An indoor location system has been developed through triangulation methods with the use of BLE beacons. The described system can be used to locate all employees inside the building in such a way that any task can be automatically assigned to a group of employees. It should be noted that this system cannot only be used to link needs with employees according to distances, but it also takes into account other factors like occupation level or category. In addition, it has been endowed with a security system to manage business and personnel sensitive data. The efficiency of communications is another essential characteristic that has been taken into account in this work.

Keywords: bluetooth low energy, indoor location, resource assignment, smartphones

Procedia PDF Downloads 362
464 Risk of Heatstroke Occurring in Indoor Built Environment Determined with Nationwide Sports and Health Database and Meteorological Outdoor Data

Authors: Go Iwashita

Abstract:

The paper describes how the frequencies of heatstroke occurring in indoor built environment are related to the outdoor thermal environment with big statistical data. As the statistical accident data of heatstroke, the nationwide accident data were obtained from the National Agency for the Advancement of Sports and Health (NAASH) . The meteorological database of the Japanese Meteorological Agency supplied data about 1-hour average temperature, humidity, wind speed, solar radiation, and so forth. Each heatstroke data point from the NAASH database was linked to the meteorological data point acquired from the nearest meteorological station where the accident of heatstroke occurred. This analysis was performed for a 10-year period (2005–2014). During the 10-year period, 3,819 cases of heatstroke were reported in the NAASH database for the investigated secondary/high schools of the nine Japanese representative cities. Heatstroke most commonly occurred in the outdoor schoolyard at a wet-bulb globe temperature (WBGT) of 31°C and in the indoor gymnasium during athletic club activities at a WBGT > 31°C. The determined accident ratio (number of accidents during each club activity divided by the club’s population) in the gymnasium during the female badminton club activities was the highest. Although badminton is played in a gymnasium, these WBGT results show that the risk level during badminton under hot and humid conditions is equal to that of baseball or rugby played in the schoolyard. Except sports, the high risk of heatstroke was observed in schools houses during cultural activities. The risk level for indoor environment under hot and humid condition would be equal to that for outdoor environment based on the above results of WBGT. Therefore control measures against hot and humid indoor condition were needed as installing air conditions not only schools but also residences.

Keywords: accidents in schools, club activity, gymnasium, heatstroke

Procedia PDF Downloads 195
463 Computational Fluid Dynamics Analysis for Radon Dispersion Study and Mitigation

Authors: A. K. Visnuprasad, P. J. Jojo, Reshma Bhaskaran

Abstract:

Computational fluid dynamics (CFD) is used to simulate the distribution of indoor radon concentration in a living room with elevated levels of radon concentration which varies from 22 Bqm-3 to 1533 Bqm-3 in 24 hours. Finite volume method (FVM) was used for the simulation. The simulation results were experimentally validated at 16 points in two horizontal planes (y=1.4m & y=2.0m) using pin-hole dosimeters and at 3 points using scintillation radon monitor (SRM). Passive measurement using pin-hole dosimeters were performed in all seasons. Another simulation was done to find a suitable position for a passive ventilation system for the effective mitigation of radon.

Keywords: indoor radon, computational fluid dynamics, radon flux, ventilation rate, pin-hole dosimeter

Procedia PDF Downloads 382
462 Human-Centric Sensor Networks for Comfort and Productivity in Offices: Integrating Environmental, Body Area Network, and Participatory Sensing

Authors: Chenlu Zhang, Wanni Zhang, Florian Schaule

Abstract:

Indoor environment in office buildings directly affects comfort, productivity, health, and well-being of building occupants. Wireless environmental sensor networks have been deployed in many modern offices to monitor and control the indoor environments. However, indoor environmental variables are not strong enough predictors of comfort and productivity levels of every occupant due to personal differences, both physiologically and psychologically. This study proposes human-centric sensor networks that integrate wireless environmental sensors, body area network sensors and participatory sensing technologies to collect data from both environment and human and support building operations. The sensor networks have been tested in one small-size and one medium-size office rooms with 22 participants for five months. Indoor environmental data (e.g., air temperature and relative humidity), physiological data (e.g., skin temperature and Galvani skin response), and physiological responses (e.g., comfort and self-reported productivity levels) were obtained from each participant and his/her workplace. The data results show that: (1) participants have different physiological and physiological responses in the same environmental conditions; (2) physiological variables are more effective predictors of comfort and productivity levels than environmental variables. These results indicate that the human-centric sensor networks can support human-centric building control and improve comfort and productivity in offices.

Keywords: body area network, comfort and productivity, human-centric sensors, internet of things, participatory sensing

Procedia PDF Downloads 116