Search results for: immersive scheduling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 520

Search results for: immersive scheduling

430 A Bi-Objective Model to Address Simultaneous Formulation of Project Scheduling and Material Ordering

Authors: Babak H. Tabrizi, Seyed Farid Ghaderi

Abstract:

Concurrent planning of project scheduling and material ordering has been increasingly addressed within last decades as an approach to improve the project execution costs. Therefore, we have taken the problem into consideration in this paper, aiming to maximize schedules quality robustness, in addition to minimize the relevant costs. In this regard, a bi-objective mathematical model is developed to formulate the problem. Moreover, it is possible to utilize the all-unit discount for materials purchasing. The problem is then solved by the constraint method, and the Pareto front is obtained for a variety of robustness values. The applicability and efficiency of the proposed model is tested by different numerical instances, finally.

Keywords: e-constraint method, material ordering, project management, project scheduling

Procedia PDF Downloads 261
429 Job Shop Scheduling: Classification, Constraints and Objective Functions

Authors: Majid Abdolrazzagh-Nezhad, Salwani Abdullah

Abstract:

The job-shop scheduling problem (JSSP) is an important decision facing those involved in the fields of industry, economics and management. This problem is a class of combinational optimization problem known as the NP-hard problem. JSSPs deal with a set of machines and a set of jobs with various predetermined routes through the machines, where the objective is to assemble a schedule of jobs that minimizes certain criteria such as makespan, maximum lateness, and total weighted tardiness. Over the past several decades, interest in meta-heuristic approaches to address JSSPs has increased due to the ability of these approaches to generate solutions which are better than those generated from heuristics alone. This article provides the classification, constraints and objective functions imposed on JSSPs that are available in the literature.

Keywords: job-shop scheduling, classification, constraints, objective functions

Procedia PDF Downloads 411
428 Wait-Optimized Scheduler Algorithm for Efficient Process Scheduling in Computer Systems

Authors: Md Habibur Rahman, Jaeho Kim

Abstract:

Efficient process scheduling is a crucial factor in ensuring optimal system performance and resource utilization in computer systems. While various algorithms have been proposed over the years, there are still limitations to their effectiveness. This paper introduces a new Wait-Optimized Scheduler (WOS) algorithm that aims to minimize process waiting time by dividing them into two layers and considering both process time and waiting time. The WOS algorithm is non-preemptive and prioritizes processes with the shortest WOS. In the first layer, each process runs for a predetermined duration, and any unfinished process is subsequently moved to the second layer, resulting in a decrease in response time. Whenever the first layer is free or the number of processes in the second layer is twice that of the first layer, the algorithm sorts all the processes in the second layer based on their remaining time minus waiting time and sends one process to the first layer to run. This ensures that all processes eventually run, optimizing waiting time. To evaluate the performance of the WOS algorithm, we conducted experiments comparing its performance with traditional scheduling algorithms such as First-Come-First-Serve (FCFS) and Shortest-Job-First (SJF). The results showed that the WOS algorithm outperformed the traditional algorithms in reducing the waiting time of processes, particularly in scenarios with a large number of short tasks with long wait times. Our study highlights the effectiveness of the WOS algorithm in improving process scheduling efficiency in computer systems. By reducing process waiting time, the WOS algorithm can improve system performance and resource utilization. The findings of this study provide valuable insights for researchers and practitioners in developing and implementing efficient process scheduling algorithms.

Keywords: process scheduling, wait-optimized scheduler, response time, non-preemptive, waiting time, traditional scheduling algorithms, first-come-first-serve, shortest-job-first, system performance, resource utilization

Procedia PDF Downloads 64
427 Game-Based Learning in a Higher Education Course: A Case Study with Minecraft Education Edition

Authors: Salvador Antelmo Casanova Valencia

Abstract:

This study documents the use of the Minecraft Education Edition application to explore immersive game-based learning environments. We analyze the contributions of fourth-year university students who are pursuing a degree in Administrative Computing at the Universidad Michoacana de San Nicolas de Hidalgo. In this study, descriptive data and statistical inference are detailed using a quasi-experimental design using the Wilcoxon test. The instruments will provide data validation. Game-based learning in immersive environments necessarily implies greater student participation and commitment, resulting in the study, motivation, and significant improvements, promoting cooperation and autonomous learning.

