Search results for: hybrid storage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3540

Search results for: hybrid storage

210 Ensemble of Misplacement, Juxtaposing Feminine Identity in Time and Space: An Analysis of Works of Modern Iranian Female Photographers

Authors: Delaram Hosseinioun

Abstract:

In their collections, Shirin Neshat, Mitra Tabrizian, Gohar Dashti and Newsha Tavakolian adopt a hybrid form of narrative to confront the restrictions imposed on women in hegemonic public and private spaces. Focusing on motives such as social marginalisation, crisis of belonging, as well as lack of agency for women, the artists depict the regression of women’s rights in their respective generations. Based on the ideas of Michael Bakhtin, namely his concept of polyphony or the plurality of contradictory voices, the views of Judith Butler on giving an account to oneself and Henri Leverbre’s theories on social space, this study illustrates the artists’ concept of identity in crisis through time and space. The research explores how the artists took their art as a novel dimension to depict and confront the hardships imposed on Iranian women. Henri Lefebvre makes a distinction between complex social structures through which individuals situate, perceive and represent themselves. By adding Bakhtin’s polyphonic view to Lefebvre’s concepts of perceived and lived spaces, the study explores the sense of social fragmentation in the works of Dashti and Tavakolian. One argument is that as the representatives of the contemporary generation of female artists who spend their lives in Iran and faced a higher degree of restrictions, their hyperbolic and theatrical styles stand as a symbolic act of confrontation against restrictive socio-cultural norms imposed on women. Further, the research explores the possibility of reclaiming one's voice and sense of agency through art, corresponding with the Bakhtinian sense of polyphony and Butler’s concept of giving an account to oneself. Works of Neshat and Tabrizian as the representatives of the previous generation who faced exile and diaspora, encompass a higher degree of misplacement, violence and decay of women’s presence. In Their works, the women’s body encompasses Lefebvre’s dismantled temporal and special setting. Notably, the ongoing social conviction and gender-based dogma imposed on women frame some of the concurrent motives among the selected collections of the four artists. By applying an interdisciplinary lens and integrating the conducted interviews with the artists, the study illustrates how the artists seek a transcultural account for themselves and women in their generations. Further, the selected collections manifest the urgency for an authentic and liberal voice and setting for women, resonating with the concurrent Women, Life, Freedom movement in Iran.

Keywords: persian modern female photographers, transcultural studies, shirin neshat, mitra tabrizian, gohar dashti, newsha tavakolian, butler, bakhtin, lefebvre

Procedia PDF Downloads 50
209 Case Study of Migrants, Cultures and Environmental Crisis

Authors: Christina Y. P. Ting

Abstract:

Migration is a global phenomenon with movements of migrants from developed and developing countries to the host societies. Migrants have changed the host countries’ demography – its population structure and also its ethnic cultural diversity. Acculturation of migrants in terms of their adoption of the host culture is seen as important to ensure that they ‘fit into’ their adopted country so as to participate in everyday public life. However, this research found that the increase of the China-born migrants’ post-migration consumption level had impact on Australia’s environment reflected not only because of their adoption of elements of the host culture, but also retention of aspects of Chinese culture – indicating that the influence of bi-culturalism was in operation. This research, which was based on the face-to-face interview with 61 China-born migrants in the suburb of Box Hill, Melbourne, investigated the pattern of change in the migrants’ consumption upon their settlement in Australia. Using an ecological footprint calculator, their post-migration footprints were found to be larger than pre-migration footprint. The uniquely-derived CALD (Culturally and Linguistically Diverse) Index was used to measure individuals’ strength of connectedness to ethnic culture. Multi-variant analysis was carried out to understand which independent factors that influence consumption best explain the change in footprint (which is the difference between pre-and post-migration footprints, as a dependent factor). These independent factors ranged from socio-economic and demographics to the cultural context, that is, the CALD Index and indicators of acculturation. The major findings from the analysis were: Chinese culture (as measured by the CALD Index) and indicators of acculturation such as length of residency and using English in communications besides the traditional factors such as age, income and education level made significant contributions to the large increase in the China-born group’s post-migration consumption level. This paper as part of a larger study found that younger migrants’ large change in their footprint were related to high income and low level of education. This group of migrants also practiced bi-cultural consumption in retaining ethnic culture and adopting the host culture. These findings have importantly highlighted that for a host society to tackle environmental crisis, governments need not only to understand the relationship between age and consumption behaviour, but also to understand and embrace the migrants’ ethnic cultures, which may act as bridges and/or fences in relationships. In conclusion, for governments to deal with national issues such as environmental crisis within a cultural diverse population, it necessitates an understanding of age and aspects of ethnic culture that may act as bridges and fences. This understanding can aid in putting in place policies that enable the co-existence of a hybrid of the ethnic and host cultures in order to create and maintain a harmonious and secured living environment for population groups.

Keywords: bicultural consumer, CALD index, consumption, ethnic culture, migrants

Procedia PDF Downloads 214
208 Design of a Human-in-the-Loop Aircraft Taxiing Optimisation System Using Autonomous Tow Trucks

Authors: Stefano Zaninotto, Geoffrey Farrugia, Johan Debattista, Jason Gauci

Abstract:

The need to reduce fuel and noise during taxi operations in the airports with a scenario of constantly increasing air traffic has resulted in an effort by the aerospace industry to move towards electric taxiing. In fact, this is one of the problems that is currently being addressed by SESAR JU and two main solutions are being proposed. With the first solution, electric motors are installed in the main (or nose) landing gear of the aircraft. With the second solution, manned or unmanned electric tow trucks are used to tow aircraft from the gate to the runway (or vice-versa). The presence of the tow trucks results in an increase in vehicle traffic inside the airport. Therefore, it is important to design the system in a way that the workload of Air Traffic Control (ATC) is not increased and the system assists ATC in managing all ground operations. The aim of this work is to develop an electric taxiing system, based on the use of autonomous tow trucks, which optimizes aircraft ground operations while keeping ATC in the loop. This system will consist of two components: an optimization tool and a Graphical User Interface (GUI). The optimization tool will be responsible for determining the optimal path for arriving and departing aircraft; allocating a tow truck to each taxiing aircraft; detecting conflicts between aircraft and/or tow trucks; and proposing solutions to resolve any conflicts. There are two main optimization strategies proposed in the literature. With centralized optimization, a central authority coordinates and makes the decision for all ground movements, in order to find a global optimum. With the second strategy, called decentralized optimization or multi-agent system, the decision authority is distributed among several agents. These agents could be the aircraft, the tow trucks, and taxiway or runway intersections. This approach finds local optima; however, it scales better with the number of ground movements and is more robust to external disturbances (such as taxi delays or unscheduled events). The strategy proposed in this work is a hybrid system combining aspects of these two approaches. The GUI will provide information on the movement and status of each aircraft and tow truck, and alert ATC about any impending conflicts. It will also enable ATC to give taxi clearances and to modify the routes proposed by the system. The complete system will be tested via computer simulation of various taxi scenarios at multiple airports, including Malta International Airport, a major international airport, and a fictitious airport. These tests will involve actual Air Traffic Controllers in order to evaluate the GUI and assess the impact of the system on ATC workload and situation awareness. It is expected that the proposed system will increase the efficiency of taxi operations while reducing their environmental impact. Furthermore, it is envisaged that the system will facilitate various controller tasks and improve ATC situation awareness.