Keywords: game-based learning, gamification, higher education, Minecraft

Procedia PDF Downloads 131
426 Solving Operating Room Scheduling Problem by Using Dispatching Rule

Authors: Yang-Kuei Lin, Yin-Yi Chou

Abstract:

In this research, we have considered operating room scheduling problem. The objective is to minimize total operating cost. The total operating cost includes idle cost and overtime cost. We have proposed a dispatching rule that can guarantee to find feasible solutions for the studied problem efficiently. We compared the proposed dispatching rule with the optimal solutions found by solving Inter Programming, and other solutions found by using modified existing dispatching rules. The computational results indicates that the proposed heuristic can find near optimal solutions efficiently.

Keywords: assignment, dispatching rule, operation rooms, scheduling

Procedia PDF Downloads 208
425 Integrating Process Planning, WMS Dispatching, and WPPW Weighted Due Date Assignment Using a Genetic Algorithm

Authors: Halil Ibrahim Demir, Tarık Cakar, Ibrahim Cil, Muharrem Dugenci, Caner Erden

Abstract:

Conventionally, process planning, scheduling, and due-date assignment functions are performed separately and sequentially. The interdependence of these functions requires integration. Although integrated process planning and scheduling, and scheduling with due date assignment problems are popular research topics, only a few works address the integration of these three functions. This work focuses on the integration of process planning, WMS scheduling, and WPPW due date assignment. Another novelty of this work is the use of a weighted due date assignment. In the literature, due dates are generally assigned without considering the importance of customers. However, in this study, more important customers get closer due dates. Typically, only tardiness is punished, but the JIT philosophy punishes both earliness and tardiness. In this study, all weighted earliness, tardiness, and due date related costs are penalized. As no customer desires distant due dates, such distant due dates should be penalized. In this study, various levels of integration of these three functions are tested and genetic search and random search are compared both with each other and with ordinary solutions. Higher integration levels are superior, while search is always useful. Genetic searches outperformed random searches.

Keywords: process planning, weighted scheduling, weighted due-date assignment, genetic algorithm, random search

Procedia PDF Downloads 355
424 The Relevance of Smart Technologies in Learning

Authors: Rachael Olubukola Afolabi

Abstract:

Immersive technologies known as X Reality or Cross Reality that include virtual reality augmented reality, and mixed reality have pervaded into the education system at different levels from elementary school to adult learning. Instructors, instructional designers, and learning experience specialists continue to find new ways to engage students in the learning process using technology. While the progression of web technologies has enhanced digital learning experiences, analytics on learning outcomes continue to be explored to determine the relevance of these technologies in learning. Digital learning has evolved from web 1.0 (static) to 4.0 (dynamic and interactive), and this evolution of technologies has also advanced teaching methods and approaches. This paper explores how these technologies are being utilized in learning and the results that educators and learners have identified as effective learning opportunities and approaches.

Keywords: immersive technologoes, virtual reality, augmented reality, technology in learning

Procedia PDF Downloads 115
423 Distributed Cost-Based Scheduling in Cloud Computing Environment

Authors: Rupali, Anil Kumar Jaiswal

Abstract:

Cloud computing can be defined as one of the prominent technologies that lets a user change, configure and access the services online. it can be said that this is a prototype of computing that helps in saving cost and time of a user practically the use of cloud computing can be found in various fields like education, health, banking etc.  Cloud computing is an internet dependent technology thus it is the major responsibility of Cloud Service Providers(CSPs) to care of data stored by user at data centers. Scheduling in cloud computing environment plays a vital role as to achieve maximum utilization and user satisfaction cloud providers need to schedule resources effectively.  Job scheduling for cloud computing is analyzed in the following work. To complete, recreate the task calculation, and conveyed scheduling methods CloudSim3.0.3 is utilized. This research work discusses the job scheduling for circulated processing condition also by exploring on this issue we find it works with minimum time and less cost. In this work two load balancing techniques have been employed: ‘Throttled stack adjustment policy’ and ‘Active VM load balancing policy’ with two brokerage services ‘Advanced Response Time’ and ‘Reconfigure Dynamically’ to evaluate the VM_Cost, DC_Cost, Response Time, and Data Processing Time. The proposed techniques are compared with Round Robin scheduling policy.