Keywords: air traffic control, electric taxiing, autonomous tow trucks, graphical user interface, ground operations, multi-agent, route optimization

Procedia PDF Downloads 103
207 Missed Opportunities for Immunization of under Five Children in Calabar South County Cros River State, Nigeria, the Way Forward

Authors: Celestine Odigwe, Epoke Lincoln, Rhoda-Dara Ephraim

Abstract:

Background; Immunization against the childhood killer diseases is the cardinal strategy for the prevention of these diseases all over the world in under five children, these diseases include; Tuberculosis, Measles, Polio, Tetanus, Diphthria, Pertusis, Yellow Fever, Hepatitis B, Haemophilus Influenza type B. 6.9 million children die before their fifth birthday , 80% of the worlds death in children under 5 years occur in 25 countries most in Africa and Asia and 2 million children can be saved each year with routine immunization Therefore failure to achieve total immunization coverage puts several children at risk. Aim; The aim of the study was to ascertain the prevalence, Investigate the various reasons and causes why several under five children in a suburb of calabar municipal county fail to get the required immunizations as at and when due and possibly the consequences, so that efforts can be re-directed towards the solution of the problems so identified. Methods; the study was a community based cross sectional study. The respondents were the mothers/guardians of the sampled children who were all aged 0-59 months. To be eligible for recruitment into the study, the parent or guardian was required to give an informed consent, reside within the Calabar South County with his/her children aged 0-59 months. We calculated our sample size using the Leslie-Kish formula and we used a two-staged sampling method, first to ballot for the wards to be involved and then to select four of the most populated ones in the wards chosen. Data collection was by interviewer administered structured questionnaire (Appendix I), Data collected was entered and analyzed using Statistical Package for the Social Sciences (SPSS) Version 20. Percentages were calculated and represented using charts and tables Results; The number of children sampled was 159. We found that 150 were fully immunized and 9 were not, the prevalence of missed opportunity was 32% from the study. The reasons for missed opportunities were varied, ranging from false contraindications, logistical problems resulting in very poor access roads to health facilities and poor organization of health centers together with negative health worker attitudes. Some of the consequences of these missed opportunities were increased susceptibility to vaccine preventable diseases, resurgence of the above diseases and increased morbidity and mortality of children aged less than 5 years. Conclusion; We found that ignorance on the part of both parents/guardians and health care staff together with infrastructural inadequacies in the county such as- roads, poor electric power supply for storage of vaccines were hugely responsible for most missed opportunities for immunization. The details of these and suggestions for improvement and the way forward are discussed.

Keywords: missed opportunity, immunization, under five, Calabar south

Procedia PDF Downloads 286
206 Acoustic Energy Harvesting Using Polyvinylidene Fluoride (PVDF) and PVDF-ZnO Piezoelectric Polymer

Authors: S. M. Giripunje, Mohit Kumar

Abstract:

Acoustic energy that exists in our everyday life and environment have been overlooked as a green energy that can be extracted, generated, and consumed without any significant negative impact to the environment. The harvested energy can be used to enable new technology like wireless sensor networks. Technological developments in the realization of truly autonomous MEMS devices and energy storage systems have made acoustic energy harvesting (AEH) an increasingly viable technology. AEH is the process of converting high and continuous acoustic waves from the environment into electrical energy by using an acoustic transducer or resonator. AEH is not popular as other types of energy harvesting methods since sound waves have lower energy density and such energy can only be harvested in very noisy environment. However, the energy requirements for certain applications are also correspondingly low and also there is a necessity to observe the noise to reduce noise pollution. So the ability to reclaim acoustic energy and store it in a usable electrical form enables a novel means of supplying power to relatively low power devices. A quarter-wavelength straight-tube acoustic resonator as an acoustic energy harvester is introduced with polyvinylidene fluoride (PVDF) and PVDF doped with ZnO nanoparticles, piezoelectric cantilever beams placed inside the resonator. When the resonator is excited by an incident acoustic wave at its first acoustic eigen frequency, an amplified acoustic resonant standing wave is developed inside the resonator. The acoustic pressure gradient of the amplified standing wave then drives the vibration motion of the PVDF piezoelectric beams, generating electricity due to the direct piezoelectric effect. In order to maximize the amount of the harvested energy, each PVDF and PVDF-ZnO piezoelectric beam has been designed to have the same structural eigen frequency as the acoustic eigen frequency of the resonator. With a single PVDF beam placed inside the resonator, the harvested voltage and power become the maximum near the resonator tube open inlet where the largest acoustic pressure gradient vibrates the PVDF beam. As the beam is moved to the resonator tube closed end, the voltage and power gradually decrease due to the decreased acoustic pressure gradient. Multiple piezoelectric beams PVDF and PVDF-ZnO have been placed inside the resonator with two different configurations: the aligned and zigzag configurations. With the zigzag configuration which has the more open path for acoustic air particle motions, the significant increases in the harvested voltage and power have been observed. Due to the interruption of acoustic air particle motion caused by the beams, it is found that placing PVDF beams near the closed tube end is not beneficial. The total output voltage of the piezoelectric beams increases linearly as the incident sound pressure increases. This study therefore reveals that the proposed technique used to harvest sound wave energy has great potential of converting free energy into useful energy.

Keywords: acoustic energy, acoustic resonator, energy harvester, eigenfrequency, polyvinylidene fluoride (PVDF)

Procedia PDF Downloads 355
205 Study of the Impact of Quality Management System on Chinese Baby Dairy Product Industries

Authors: Qingxin Chen, Liben Jiang, Andrew Smith, Karim Hadjri

Abstract:

Since 2007, the Chinese food industry has undergone serious food contamination in the baby dairy industry, especially milk powder contamination. One of the milk powder products was found to contain melamine and a significant number (294,000) of babies were affected by kidney stones. Due to growing concerns among consumers about food safety and protection, and high pressure from central government, companies must take radical action to ensure food quality protection through the use of an appropriate quality management system. Previously, though researchers have investigated the health and safety aspects of food industries and products, quality issues concerning food products in China have been largely over-looked. Issues associated with baby dairy products and their quality issues have not been discussed in depth. This paper investigates the impact of quality management systems on the Chinese baby dairy product industry. A literature review was carried out to analyse the use of quality management systems within the Chinese milk power market. Moreover, quality concepts, relevant standards, laws, regulations and special issues (such as Melamine, Flavacin M1 contamination) have been analysed in detail. A qualitative research approach is employed, whereby preliminary analysis was conducted by interview, and data analysis based on interview responses from four selected Chinese baby dairy product companies was carried out. Through the analysis of literature review and data findings, it has been revealed that for quality management system that has been designed by many practitioners, many theories, models, conceptualisation, and systems are present. These standards and procedures should be followed in order to provide quality products to consumers, but the implementation is lacking in the Chinese baby dairy industry. Quality management systems have been applied by the selected companies but the implementation still needs improvement. For instance, the companies have to take measures to improve their processes and procedures with relevant standards. The government need to make more interventions and take a greater supervisory role in the production process. In general, this research presents implications for the regulatory bodies, Chinese Government and dairy food companies. There are food safety laws prevalent in China but they have not been widely practiced by companies. Regulatory bodies must take a greater role in ensuring compliance with laws and regulations. The Chinese government must also play a special role in urging companies to implement relevant quality control processes. The baby dairy companies not only have to accept the interventions from the regulatory bodies and government, they also need to ensure that production, storage, distribution and other processes will follow the relevant rules and standards.

Keywords: baby dairy product, food quality, milk powder contamination, quality management system

Procedia PDF Downloads 447
204 Evaluation of Batch Splitting in the Context of Load Scattering

Authors: S. Wesebaum, S. Willeke

Abstract:

Production companies are faced with an increasingly turbulent business environment, which demands very high production volumes- and delivery date flexibility. If a decoupling by storage stages is not possible (e.g. at a contract manufacturing company) or undesirable from a logistical point of view, load scattering effects the production processes. ‘Load’ characterizes timing and quantity incidence of production orders (e.g. in work content hours) to workstations in the production, which results in specific capacity requirements. Insufficient coordination between load (demand capacity) and capacity supply results in heavy load scattering, which can be described by deviations and uncertainties in the input behavior of a capacity unit. In order to respond to fluctuating loads, companies try to implement consistent and realizable input behavior using the capacity supply available. For example, a uniform and high level of equipment capacity utilization keeps production costs down. In contrast, strong load scattering at workstations leads to performance loss or disproportionately fluctuating WIP, whereby the logistics objectives are affected negatively. Options for reducing load scattering are e.g. shifting the start and end dates of orders, batch splitting and outsourcing of operations or shifting to other workstations. This leads to an adjustment of load to capacity supply, and thus to a reduction of load scattering. If the adaptation of load to capacity cannot be satisfied completely, possibly flexible capacity must be used to ensure that the performance of a workstation does not decrease for a given load. Where the use of flexible capacities normally raises costs, an adjustment of load to capacity supply reduces load scattering and, in consequence, costs. In the literature you mostly find qualitative statements for describing load scattering. Quantitative evaluation methods that describe load mathematically are rare. In this article the authors discuss existing approaches for calculating load scattering and their various disadvantages such as lack of opportunity for normalization. These approaches are the basis for the development of our mathematical quantification approach for describing load scattering that compensates the disadvantages of the current quantification approaches. After presenting our mathematical quantification approach, the method of batch splitting will be described. Batch splitting allows the adaptation of load to capacity to reduce load scattering. After describing the method, it will be explicitly analyzed in the context of the logistic curve theory by Nyhuis using the stretch factor α1 in order to evaluate the impact of the method of batch splitting on load scattering and on logistic curves. The conclusion of this article will be to show how the methods and approaches presented can help companies in a turbulent environment to quantify the occurring work load scattering accurately and apply an efficient method for adjusting work load to capacity supply. In this way, the achievements of the logistical objectives are increased without causing additional costs.

Keywords: batch splitting, production logistics, production planning and control, quantification, load scattering

Procedia PDF Downloads 375
203 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 12
202 Reactors with Effective Mixing as a Solutions for Micro-Biogas Plant

Authors: M. Zielinski, M. Debowski, P. Rusanowska, A. Glowacka-Gil, M. Zielinska, A. Cydzik-Kwiatkowska, J. Kazimierowicz

Abstract:

Technologies for the micro-biogas plant with heating and mixing systems are presented as a part of the Research Coordination for a Low-Cost Biomethane Production at Small and Medium Scale Applications (Record Biomap). The main objective of the Record Biomap project is to build a network of operators and scientific institutions interested in cooperation and the development of promising technologies in the sector of small and medium-sized biogas plants. The activities carried out in the project will bridge the gap between research and market and reduce the time of implementation of new, efficient technological and technical solutions. Reactor with simultaneously mixing and heating system is a concrete tank with a rectangular cross-section. In the reactor, heating is integrated with the mixing of substrate and anaerobic sludge. This reactor is solution dedicated for substrates with high solids content, which cannot be introduced to the reactor with pumps, even with positive displacement pumps. Substrates are poured to the reactor and then with a screw pump, they are mixed with anaerobic sludge. The pumped sludge, flowing through the screw pump, is simultaneously heated by a heat exchanger. The level of the fermentation sludge inside the reactor chamber is above the bottom edge of the cover. Cover of the reactor is equipped with the screw pump driver. Inside the reactor, an electric motor is installed that is driving a screw pump. The heated sludge circulates in the digester. The post-fermented sludge is collected using a drain well. The inlet to the drain well is below the level of the sludge in the digester. The biogas is discharged from the reactor by the biogas intake valve located on the cover. The technology is very useful for fermentation of lignocellulosic biomass and substrates with high content of dry mass (organic wastes). The other technology is a reactor for micro-biogas plant with a pressure mixing system. The reactor has a form of plastic or concrete tank with a circular cross-section. The effective mixing of sludge is ensured by profiled at 90° bottom of the tank. Substrates for fermentation are supplied by an inlet well. The inlet well is equipped with a cover that eliminates odour release. The introduction of a new portion of substrates is preceded by pumping of digestate to the disposal well. Optionally, digestate can gravitationally flow to digestate storage tank. The obtained biogas is discharged into the separator. The valve supplies biogas to the blower. The blower presses the biogas from the fermentation chamber in such a way as to facilitate the introduction of a new portion of substrates. Biogas is discharged from the reactor by valve that enables biogas removal but prevents suction from outside the reactor.

Keywords: biogas, digestion, heating system, mixing system

Procedia PDF Downloads 126
201 New Insulation Material for Solar Thermal Collectors

Authors: Nabila Ihaddadene, Razika Ihaddadene, Abdelwahaab Betka

Abstract:

1973 energy crisis (rising oil prices) pushed the world to consider other alternative energy resources to existing conventional energies consisting predominantly of hydrocarbons. Renewable energies such as solar, the wind and geothermal have received renewed interest, especially to preserve nature ( the low-temperature rise of global environmental problems). Solar energy as an available, cheap and environmental friendly alternative source has various applications such as heating, cooling, drying, power generation, etc. In short, there is no life on earth without this enormous nuclear reactor, called the sun. Among available solar collector designs, flat plate collector (FPC) is low-temperature applications (heating water, space heating, etc.) due to its simple design and ease of manufacturing. Flat plate collectors are permanently fixed in position and do not track the sun (non-concentrating collectors). They operate by converting solar radiation into heat and transferring that heat to a working fluid (usually air, water, water plus antifreeze additive) flowing through them. An FPC generally consists of the main following components: glazing, absorber plate of high absorptivity, fluid tubes welded to or can be an integral part of the absorber plate, insulation and container or casing of the above-mentioned components. Insulation is of prime importance in thermal applications. There are three main families of insulation: mineral insulation; vegetal insulation and synthetic organic insulation. The old houses of the inhabitants of North Africa were built of brick made of composite material that is clay and straw. These homes are characterized by their thermal comfort; i.e. the air inside these houses is cool in summer and warm in winter. So, the material composed from clay and straw act as a thermal insulation. In this research document, the polystyrene used as insulation in the ET200 flat plate solar collector is replaced by the cheapest natural material which is clay and straw. Trials were carried out on a solar energy demonstration system (ET 200). This system contains a solar collector, water storage tank, a high power lamp simulating solar energy and a control and command cabinet. In the experimental device, the polystyrene is placed under the absorber plate and in the edges of the casing containing the components of the solar collector. In this work, we have replaced the polystyrene of the edges by the composite material. The use of the clay and straw as insulation instead of the polystyrene increases temperature difference (T2-T1) between the inlet and the outlet of the absorber by 0.9°C; thus increases the useful power transmitted to water in the solar collector. Tank Water is well heated when using the clay and straw as insulation. However, it is less heated when using the polystyrene as insulation. Clay and straw material improves also the performance of the solar collector by 5.77%. Thus, it is recommended to use this cheapest non-polluting material instead of synthetic insulation to improve the performance of the solar collector.

Keywords: clay, insulation material, polystyrene, solar collector, straw

Procedia PDF Downloads 434
200 Conservation Challenges of Wetlands Biodiversity in Northeast Region of Bangladesh

Authors: Anisuzzaman Khan, A. J. K. Masud

Abstract:

Bangladesh is the largest delta in the world predominantly comprising large network of rives and wetlands. Wetlands in Bangladesh are represented by inland freshwater, estuarine brakishwater and tidal salt-water coastal wetlands. Bangladesh possesses enormous area of wetlands including rivers and streams, freshwater lakes and marshes, haors, baors, beels, water storage reservoirs, fish ponds, flooded cultivated fields and estuarine systems with extensive mangrove swamps. The past, present, and future of Bangladesh, and its people’s livelihoods are intimately connected to its relationship with water and wetlands. More than 90% of the country’s total area consists of alluvial plains, crisscrossed by a complex network of rivers and their tributaries. Floodplains, beels (low-lying depressions in the floodplain), haors (deep depression) and baors (oxbow lakes) represent the inland freshwater wetlands. Over a third of Bangladesh could be termed as wetlands, considering rivers, estuaries, mangroves, floodplains, beels, baors and haors. The country’s wetland ecosystems also offer critical habitats for globally significant biological diversity. Of these the deeply flooded basins of north-east Bangladesh, known as haors, are a habitat of wide range of wild flora and fauna unique to Bangladesh. The haor basin lies within the districts of Sylhet, Sunamgonj, Netrokona, Kishoregonj, Habigonj, Moulvibazar, and Brahmanbaria in the Northeast region of Bangladesh comprises the floodplains of the Meghna tributaries and is characterized by the presence of numerous large, deeply flooded depressions, known as haors. It covers about around 8,568 km2 area of Bangladesh. The topography of the region is steep at around foothills in the north and slopes becoming mild and milder gradually at downstream towards south. Haor is a great reservoir of aquatic biological resources and acts as the ecological safety net to the nature as well as to the dwellers of the haor. But in reality, these areas are considered as wastelands and to make these wastelands into a productive one, a one sided plan has been implementing since long. The programme is popularly known as Flood Control, Drainage and Irrigation (FCDI) which is mainly devoted to increase the monoculture rice production. However, haor ecosystem is a multiple-resource base which demands an integrated sustainable development approach. The ongoing management approach is biased to only rice production through FCDI. Thus this primitive mode of action is diminishing other resources having more economic potential ever thought.