Keywords: physical machines, virtual machines, support for repetition, self-healing, highly scalable programming model

Procedia PDF Downloads 136
422 Operations Training Using Immersive Technologies: A Development Experience

Authors: A. Aman, S. M. Tang, F. H. Alharrassy

Abstract:

Omanisation was established to increase job opportunities for national employment in Sultanate of Oman. With half of the population below 25 years of age, the sultanate is striving to diversify the economy fast enough to meet the burgeoning number of jobseekers annually. On the other hand, training personnel to be competent oil and gas operators and technicians is a difficult task in a complex reservoir structures in Oman using highly advanced and sophisticated extracting processes. Coupled towards Omanisation which encourages nationals into the oil and gas sector so as to create sustainable employment for the local population, the challenge to churn out competent manpower became a daunting task. Immersive technologies provided the impetus to create a new digital media sector which provided job opportunities as well as the learning contents to enhance the competency-based training for the oil and gas sector in the Sultanate. This lead to a win-win-win collaboration amongst the government represented by the Information Technology Authority (ITA), private sector specialised company (represented by ASM Technologies), jobseekers and oil and gas organisations. This is also one of the first private-public partnership model in the Information Communication Technology (ICT) sector in Oman. A pilot phase was conducted for 8 months to develop four virtual applications for training in equipment and process engineering; oil rig familiarisation, Health Safety Environment (HSE) application, turbine application and the mechanical vapour compressor (MVC) water recycling plant in order to enhance the competency level of the trainees. The immersive applications were installed in operational settings which enabled new employees to practice and understand various processes and procedures regarding enhanced oil recovery. Existing employees used the application to review the working principles in order to carry out troubleshooting scenarios. Concurrently, these applications were also developed by local Omani resources within the country. This created job opportunities for job-seekers as well the establishment of a digital media sector. The purpose of this paper is to discuss how immersive technologies can enhance operational competencies, create job and establish a digital media sector in the Sultanate of Oman.

Keywords: immersive, virtual reality, operations training, Omanisation

Procedia PDF Downloads 193
421 Benders Decomposition Approach to Solve the Hybrid Flow Shop Scheduling Problem

Authors: Ebrahim Asadi-Gangraj

Abstract:

Hybrid flow shop scheduling problem (HFS) contains sequencing in a flow shop where, at any stage, there exist one or more related or unrelated parallel machines. This production system is a common manufacturing environment in many real industries, such as the steel manufacturing, ceramic tile manufacturing, and car assembly industries. In this research, a mixed integer linear programming (MILP) model is presented for the hybrid flow shop scheduling problem, in which, the objective consists of minimizing the maximum completion time (makespan). For this purpose, a Benders Decomposition (BD) method is developed to solve the research problem. The proposed approach is tested on some test problems, small to moderate scale. The experimental results show that the Benders decomposition approach can solve the hybrid flow shop scheduling problem in a reasonable time, especially for small and moderate-size test problems.

Keywords: hybrid flow shop, mixed integer linear programming, Benders decomposition, makespan

Procedia PDF Downloads 149
420 Hierarchical Queue-Based Task Scheduling with CloudSim

Authors: Wanqing You, Kai Qian, Ying Qian

Abstract:

The concepts of Cloud Computing provide users with infrastructure, platform and software as service, which make those services more accessible for people via Internet. To better analysis the performance of Cloud Computing provisioning policies as well as resources allocation strategies, a toolkit named CloudSim proposed. With CloudSim, the Cloud Computing environment can be easily constructed by modelling and simulating cloud computing components, such as datacenter, host, and virtual machine. A good scheduling strategy is the key to achieve the load balancing among different machines as well as to improve the utilization of basic resources. Recently, the existing scheduling algorithms may work well in some presumptive cases in a single machine; however they are unable to make the best decision for the unforeseen future. In real world scenario, there would be numbers of tasks as well as several virtual machines working in parallel. Based on the concepts of multi-queue, this paper presents a new scheduling algorithm to schedule tasks with CloudSim by taking into account several parameters, the machines’ capacity, the priority of tasks and the history log.

Keywords: hierarchical queue, load balancing, CloudSim, information technology

Procedia PDF Downloads 393
419 Task Scheduling on Parallel System Using Genetic Algorithm

Authors: Jasbir Singh Gill, Baljit Singh

Abstract:

Scheduling and mapping the application task graph on multiprocessor parallel systems is considered as the most crucial and critical NP-complete problem. Many genetic algorithms have been proposed to solve such problems. In this paper, two genetic approach based algorithms have been designed and developed with or without task duplication. The proposed algorithms work on two fitness functions. The first fitness i.e. task fitness is used to minimize the total finish time of the schedule (schedule length) while the second fitness function i.e. process fitness is concerned with allocating the tasks to the available highly efficient processor from the list of available processors (load balance). Proposed genetic-based algorithms have been experimentally implemented and evaluated with other state-of-art popular and widely used algorithms.

Keywords: parallel computing, task scheduling, task duplication, genetic algorithm

Procedia PDF Downloads 311
418 Resource Allocation and Task Scheduling with Skill Level and Time Bound Constraints

Authors: Salam Saudagar, Ankit Kamboj, Niraj Mohan, Satgounda Patil, Nilesh Powar

Abstract:

Task Assignment and Scheduling is a challenging Operations Research problem when there is a limited number of resources and comparatively higher number of tasks. The Cost Management team at Cummins needs to assign tasks based on a deadline and must prioritize some of the tasks as per business requirements. Moreover, there is a constraint on the resources that assignment of tasks should be done based on an individual skill level, that may vary for different tasks. Another constraint is for scheduling the tasks that should be evenly distributed in terms of number of working hours, which adds further complexity to this problem. The proposed greedy approach to solve assignment and scheduling problem first assigns the task based on management priority and then by the closest deadline. This is followed by an iterative selection of an available resource with the least allocated total working hours for a task, i.e. finding the local optimal choice for each task with the goal of determining the global optimum. The greedy approach task allocation is compared with a variant of Hungarian Algorithm, and it is observed that the proposed approach gives an equal allocation of working hours among the resources. The comparative study of the proposed approach is also done with manual task allocation and it is noted that the visibility of the task timeline has increased from 2 months to 6 months. An interactive dashboard app is created for the greedy assignment and scheduling approach and the tasks with more than 2 months horizon that were waiting in a queue without a delivery date initially are now analyzed effectively by the business with expected timelines for completion.

Keywords: assignment, deadline, greedy approach, Hungarian algorithm, operations research, scheduling

Procedia PDF Downloads 117
417 Using the SMT Solver to Minimize the Latency and to Optimize the Number of Cores in an NoC-DSP Architectures

Authors: Imen Amari, Kaouther Gasmi, Asma Rebaya, Salem Hasnaoui

Abstract:

The problem of scheduling and mapping data flow applications on multi-core architectures is notoriously difficult. This difficulty is related to the rapid evaluation of Telecommunication and multimedia systems accompanied by a rapid increase of user requirements in terms of latency, execution time, consumption, energy, etc. Having an optimal scheduling on multi-cores DSP (Digital signal Processors) platforms is a challenging task. In this context, we present a novel technic and algorithm in order to find a valid schedule that optimizes the key performance metrics particularly the Latency. Our contribution is based on Satisfiability Modulo Theories (SMT) solving technologies which is strongly driven by the industrial applications and needs. This paper, describe a scheduling module integrated in our proposed Workflow which is advised to be a successful approach for programming the applications based on NoC-DSP platforms. This workflow transform automatically a Simulink model to a synchronous dataflow (SDF) model. The automatic transformation followed by SMT solver scheduling aim to minimize the final latency and other software/hardware metrics in terms of an optimal schedule. Also, finding the optimal numbers of cores to be used. In fact, our proposed workflow taking as entry point a Simulink file (.mdl or .slx) derived from embedded Matlab functions. We use an approach which is based on the synchronous and hierarchical behavior of both Simulink and SDF. Whence, results of running the scheduler which exist in the Workflow mentioned above using our proposed SMT solver algorithm refinements produce the best possible scheduling in terms of latency and numbers of cores.

Keywords: multi-cores DSP, scheduling, SMT solver, workflow

Procedia PDF Downloads 256
416 Patient Scheduling Improvement in a Cancer Treatment Clinic Using Optimization Techniques

Authors: Maryam Haghi, Ivan Contreras, Nadia Bhuiyan

Abstract:

Chemotherapy is one of the most popular and effective cancer treatments offered to patients in outpatient oncology centers. In such clinics, patients first consult with an oncologist and the oncologist may prescribe a chemotherapy treatment plan for the patient based on the blood test results and the examination of the health status. Then, when the plan is determined, a set of chemotherapy and consultation appointments should be scheduled for the patient. In this work, a comprehensive mathematical formulation for planning and scheduling different types of chemotherapy patients over a planning horizon considering blood test, consultation, pharmacy and treatment stages has been proposed. To be more realistic and to provide an applicable model, this study is focused on a case study related to a major outpatient cancer treatment clinic in Montreal, Canada. Comparing the results of the proposed model with the current practice of the clinic under study shows significant improvements regarding different performance measures. These major improvements in the patients’ schedules reveal that using optimization techniques in planning and scheduling of patients in such highly demanded cancer treatment clinics is an essential step to provide a good coordination between different involved stages which ultimately increases the efficiency of the entire system and promotes the staff and patients' satisfaction.