Keywords: freshwater wetlands, biological diversity, biological resources, conservation and sustainable development

Procedia PDF Downloads 301
199 Unification of Lactic Acid Bacteria and Aloe Vera for Healthy Gut

Authors: Pavitra Sharma, Anuradha Singh, Nupur Mathur

Abstract:

There exist more than 100 trillion bacteria in the digestive system of human-beings. Such bacteria are referred to as gut microbiota. Gut microbiota comprises around 75% of our immune system. The bacteria that comprise the gut microbiota are unique to every individual and their composition keeps changing with time owing to factors such as the host’s age, diet, genes, environment, and external medication. Of these factors, the variable easiest to control is one’s diet. By modulating one’s diet, one can ensure an optimal composition of the gut microbiota yielding several health benefits. Prebiotics and probiotics are two compounds that have been considered as viable options to modulate the host’s diet. Prebiotics are basically plant products that support the growth of good bacteria in the host’s gut. Examples include garden asparagus, aloe vera etc. Probiotics are living microorganisms that exist in our intestines and play an integral role in promoting digestive health and supporting our immune system in general. Examples include yogurt, kimchi, kombucha etc. In the context of modulating the host’s diet, the key attribute of prebiotics is that they support the growth of probiotics. By developing the right combination of prebiotics and probiotics, food products or supplements can be created to enhance the host’s health. An effective combination of prebiotics and probiotics that yields health benefits to the host is referred to as synbiotics. Synbiotics comprise of an optimal proportion of prebiotics and probiotics, their application benefits the host’s health more than the application of prebiotics and probiotics used in isolation. When applied to food supplements, synbiotics preserve the beneficial probiotic bacteria during storage period and during the bacteria’s passage through the intestinal tract. When applied to the gastrointestinal tract, the composition of the synbiotics assumes paramount importance. Reason being that for synbiotics to be effective in the gastrointestinal tract, the chosen probiotic must be able to survive in the stomach’s acidic environment and manifest tolerance towards bile and pancreatic secretions. Further, not every prebiotic stimulates the growth of a particular probiotic. The prebiotic chosen should be one that not only maintains 2 balance in the host’s digestive system, but also provides the required nutrition to probiotics. Hence in each application of synbiotics, the prebiotic-probiotic combination needs to be carefully selected. Once the combination is finalized, the exact proportion of prebiotics and probiotics to be used needs to be considered. When determining this proportion, only that amount of a prebiotic should be used that activates metabolism of the required number of probiotics. It was observed that while probiotics are active is both the small and large intestine, the effect of prebiotics is observed primarily in the large intestine. Hence in the host’s small intestine, synbiotics are likely to have the maximum efficacy. In small intestine, prebiotics not only assist in the growth of probiotics, but they also enable probiotics to exhibit a higher tolerance to pH levels, oxygenation, and intestinal temperature

Keywords: microbiota, probiotics, prebiotics, synbiotics

Procedia PDF Downloads 110
198 Hybridization of Mathematical Transforms for Robust Video Watermarking Technique

Authors: Harpal Singh, Sakshi Batra

Abstract:

The widespread and easy accesses to multimedia contents and possibility to make numerous copies without loss of significant fidelity have roused the requirement of digital rights management. Thus this problem can be effectively solved by Digital watermarking technology. This is a concept of embedding some sort of data or special pattern (watermark) in the multimedia content; this information will later prove ownership in case of a dispute, trace the marked document’s dissemination, identify a misappropriating person or simply inform user about the rights-holder. The primary motive of digital watermarking is to embed the data imperceptibly and robustly in the host information. Extensive counts of watermarking techniques have been developed to embed copyright marks or data in digital images, video, audio and other multimedia objects. With the development of digital video-based innovations, copyright dilemma for the multimedia industry increases. Video watermarking had been proposed in recent years to serve the issue of illicit copying and allocation of videos. It is the process of embedding copyright information in video bit streams. Practically video watermarking schemes have to address some serious challenges as compared to image watermarking schemes like real-time requirements in the video broadcasting, large volume of inherently redundant data between frames, the unbalance between the motion and motionless regions etc. and they are particularly vulnerable to attacks, for example, frame swapping, statistical analysis, rotation, noise, median and crop attacks. In this paper, an effective, robust and imperceptible video watermarking algorithm is proposed based on hybridization of powerful mathematical transforms; Fractional Fourier Transform (FrFT), Discrete Wavelet transforms (DWT) and Singular Value Decomposition (SVD) using redundant wavelet. This scheme utilizes various transforms for embedding watermarks on different layers by using Hybrid systems. For this purpose, the video frames are portioned into layers (RGB) and the watermark is being embedded in two forms in the video frames using SVD portioning of the watermark, and DWT sub-band decomposition of host video, to facilitate copyright safeguard as well as reliability. The FrFT orders are used as the encryption key that allows the watermarking method to be more robust against various attacks. The fidelity of the scheme is enhanced by introducing key generation and wavelet based key embedding watermarking scheme. Thus, for watermark embedding and extraction, same key is required. Therefore the key must be shared between the owner and the verifier via some safe network. This paper demonstrates the performance by considering different qualitative metrics namely Peak Signal to Noise ratio, Structure similarity index and correlation values and also apply some attacks to prove the robustness. The Experimental results are presented to demonstrate that the proposed scheme can withstand a variety of video processing attacks as well as imperceptibility.

Keywords: discrete wavelet transform, robustness, video watermarking, watermark

Procedia PDF Downloads 209
197 Writing the Roaming Female Self: Identity and Romantic Selfhood in Mary Wollstonecraft’s Letters Written during a Short Stay in Sweden, Denmark, and Norway (1796)

Authors: Kalyani Gandhi

Abstract:

The eighteenth century in Britain saw a great burst of activity in writing (letters, journals, newspapers, essays); often these modes of writing had a public-spirited bent in-step with the prevailing intellectual atmosphere. Mary Wollstonecraft was one of the leading intellectuals of that period who utilized letter writing to convey her thoughts on the exciting political developments of the late eighteenth century. Fusing together her anxieties and concerns about humanity in general and herself in particular, Wollstonecraft’s views of the world around her are filtered through the lens of her subjectivity. Thus, Wollstonecraft’s letters covered a wide range of topics on both the personal and political level (for the two are often entwined in Wollstonecraft’s characteristic style of analysis) such as sentiment, gender, nature, peasantry, the class system, the legal system, political duties and rights of both rulers and subjects, death, immortality, religion, family and education. Therefore, this paper intends to examine the manner in which Wollstonecraft utilizes letter-writing to constitute and develop Romantic self-hood, understand the world around her and illustrate her ideas on the political and social happenings in Europe. The primary text analyzed will be Mary Wollstonecraft's Letters Written During a Short Stay in Sweden, Denmark and Norway (1796) and the analysis of this text will be supplemented by researching 18th-century British letter writing culture, with a special emphasis on the epistolary habits of women. Within this larger framework, this paper intends to examine the manner in which this hybrid of travel and epistolary writing aided Mary Wollstonecraft's expression on Romantic selfhood and how it was complicated by ideas of gender. This paper reveals Wollstonecraft's text to be wrought with anxiety about the world around her and within her; thus, the personal-public nature of the epistolary format particularly suits her characteristic point of view that looks within and without. That is to say, Wollstonecraft’s anxieties about gender and self, are as much about the women she sees in the world around her as much as they are about her young daughter and herself. Wollstonecraft constantly explores and examines this anxiety within the different but interconnected realms of politics, economics, history and society. In fact, it is her complex technique of entwining these aforementioned concerns with a closer look at interpersonal relationships among men and women (she often mentions specific anecdotes and instances) that make Wollstonecraft's Letters so engaging and insightful. Thus, Wollstonecraft’s Letters is an exemplar of British Romantic writing due to the manner in which it explores the bond between the individual and society. Mary Wollstonecraft's nuances this exploration by incorporating her concerns about women and the playing out of gender in society. Thus, Wollstonecraft’s Letters is an invaluable contribution to the field of British Romanticism, particularly as it offers crucial insight on female Romantic writing that can broaden and enrich the current academic understanding of the field.

Keywords: British romanticism, letters, feminism, travel writing

Procedia PDF Downloads 184
196 Valorisation of Food Waste Residue into Sustainable Bioproducts

Authors: Krishmali N. Ekanayake, Brendan J. Holland, Colin J. Barrow, Rick Wood

Abstract:

Globally, more than one-third of all food produced is lost or wasted, equating to 1.3 billion tonnes per year. Around 31.2 million tonnes of food waste are generated across the production, supply, and consumption chain in Australia. Generally, the food waste management processes adopt environmental-friendly and more sustainable approaches such as composting, anerobic digestion and energy implemented technologies. However, unavoidable, and non-recyclable food waste ends up as landfilling and incineration that involve many undesirable impacts and challenges on the environment. A biorefinery approach contributes to a waste-minimising circular economy by converting food and other organic biomass waste into valuable outputs, including feeds, nutrition, fertilisers, and biomaterials. As a solution, Green Eco Technologies has developed a food waste treatment process using WasteMaster system. The system uses charged oxygen and moderate temperatures to convert food waste, without bacteria, additives, or water, into a virtually odour-free, much reduced quantity of reusable residual material. In the context of a biorefinery, the WasteMaster dries and mills food waste into a form suitable for storage or downstream extraction/separation/concentration to create products. The focus of the study is to determine the nutritional composition of WasteMaster processed residue to potential develop aquafeed ingredients. The global aquafeed industry is projected to reach a high value market in future, which has shown high demand for the aquafeed products. Therefore, food waste can be utilized for aquaculture feed development by reducing landfill. This framework will lessen the requirement of raw crops cultivation for aquafeed development and reduce the aquaculture footprint. In the present study, the nutritional elements of processed residue are consistent with the input food waste type, which has shown that the WasteMaster is not affecting the expected nutritional distribution. The macronutrient retention values of protein, lipid, and nitrogen free extract (NFE) are detected >85%, >80%, and >95% respectively. The sensitive food components including omega 3 and omega 6 fatty acids, amino acids, and phenolic compounds have been found intact in each residue material. Preliminary analysis suggests a price comparability with current aquafeed ingredient cost making the economic feasibility. The results suggest high potentiality of aquafeed development as 5 to 10% of the ingredients to replace/partially substitute other less sustainable ingredients across biorefinery setting. Our aim is to improve the sustainability of aquaculture and reduce the environmental impacts of food waste.

Keywords: biorefinery, ffood waste residue, input, wasteMaster

Procedia PDF Downloads 34
195 Women’s Perceptions of DMPA-SC Self-Injection in Malawi

Authors: Mandayachepa C. Nyando, Lauren Suchman, Innocencia Mtalimanja, Address Malata, Tamanda Jumbe, Martha Kamanga, Peter Waiswa

Abstract:

Background: Subcutaneous depot medroxyprogesterone acetate (DMPA-SC) is a new innovation in contraceptive methods that allow users to inject themselves with a hormonal contraceptive in their own homes. Self-injection (SI) of DMPA-SC has the potential to improve the accessibility of family planning to women who want it and who are capable of injecting themselves. Malawi started implementing this new innovation in 2018. SI was incorporated into the DMPA-SC delivery strategy from its outset. Methodology: This study involved two districts in Malawi where DMPA-SC SI was rolled out: Mulanje and Ntchisi. We used a qualitative cross-sectional study design where 60 in-depth interviews were conducted with women of reproductive age group stratified as 15-45 age band. These included women who were SI users, non-users, and any woman who was on any contraceptive methods. The women participants were tape-recorded, and data were transcribed and then analysed using Dedoose software, where themes were categorised into mother and child themes. Results: Women perceived DMPA SC SI as uniquely private, convenient, and less painful when self-injected. In terms of privacy, women in Mulanje and Ntchisi especially appreciated that self-injecting allowed them to use covertly from partners. Some men do not allow their spouses to use modern contraceptive methods; hence women prefer to use them covertly. “… but I first reach out to men because the strongest power is answered by men (MJ015).” In addition, women reported that SI offers privacy from family/community and less contact with healthcare providers. These aspects of privacy were especially valued in areas where there is a high degree of mistrust around family planning and among those who feel judged or antagonized purchasing contraception, such as young unmarried women. Women also valued the convenience SI provided in terms of their ability to save time by injecting themselves at home rather than visiting a healthcare provider and having more reliable access to contraception, particularly in the face of stockouts. SI allows for stocking up on doses to accommodate shifting work schedules in case of future stockouts or hard times, such as the period of COVID-19, where there was a limitation in the movement of the people. Conclusion: Our findings suggest that SI may meet the needs of many women in Malawi as long as the barriers are eliminated. The barriers women mentioned include fear of self-inject and proper storage of the DMPA SC SI, and these barriers can be eliminated by proper training. The findings also set the scene for policy revision and direction at a national level and integrate the approach with national family planning strategies in Malawi. Findings provide insights that may guide future implementation strategies, strengthen non-clinic family planning access programs and stimulate continued research.

Keywords: family planning, Malawi, Sayana press, self-injection

Procedia PDF Downloads 41
194 Dynamic Exergy Analysis for the Built Environment: Fixed or Variable Reference State

Authors: Valentina Bonetti

Abstract:

Exergy analysis successfully helps optimizing processes in various sectors. In the built environment, a second-law approach can enhance potential interactions between constructions and their surrounding environment and minimise fossil fuel requirements. Despite the research done in this field in the last decades, practical applications are hard to encounter, and few integrated exergy simulators are available for building designers. Undoubtedly, an obstacle for the diffusion of exergy methods is the strong dependency of results on the definition of its 'reference state', a highly controversial issue. Since exergy is the combination of energy and entropy by means of a reference state (also called "reference environment", or "dead state"), the reference choice is crucial. Compared to other classical applications, buildings present two challenging elements: They operate very near to the reference state, which means that small variations have relevant impacts, and their behaviour is dynamical in nature. Not surprisingly then, the reference state definition for the built environment is still debated, especially in the case of dynamic assessments. Among the several characteristics that need to be defined, a crucial decision for a dynamic analysis is between a fixed reference environment (constant in time) and a variable state, which fluctuations follow the local climate. Even if the latter selection is prevailing in research, and recommended by recent and widely-diffused guidelines, the fixed reference has been analytically demonstrated as the only choice which defines exergy as a proper function of the state in a fluctuating environment. This study investigates the impact of that crucial choice: Fixed or variable reference. The basic element of the building energy chain, the envelope, is chosen as the object of investigation as common to any building analysis. Exergy fluctuations in the building envelope of a case study (a typical house located in a Mediterranean climate) are confronted for each time-step of a significant summer day, when the building behaviour is highly dynamical. Exergy efficiencies and fluxes are not familiar numbers, and thus, the more easy-to-imagine concept of exergy storage is used to summarize the results. Trends obtained with a fixed and a variable reference (outside air) are compared, and their meaning is discussed under the light of the underpinning dynamical energy analysis. As a conclusion, a fixed reference state is considered the best choice for dynamic exergy analysis. Even if the fixed reference is generally only contemplated as a simpler selection, and the variable state is often stated as more accurate without explicit justifications, the analytical considerations supporting the adoption of a fixed reference are confirmed by the usefulness and clarity of interpretation of its results. Further discussion is needed to address the conflict between the evidence supporting a fixed reference state and the wide adoption of a fluctuating one. A more robust theoretical framework, including selection criteria of the reference state for dynamical simulations, could push the development of integrated dynamic tools and thus spread exergy analysis for the built environment across the common practice.