Keywords: chemotherapy patients scheduling, integer programming, integrated scheduling, staff balancing

Procedia PDF Downloads 148
415 A Construction Scheduling Model by Applying Pedestrian and Vehicle Simulation

Authors: Akhmad F. K. Khitam, Yi Tai, Hsin-Yun Lee

Abstract:

In the modern research of construction management, the goals of scheduling are not only to finish the project within the limited duration, but also to improve the impact of people and environment. Especially for the impact to the pedestrian and vehicles, the considerable social cost should be estimated in the total performance of a construction project. However, the site environment has many differences between projects. These interactions affect the requirement and goal of scheduling. It is difficult for schedule planners to quantify these interactions. Therefore, this study use 3D dynamic simulation technology to plan the schedule of the construction engineering projects that affect the current space users (i.e., the pedestrians and vehicles). The proposed model can help the project manager find out the optimal schedule to minimize the inconvenience brought to the space users. Besides, a roadwork project and a building renovation project were analyzed for the practical situation of engineering and operations. Then this study integrates the proper optimization algorithms and computer technology to establish a decision support model. The proposed model can generate a near-optimal schedule solution for project planners.

Keywords: scheduling, simulation, optimization, pedestrian and vehicle behavior

Procedia PDF Downloads 108
414 An Efficient Subcarrier Scheduling Algorithm for Downlink OFDMA-Based Wireless Broadband Networks

Authors: Hassen Hamouda, Mohamed Ouwais Kabaou, Med Salim Bouhlel

Abstract:

The growth of wireless technology made opportunistic scheduling a widespread theme in recent research. Providing high system throughput without reducing fairness allocation is becoming a very challenging task. A suitable policy for resource allocation among users is of crucial importance. This study focuses on scheduling multiple streaming flows on the downlink of a WiMAX system based on orthogonal frequency division multiple access (OFDMA). In this paper, we take the first step in formulating and analyzing this problem scrupulously. As a result, we proposed a new scheduling scheme based on Round Robin (RR) Algorithm. Because of its non-opportunistic process, RR does not take in account radio conditions and consequently it affect both system throughput and multi-users diversity. Our contribution called MORRA (Modified Round Robin Opportunistic Algorithm) consists to propose a solution to this issue. MORRA not only exploits the concept of opportunistic scheduler but also takes into account other parameters in the allocation process. The first parameter is called courtesy coefficient (CC) and the second is called Buffer Occupancy (BO). Performance evaluation shows that this well-balanced scheme outperforms both RR and MaxSNR schedulers and demonstrate that choosing between system throughput and fairness is not required.

Keywords: OFDMA, opportunistic scheduling, fairness hierarchy, courtesy coefficient, buffer occupancy

Procedia PDF Downloads 264
413 A Hybrid Model of Goal, Integer and Constraint Programming for Single Machine Scheduling Problem with Sequence Dependent Setup Times: A Case Study in Aerospace Industry

Authors: Didem Can

Abstract:

Scheduling problems are one of the most fundamental issues of production systems. Many different approaches and models have been developed according to the production processes of the parts and the main purpose of the problem. In this study, one of the bottleneck stations of a company serving in the aerospace industry is analyzed and considered as a single machine scheduling problem with sequence-dependent setup times. The objective of the problem is assigning a large number of similar parts to the same shift -to reduce chemical waste- while minimizing the number of tardy jobs. The goal programming method will be used to achieve two different objectives simultaneously. The assignment of parts to the shift will be expressed using the integer programming method. Finally, the constraint programming method will be used as it provides a way to find a result in a short time by avoiding worse resulting feasible solutions with the defined variables set. The model to be established will be tested and evaluated with real data in the application part.

Keywords: constraint programming, goal programming, integer programming, sequence-dependent setup, single machine scheduling

Procedia PDF Downloads 198
412 A Fuzzy Mathematical Model for Order Acceptance and Scheduling Problem

Authors: E. Koyuncu

Abstract:

The problem of Order Acceptance and Scheduling (OAS) is defined as a joint decision of which orders to accept for processing and how to schedule them. Any linear programming model representing real-world situation involves the parameters defined by the decision maker in an uncertain way or by means of language statement. Fuzzy data can be used to incorporate vagueness in the real-life situation. In this study, a fuzzy mathematical model is proposed for a single machine OAS problem, where the orders are defined by their fuzzy due dates, fuzzy processing times, and fuzzy sequence dependent setup times. The signed distance method, one of the fuzzy ranking methods, is used to handle the fuzzy constraints in the model.