Keywords: exergy, reference state, dynamic, building

Procedia PDF Downloads 203
193 Pentosan Polysulfate Sodium: A Potential Treatment to Improve Bone and Joint Manifestations of Mucopolysaccharidosis I

Authors: Drago Bratkovic, Curtis Gravance, David Ketteridge, Ravi Krishnan, Michael Imperiale

Abstract:

The mucopolysaccharidoses (MPSs) are a group of lysosomal storage diseases that have a common defect in the catabolism of glycosaminoglycans (GAGs). MPS I is the most common of the MPS diseases. Manifestations of MPS I include coarsening of facial features, corneal clouding, developmental delay, short stature, skeletal manifestations, hearing loss, cardiac valve disease, hepatosplenomegaly, and umbilical and inguinal hernias. Treatments for MPS I restore or activate the missing or deficient enzyme in the case of enzyme replacement therapy (ERT) and haematopoietic stem cell transplantation (HSCT). Pentosan polysulfate sodium (PPS) is a potential treatment to improve bone and joint manifestations of MPS I. The mechanisms of action of PPS that are relevant to the treatment of MPS I are the ability to: (i) Reduce systemic and accumulated GAG, (ii) Reduce inflammatory effects via the inhibition of NF-kB, resulting in the reduction in pro-inflammatory mediators. (iii) Reduce the expression of the pain mediator nerve growth factor in osteocytes from degenerating joints. (iv) Inhibit the cartilage degrading enzymes related to joint dysfunction in MPS I. PPS is being evaluated as an adjunctive therapy to ERT and/or HSCT in an open-label, single-centre, phase 2 study. Patients are ≥ 5 years of age with a diagnosis of MPS I and previously received HSCT and/or ERT. Three white, female, patients with MPS I-Hurler, ages 14, 15, and 19 years, and one, white male patient aged 15 years are enrolled. All were diagnosed at ≤2 years of age. All patients received HSCT ≤ 6 months after diagnosis. Two of the patients were treated with ERT prior to HSCT, and 1 patient received ERT commencing 3 months prior to HSCT. Two patients received 0.75mg/kg and 2 patients received 1.5mg/kg of PPS. PPS was well tolerated at doses of 0.75 and 1.5 mg/kg to 47 weeks of continuous dosing. Of the 19 adverse events (AEs), 2 were related to PPS. One AE was moderate (pre-syncope) and 1 was mild (injection site bruising), experienced in the same patient. All AEs were reported as mild or moderate. There have been no SAEs. One subject experienced a COVID-19 infection and PPS was interrupted. The MPS I signature GAG fragments, sulfated disaccharide and UA-HNAc S, tended to decrease in 3 patients from baseline through Week 25. Week 25 GAG data are pending for the 4th patient. Overall, most biomarkers (inflammatory, cartilage degeneration, and bone turnover) evaluated in the 3 patients with 25-week assessments have indicated either no change or a reduction in levels compared to baseline. In 3 patients, there was a trend toward improvement in the 2MWT from baseline to Week 48 with > 100% increase in 1 patient (01-201). In the 3 patients that had Week 48 assessments, patients and proxies reported improvement in PGIC, including “worthwhile difference” (n=1), or “made all the difference” (n=2).

Keywords: MPS I, pentosan polysulfate sodium, clinical study, 2MWT, QoL

Procedia PDF Downloads 88
192 Production of Bacillus Lipopeptides for Biocontrol of Postharvest Crops

Authors: Vivek Rangarajan, Kim G. Klarke

Abstract:

With overpopulation threatening the world’s ability to feed itself, food production and protection has become a major issue, especially in developing countries. Almost one-third of the food produced for human consumption, around 1.3 billion tonnes, is either wasted or lost annually. Postharvest decay in particular constitutes a major cause of crop loss with about 20% of fruits and vegetables produced lost during postharvest storage, mainly due to fungal disease. Some of the major phytopathogenic fungi affecting postharvest fruit crops in South Africa include Aspergillus, Botrytis, Penicillium, Alternaria and Sclerotinia spp. To date control of fungal phytopathogens has primarily been dependent on synthetic chemical fungicides, but these chemicals pose a significant threat to the environment, mainly due to their xenobiotic properties and tendency to generate resistance in the phytopathogens. Here, an environmentally benign alternative approach to control postharvest fungal phytopathogens in perishable fruit crops has been presented, namely the application of a bio-fungicide in the form of lipopeptide molecules. Lipopeptides are biosurfactants produced by Bacillus spp. which have been established as green, nontoxic and biodegradable molecules with antimicrobial properties. However, since the Bacillus are capable of producing a large number of lipopeptide homologues with differing efficacies against distinct target organisms, the lipopeptide production conditions and strategy are critical to produce the maximum lipopeptide concentration with homologue ratios to specification for optimum bio-fungicide efficacy. Process conditions, and their impact on Bacillus lipopeptide production, were evaluated in fully instrumented laboratory scale bioreactors under well-regulated controlled and defined environments. Factors such as the oxygen availability and trace element and nitrate concentrations had profound influences on lipopeptide yield, productivity and selectivity. Lipopeptide yield and homologue selectivity were enhanced in cultures where the oxygen in the sparge gas was increased from 21 to 30 mole%. The addition of trace elements, particularly Fe2+, increased the total concentration of lipopeptides and a nitrate concentration equivalent to 8 g/L ammonium nitrate resulted in optimum lipopeptide yield and homologue selectivity. Efficacy studies of the culture supernatant containing the crude lipopeptide mixture were conducted using phytopathogens isolated from fruit in the field, identified using genetic sequencing. The supernatant exhibited antifungal activity against all the test-isolates, namely Lewia, Botrytis, Penicillium, Alternaria and Sclerotinia spp., even in this crude form. Thus the lipopeptide product efficacy has been confirmed to control the main diseases, even in the basic crude form. Future studies will be directed towards purification of the lipopeptide product and enhancement of efficacy.

Keywords: antifungal efficacy, biocontrol, lipopeptide production, perishable crops

Procedia PDF Downloads 387
191 CRM Cloud Computing: An Efficient and Cost Effective Tool to Improve Customer Interactions

Authors: Gaurangi Saxena, Ravindra Saxena

Abstract:

Lately, cloud computing is used to enhance the ability to attain corporate goals more effectively and efficiently at lower cost. This new computing paradigm “The Cloud Computing” has emerged as a powerful tool for optimum utilization of resources and gaining competitiveness through cost reduction and achieving business goals with greater flexibility. Realizing the importance of this new technique, most of the well known companies in computer industry like Microsoft, IBM, Google and Apple are spending millions of dollars in researching cloud computing and investigating the possibility of producing interface hardware for cloud computing systems. It is believed that by using the right middleware, a cloud computing system can execute all the programs a normal computer could run. Potentially, everything from most simple generic word processing software to highly specialized and customized programs designed for specific company could work successfully on a cloud computing system. A Cloud is a pool of virtualized computer resources. Clouds are not limited to grid environments, but also support “interactive user-facing applications” such as web applications and three-tier architectures. Cloud Computing is not a fundamentally new paradigm. It draws on existing technologies and approaches, such as utility Computing, Software-as-a-service, distributed computing, and centralized data centers. Some companies rent physical space to store servers and databases because they don’t have it available on site. Cloud computing gives these companies the option of storing data on someone else’s hardware, removing the need for physical space on the front end. Prominent service providers like Amazon, Google, SUN, IBM, Oracle, Salesforce etc. are extending computing infrastructures and platforms as a core for providing top-level services for computation, storage, database and applications. Application services could be email, office applications, finance, video, audio and data processing. By using cloud computing system a company can improve its customer relationship management. A CRM cloud computing system may be highly useful in delivering a sales team a blend of unique functionalities to improve agent/customer interactions. This paper attempts to first define the cloud computing as a tool for running business activities more effectively and efficiently at a lower cost; and then it distinguishes cloud computing with grid computing. Based on exhaustive literature review, authors discuss application of cloud computing in different disciplines of management especially in the field of marketing with special reference to use of cloud computing in CRM. Study concludes that CRM cloud computing platform helps a company track any data, such as orders, discounts, references, competitors and many more. By using CRM cloud computing, companies can improve its customer interactions and by serving them more efficiently that too at a lower cost can help gaining competitive advantage.