Keywords: fuzzy mathematical programming, fuzzy ranking, order acceptance, single machine scheduling

Procedia PDF Downloads 309
411 Solving Flowshop Scheduling Problems with Ant Colony Optimization Heuristic

Authors: Arshad Mehmood Ch, Riaz Ahmad, Imran Ali Ch, Waqas Durrani

Abstract:

This study deals with the application of Ant Colony Optimization (ACO) approach to solve no-wait flowshop scheduling problem (NW-FSSP). ACO algorithm so developed has been coded on Matlab computer application. The paper covers detailed steps to apply ACO and focuses on judging the strength of ACO in relation to other solution techniques previously applied to solve no-wait flowshop problem. The general purpose approach was able to find reasonably accurate solutions for almost all the problems under consideration and was able to handle a fairly large spectrum of problems with far reduced CPU effort. Careful scrutiny of the results reveals that the algorithm presented results better than other approaches like Genetic algorithm and Tabu Search heuristics etc; earlier applied to solve NW-FSSP data sets.

Keywords: no-wait, flowshop, scheduling, ant colony optimization (ACO), makespan

Procedia PDF Downloads 404
410 A Novel Algorithm for Production Scheduling

Authors: Ali Mohammadi Bolban Abad, Fariborz Ahmadi

Abstract:

Optimization in manufacture is a method to use limited resources to obtain the best performance and reduce waste. In this paper a new algorithm based on eurygaster life is introduced to obtain a plane in which task order and completion time of resources are defined. Evaluation results show our approach has less make span when the resources are allocated with some products in comparison to genetic algorithm.

Keywords: evolutionary computation, genetic algorithm, particle swarm optimization, NP-Hard problems, production scheduling

Procedia PDF Downloads 352
409 An Immersive Serious Game for Firefighting and Evacuation Training in Healthcare Facilities

Authors: Anass Rahouti, Guillaume Salze, Ruggiero Lovreglio, Sélim Datoussaïd

Abstract:

In healthcare facilities, training the staff for firefighting and evacuation in real buildings is very challenging due to the presence of a vulnerable population in such an environment. In a standard environment, traditional approaches, such as fire drills, are often used to train the occupants and provide them with information about fire safety procedures. However, those traditional approaches may be inappropriate for a vulnerable population and can be inefficient from an educational viewpoint as it is impossible to expose the occupants to scenarios similar to a real emergency. Immersive serious games could be used as an alternative to traditional approaches to overcome their limitations. Serious games are already being used in different safety domains such as fires, earthquakes and terror attacks for several building types (e.g., office buildings, train stations, tunnels, etc.). In this study, we developed an immersive serious game to improve the fire safety skills of staff in healthcare facilities. An accurate representation of the healthcare environment was built in Unity3D by including visual and audio stimuli inspired from those employed in commercial action games. The serious game is organised in three levels. In each of them, the trainee is presented with a specific fire emergency and s/he can perform protective actions (e.g., firefighting, helping non-ambulant occupants, etc.) or s/he can ignore the opportunity for action and continue the evacuation. In this paper, we describe all the steps required to develop such a prototype, as well as the key questions that need to be answered, to develop a serious game for firefighting and evacuation in healthcare facilities.

Keywords: fire safety, healthcare, serious game, training

Procedia PDF Downloads 425
408 Cognitive Science Based Scheduling in Grid Environment

Authors: N. D. Iswarya, M. A. Maluk Mohamed, N. Vijaya

Abstract:

Grid is infrastructure that allows the deployment of distributed data in large size from multiple locations to reach a common goal. Scheduling data intensive applications becomes challenging as the size of data sets are very huge in size. Only two solutions exist in order to tackle this challenging issue. First, computation which requires huge data sets to be processed can be transferred to the data site. Second, the required data sets can be transferred to the computation site. In the former scenario, the computation cannot be transferred since the servers are storage/data servers with little or no computational capability. Hence, the second scenario can be considered for further exploration. During scheduling, transferring huge data sets from one site to another site requires more network bandwidth. In order to mitigate this issue, this work focuses on incorporating cognitive science in scheduling. Cognitive Science is the study of human brain and its related activities. Current researches are mainly focused on to incorporate cognitive science in various computational modeling techniques. In this work, the problem solving approach of human brain is studied and incorporated during the data intensive scheduling in grid environments. Here, a cognitive engine is designed and deployed in various grid sites. The intelligent agents present in CE will help in analyzing the request and creating the knowledge base. Depending upon the link capacity, decision will be taken whether to transfer data sets or to partition the data sets. Prediction of next request is made by the agents to serve the requesting site with data sets in advance. This will reduce the data availability time and data transfer time. Replica catalog and Meta data catalog created by the agents assist in decision making process.