Keywords: cloud computing, competitive advantage, customer relationship management, grid computing

Procedia PDF Downloads 281
190 Wood as a Climate Buffer in a Supermarket

Authors: Kristine Nore, Alexander Severnisen, Petter Arnestad, Dimitris Kraniotis, Roy Rossebø

Abstract:

Natural materials like wood, absorb and release moisture. Thus wood can buffer indoor climate. When used wisely, this buffer potential can be used to counteract the outer climate influence on the building. The mass of moisture used in the buffer is defined as the potential hygrothermal mass, which can be an energy storage in a building. This works like a natural heat pump, where the moisture is active in damping the diurnal changes. In Norway, the ability of wood as a material used for climate buffering is tested in several buildings with the extensive use of wood, including supermarkets. This paper defines the potential of hygrothermal mass in a supermarket building. This includes the chosen ventilation strategy, and how the climate impact of the building is reduced. The building is located above the arctic circle, 50m from the coastline, in Valnesfjord. It was built in 2015, has a shopping area, including toilet and entrance, of 975 m². The climate of the area is polar according to the Köppen classification, but the supermarket still needs cooling on hot summer days. In order to contribute to the total energy balance, wood needs dynamic influence to activate its hygrothermal mass. Drying and moistening of the wood are energy intensive, and this energy potential can be exploited. Examples are to use solar heat for drying instead of heating the indoor air, and raw air with high enthalpy that allow dry wooden surfaces to absorb moisture and release latent heat. Weather forecasts are used to define the need for future cooling or heating. Thus, the potential energy buffering of the wood can be optimized with intelligent ventilation control. The ventilation control in Valnesfjord includes the weather forecast and historical data. That is a five-day forecast and a two-day history. This is to prevent adjustments to smaller weather changes. The ventilation control has three zones. During summer, the moisture is retained to dampen for solar radiation through drying. In the winter time, moist air let into the shopping area to contribute to the heating. When letting the temperature down during the night, the moisture absorbed in the wood slow down the cooling. The ventilation system is shut down during closing hours of the supermarket in this period. During the autumn and spring, a regime of either storing the moisture or drying out to according to the weather prognoses is defined. To ensure indoor climate quality, measurements of CO₂ and VOC overrule the low energy control if needed. Verified simulations of the Valnesfjord building will build a basic model for investigating wood as a climate regulating material also in other climates. Future knowledge on hygrothermal mass potential in materials is promising. When including the time-dependent buffer capacity of materials, building operators can achieve optimal efficiency of their ventilation systems. The use of wood as a climate regulating material, through its potential hygrothermal mass and connected to weather prognoses, may provide up to 25% energy savings related to heating, cooling, and ventilation of a building.

Keywords: climate buffer, energy, hygrothermal mass, ventilation, wood, weather forecast

Procedia PDF Downloads 188
189 Designing Sustainable and Energy-Efficient Urban Network: A Passive Architectural Approach with Solar Integration and Urban Building Energy Modeling (UBEM) Tools

Authors: A. Maghoul, A. Rostampouryasouri, MR. Maghami

Abstract:

The development of an urban design and power network planning has been gaining momentum in recent years. The integration of renewable energy with urban design has been widely regarded as an increasingly important solution leading to climate change and energy security. Through the use of passive strategies and solar integration with Urban Building Energy Modeling (UBEM) tools, architects and designers can create high-quality designs that meet the needs of clients and stakeholders. To determine the most effective ways of combining renewable energy with urban development, we analyze the relationship between urban form and renewable energy production. The procedure involved in this practice include passive solar gain (in building design and urban design), solar integration, location strategy, and 3D models with a case study conducted in Tehran, Iran. The study emphasizes the importance of spatial and temporal considerations in the development of sector coupling strategies for solar power establishment in arid and semi-arid regions. The substation considered in the research consists of two parallel transformers, 13 lines, and 38 connection points. Each urban load connection point is equipped with 500 kW of solar PV capacity and 1 kWh of battery Energy Storage (BES) to store excess power generated from solar, injecting it into the urban network during peak periods. The simulations and analyses have occurred in EnergyPlus software. Passive solar gain involves maximizing the amount of sunlight that enters a building to reduce the need for artificial lighting and heating. Solar integration involves integrating solar photovoltaic (PV) power into smart grids to reduce emissions and increase energy efficiency. Location strategy is crucial to maximize the utilization of solar PV in an urban distribution feeder. Additionally, 3D models are made in Revit, and they are keys component of decision-making in areas including climate change mitigation, urban planning, and infrastructure. we applied these strategies in this research, and the results show that it is possible to create sustainable and energy-efficient urban environments. Furthermore, demand response programs can be used in conjunction with solar integration to optimize energy usage and reduce the strain on the power grid. This study highlights the influence of ancient Persian architecture on Iran's urban planning system, as well as the potential for reducing pollutants in building construction. Additionally, the paper explores the advances in eco-city planning and development and the emerging practices and strategies for integrating sustainability goals.

Keywords: energy-efficient urban planning, sustainable architecture, solar energy, sustainable urban design

Procedia PDF Downloads 48
188 LES Simulation of a Thermal Plasma Jet with Modeled Anode Arc Attachment Effects

Authors: N. Agon, T. Kavka, J. Vierendeels, M. Hrabovský, G. Van Oost

Abstract:

A plasma jet model was developed with a rigorous method for calculating the thermophysical properties of the gas mixture without mixing rules. A simplified model approach to account for the anode effects was incorporated in this model to allow the valorization of the simulations with experimental results. The radial heat transfer was under-predicted by the model because of the limitations of the radiation model, but the calculated evolution of centerline temperature, velocity and gas composition downstream of the torch exit corresponded well with the measured values. The CFD modeling of thermal plasmas is either focused on development of the plasma arc or the flow of the plasma jet outside of the plasma torch. In the former case, the Maxwell equations are coupled with the Navier-Stokes equations to account for electromagnetic effects which control the movements of the anode arc attachment. In plasma jet simulations, however, the computational domain starts from the exit nozzle of the plasma torch and the influence of the arc attachment fluctuations on the plasma jet flow field is not included in the calculations. In that case, the thermal plasma flow is described by temperature, velocity and concentration profiles at the torch exit nozzle and no electromagnetic effects are taken into account. This simplified approach is widely used in literature and generally acceptable for plasma torches with a circular anode inside the torch chamber. The unique DC hybrid water/gas-stabilized plasma torch developed at the Institute of Plasma Physics of the Czech Academy of Sciences on the other hand, consists of a rotating anode disk, located outside of the torch chamber. Neglecting the effects of the anode arc attachment downstream of the torch exit nozzle leads to erroneous predictions of the flow field. With the simplified approach introduced in this model, the Joule heating between the exit nozzle and the anode attachment position of the plasma arc is modeled by a volume heat source and the jet deflection caused by the anode processes by a momentum source at the anode surface. Furthermore, radiation effects are included by the net emission coefficient (NEC) method and diffusion is modeled with the combined diffusion coefficient method. The time-averaged simulation results are compared with numerous experimental measurements. The radial temperature profiles were obtained by spectroscopic measurements at different axial positions downstream of the exit nozzle. The velocity profiles were evaluated from the time-dependent evolution of flow structures, recorded by photodiode arrays. The shape of the plasma jet was compared with charge-coupled device (CCD) camera pictures. In the cooler regions, the temperature was measured by enthalpy probe downstream of the exit nozzle and by thermocouples in radial direction around the torch nozzle. The model results correspond well with the experimental measurements. The decrease in centerline temperature and velocity is predicted within an acceptable range and the shape of the jet closely resembles the jet structure in the recorded images. The temperatures at the edge of the jet are underestimated due to the absence of radial radiative heat transfer in the model.