Keywords: data grid, grid workflow scheduling, cognitive artificial intelligence

Procedia PDF Downloads 368
407 An Efficient Hybrid Approach Based on Multi-Agent System and Emergence Method for the Integration of Systematic Preventive Maintenance Policies

Authors: Abdelhadi Adel, Kadri Ouahab

Abstract:

This paper proposes a hybrid algorithm for the integration of systematic preventive maintenance policies in hybrid flow shop scheduling to minimize makespan. We have implemented a problem-solving approach for optimizing the processing time, methods based on metaheuristics. The proposed approach is inspired by the behavior of the human body. This hybridization is between a multi-agent system and inspirations of the human body, especially genetics. The effectiveness of our approach has been demonstrated repeatedly in this paper. To solve such a complex problem, we proposed an approach which we have used advanced operators such as uniform crossover set and single point mutation. The proposed approach is applied to three preventive maintenance policies. These policies are intended to maximize the availability or to maintain a minimum level of reliability during the production chain. The results show that our algorithm outperforms existing algorithms. We assumed that the machines might be unavailable periodically during the production scheduling.

Keywords: multi-agent systems, emergence, genetic algorithm, makespan, systematic maintenance, scheduling, hybrid flow shop scheduling

Procedia PDF Downloads 310
406 A Constrained Neural Network Based Variable Neighborhood Search for the Multi-Objective Dynamic Flexible Job Shop Scheduling Problems

Authors: Aydin Teymourifar, Gurkan Ozturk, Ozan Bahadir

Abstract:

In this paper, a new neural network based variable neighborhood search is proposed for the multi-objective dynamic, flexible job shop scheduling problems. The neural network controls the problems' constraints to prevent infeasible solutions, while the Variable Neighborhood Search (VNS) applies moves, based on the critical block concept to improve the solutions. Two approaches are used for managing the constraints, in the first approach, infeasible solutions are modified according to the constraints, after the moves application, while in the second one, infeasible moves are prevented. Several neighborhood structures from the literature with some modifications, also new structures are used in the VNS. The suggested neighborhoods are more systematically defined and easy to implement. Comparison is done based on a multi-objective flexible job shop scheduling problem that is dynamic because of the jobs different release time and machines breakdowns. The results show that the presented method has better performance than the compared VNSs selected from the literature.

Keywords: constrained optimization, neural network, variable neighborhood search, flexible job shop scheduling, dynamic multi-objective optimization

Procedia PDF Downloads 322
405 A Hybrid Tabu Search Algorithm for the Multi-Objective Job Shop Scheduling Problems

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a hybrid Tabu Search (TS) algorithm is suggested for the multi-objective job shop scheduling problems (MO-JSSPs). The algorithm integrates several shifting bottleneck based neighborhood structures with the Giffler & Thompson algorithm, which improve efficiency of the search. Diversification and intensification are provided with local and global left shift algorithms application and also new semi-active, active, and non-delay schedules creation. The suggested algorithm is tested in the MO-JSSPs benchmarks from the literature based on the Pareto optimality concept. Different performances criteria are used for the multi-objective algorithm evaluation. The proposed algorithm is able to find the Pareto solutions of the test problems in shorter time than other algorithm of the literature.

Keywords: tabu search, heuristics, job shop scheduling, multi-objective optimization, Pareto optimality

Procedia PDF Downloads 414
404 Response of Summer Sesame to Irrigation Regimes and Nitrogen Levels

Authors: Kalpana Jamdhade, Anita Chorey, Bharti Tijare, V. M. Bhale

Abstract:

A field experiment was conducted during summer season of 2011 at Agronomy research farm, Dr. PDKV, Akola, to study the effect of irrigation regime and nitrogen levels on growth and productivity of summer sesame. The experiment was laid out in split plot Design in which three irrigation scheduling on the basis of IW/CPE ratio viz., irrigation at 0.6, 0.8 and 1.0 IW/CPE ratios (I1, I2 and I3, respectively) and one irrigation scheduling based on critical growth stages of sesame (I4), in main plot and three nitrogen levels 0, 30 and 60 kg N ha-1 (N0, N1 and N2, respectively) in subplot. The result showed that plant height, number of leaves plant-1, leaf area and dry matter accumulation were maximum in irrigation scheduling at 1.0 IW/CPE ratio, which significantly superior over 0.6 IW/CPE ratio and irrigation at critical growth stages but were statistically at par with irrigation at 0.8 IW/CPE ratio. Nitrogen levels, application of 60 kg N ha-1 was recorded significantly superior all growth parameters over treatment 30 kg N ha-1 and 0 kg N ha-1. In case of yield attributes viz., No. of capsules plant-1, Test wt., grain yield and Stalk yield (qha-1) were maximum in irrigation scheduling at 1.0 IW/CPE ratio and were significantly superior over 0.8 IW/CPE ratio, 0.6 IW/CPE ratio and irrigation at critical growth stages. Application of 60 kg N ha-1 increased all yield attributing characters over application of 30 and 0 kg N ha-1. In case of economics of crop same trend was found and the highest B:C ration was obtained in irrigation scheduling at 1.0 IW/CPE ratio. Whereas, application of 30 kg N ha-1 was recorded highest B:C ration over application of 60 and 0 kg N ha-1. Interaction effect of irrigation and nitrogen levels were found to be non significant in summer season.

Keywords: irrigation regimes, nitrogen levels, summer sesame, agricultural technology

Procedia PDF Downloads 337
403 Algorithms Minimizing Total Tardiness

Authors: Harun Aydilek, Asiye Aydilek, Ali Allahverdi

Abstract:

The total tardiness is a widely used performance measure in the scheduling literature. This performance measure is particularly important in situations where there is a cost to complete a job beyond its due date. The cost of scheduling increases as the gap between a job's due date and its completion time increases. Such costs may also be penalty costs in contracts, loss of goodwill. This performance measure is important as the fulfillment of due dates of customers has to be taken into account while making scheduling decisions. The problem is addressed in the literature, however, it has been assumed zero setup times. Even though this assumption may be valid for some environments, it is not valid for some other scheduling environments. When setup times are treated as separate from processing times, it is possible to increase machine utilization and to reduce total tardiness. Therefore, non-zero setup times need to be considered as separate. A dominance relation is developed and several algorithms are proposed. The developed dominance relation is utilized in the proposed algorithms. Extensive computational experiments are conducted for the evaluation of the algorithms. The experiments indicated that the developed algorithms perform much better than the existing algorithms in the literature. More specifically, one of the newly proposed algorithms reduces the error of the best existing algorithm in the literature by 40 percent.

Keywords: algorithm, assembly flowshop, dominance relation, total tardiness

Procedia PDF Downloads 327
402 A High-Level Co-Evolutionary Hybrid Algorithm for the Multi-Objective Job Shop Scheduling Problem

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a hybrid distributed algorithm has been suggested for the multi-objective job shop scheduling problem. Many new approaches are used at design steps of the distributed algorithm. Co-evolutionary structure of the algorithm and competition between different communicated hybrid algorithms, which are executed simultaneously, causes to efficient search. Using several machines for distributing the algorithms, at the iteration and solution levels, increases computational speed. The proposed algorithm is able to find the Pareto solutions of the big problems in shorter time than other algorithm in the literature. Apache Spark and Hadoop platforms have been used for the distribution of the algorithm. The suggested algorithm and implementations have been compared with results of the successful algorithms in the literature. Results prove the efficiency and high speed of the algorithm.

Keywords: distributed algorithms, Apache Spark, Hadoop, job shop scheduling, multi-objective optimization

Procedia PDF Downloads 334
401 Effective Scheduling of Hybrid Reconfigurable Microgrids Considering High Penetration of Renewable Sources

Authors: Abdollah Kavousi Fard

Abstract:

This paper addresses the optimal scheduling of hybrid reconfigurable microgrids considering hybrid electric vehicle charging demands. A stochastic framework based on unscented transform to model the high uncertainties of renewable energy sources including wind turbine and photovoltaic panels, as well as the hybrid electric vehicles’ charging demand. In order to get to the optimal scheduling, the network reconfiguration is employed as an effective tool for changing the power supply path and avoiding possible congestions. The simulation results are analyzed and discussed in three different scenarios including coordinated, uncoordinated and smart charging demand of hybrid electric vehicles. A typical grid-connected microgrid is employed to show the satisfying performance of the proposed method.

Keywords: microgrid, renewable energy sources, reconfiguration, optimization

Procedia PDF Downloads 243