Keywords: anode arc attachment, CFD modeling, experimental comparison, thermal plasma jet

Procedia PDF Downloads 339
187 Digital Advance Care Planning and Directives: Early Observations of Adoption Statistics and Responses from an All-Digital Consumer-Driven Approach

Authors: Robert L. Fine, Zhiyong Yang, Christy Spivey, Bonnie Boardman, Maureen Courtney

Abstract:

Importance: Barriers to traditional advance care planning (ACP) and advance directive (AD) creation have limited the promise of ACP/AD for individuals and families, the healthcare team, and society. Reengineering ACP by using a web-based, consumer-driven process has recently been suggested. We report early experience with such a process. Objective: Begin to analyze the potential of the creation and use of ACP/ADs as generated by a consumer-friendly, digital process by 1) assessing the likelihood that consumers would create ACP/ADs without structured intervention by medical or legal professionals, and 2) analyzing the responses to determine if the plans can help doctors better understand a person’s goals, preferences, and priorities for their medical treatments and the naming of healthcare agents. Design: The authors chose 900 users of MyDirectives.com, a digital ACP/AD tool, solely based on their state of residence in order to achieve proportional representation of all 50 states by population size and then reviewed their responses, summarizing these through descriptive statistics including treatment preferences, demographics, and revision of preferences. Setting: General United States population. Participants: The 900 participants had an average age of 50.8 years (SD = 16.6); 84.3% of the men and 91% of the women were in self-reported good health when signing their ADs. Main measures: Preferences regarding the use of life-sustaining treatments, where to spend final days, consulting a supportive and palliative care team, attempted cardiopulmonary resuscitation (CPR), autopsy, and organ and tissue donation. Results: Nearly 85% of respondents prefer cessation of life-sustaining treatments during their final days whenever those may be, 76% prefer to spend their final days at home or in a hospice facility, and 94% wanted their future doctors to consult a supportive and palliative care team. 70% would accept attempted CPR in certain limited circumstances. Most respondents would want an autopsy under certain conditions, and 62% would like to donate their organs. Conclusions and relevance: Analysis of early experience with an all-digital web-based ACP/AD platform demonstrates that individuals from a wide range of ages and conditions can engage in an interrogatory process about values, goals, preferences, and priorities for their medical treatments by developing advance directives and easily make changes to the AD created. Online creation, storage, and retrieval of advance directives has the potential to remove barriers to ACP/AD and, thus, to further improve patient-centered end-of-life care.

Keywords: Advance Care Plan, Advance Decisions, Advance Directives, Consumer; Digital, End of Life Care, Goals, Living Wills, Prefences, Universal Advance Directive, Statements

Procedia PDF Downloads 299
186 Zeolite 4A-confined Ni-Co Nanocluster: An Efficient and Durable Electrocatalyst for Alkaline Methanol Oxidation Reaction

Authors: Sarmistha Baruah, Akshai Kumar, Nageswara Rao Peela

Abstract:

The global energy crisis due to the dependence on fossil fuels and its limited reserves as well as environmental pollution are key concerns to the research communities. However, the implementation of alcohol-based fuel cells such as methanol is anticipated as a reliable source of future energy technology due to their high energy density, environment friendliness, ease of storage, transportation, etc. To drive the anodic methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs), an active and long-lasting catalyst is necessary for efficient energy conversion from methanol. Recently, transition metal-zeolite-based materials have been considered versatile catalysts for a variety of industrial and lab-scale processes. Large specific surface area, well-organized micropores, and adjustable acidity/basicity are characteristics of zeolites that make them excellent supports for immobilizing small-sized and highly dispersed metal species. Significant advancement in the production and characterization of well-defined metal clusters encapsulated within zeolite matrix has substantially expanded the library of materials available, and consequently, their catalytic efficacy. In this context, we developed bimetallic Ni-Co catalysts encapsulated within LTA (also known as 4A) zeolite via a method combined with the in-situ encapsulation of metal species using hydrothermal treatment followed by a chemical reduction process. The prepared catalyst was characterized using advanced characterization techniques, such as X-ray diffraction (XRD), field emission transmission electron microscope (FETEM), field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS). The electrocatalytic activity of the catalyst for MOR was carried out in an alkaline medium at room temperature using techniques such as cyclic voltammetry (CV), and chronoamperometry (CA). The resulting catalyst exhibited better catalytic activity of 12.1 mA cm-2 at 1.12 V vs Ag/AgCl and retained remarkable stability (~77%) even after 1000 cycles CV test for the electro-oxidation of methanol in alkaline media without any significant microstructural changes. The high surface area, better Ni-Co species integration in the zeolite, and the ample amount of surface hydroxyl groups contribute to highly dispersed active sites and quick analyte diffusion, which provide notable MOR kinetics. Thus, this study will open up new possibilities to develop a noble metal-free zeolite-based electrocatalyst due to its simple synthesis steps, large-scale fabrication, improved stability, and efficient activity for DMFC application.

Keywords: alkaline media, bimetallic, encapsulation, methanol oxidation reaction, LTA zeolite.

Procedia PDF Downloads 35
185 Switchable Lipids: From a Molecular Switch to a pH-Sensitive System for the Drug and Gene Delivery

Authors: Jeanne Leblond, Warren Viricel, Amira Mbarek

Abstract:

Although several products have reached the market, gene therapeutics are still in their first stages and require optimization. It is possible to improve their lacking efficiency by the use of carefully engineered vectors, able to carry the genetic material through each of the biological barriers they need to cross. In particular, getting inside the cell is a major challenge, because these hydrophilic nucleic acids have to cross the lipid-rich plasmatic and/or endosomal membrane, before being degraded into lysosomes. It takes less than one hour for newly endocytosed liposomes to reach highly acidic lysosomes, meaning that the degradation of the carried gene occurs rapidly, thus limiting the transfection efficiency. We propose to use a new pH-sensitive lipid able to change its conformation upon protonation at endosomal pH values, leading to the disruption of the lipidic bilayer and thus to the fast release of the nucleic acids into the cytosol. It is expected that this new pH-sensitive mechanism promote endosomal escape of the gene, thereby its transfection efficiency. The main challenge of this work was to design a preparation presenting fast-responding lipidic bilayer destabilization properties at endosomal pH 5 while remaining stable at blood pH value and during storage. A series of pH-sensitive lipids able to perform a conformational switch upon acidification were designed and synthesized. Liposomes containing these switchable lipids, as well as co-lipids were prepared and characterized. The liposomes were stable at 4°C and pH 7.4 for several months. Incubation with siRNA led to the full entrapment of nucleic acids as soon as the positive/negative charge ratio was superior to 2. The best liposomal formulation demonstrated a silencing efficiency up to 10% on HeLa cells, very similar to a commercial agent, with a lowest toxicity than the commercial agent. Using flow cytometry and microscopy assays, we demonstrated that drop of pH was required for the transfection efficiency, since bafilomycin blocked the transfection efficiency. Additional evidence was brought by the synthesis of a negative control lipid, which was unable to switch its conformation, and consequently exhibited no transfection ability. Mechanistic studies revealed that the uptake was mediated through endocytosis, by clathrin and caveolae pathways, as reported for previous lipid nanoparticle systems. This potent system was used for the treatment of hypercholesterolemia. The switchable lipids were able to knockdown PCSK9 expression on human hepatocytes (Huh-7). Its efficiency is currently evaluated on in vivo mice model of PCSK9 KO mice. In summary, we designed and optimized a new cationic pH-sensitive lipid for gene delivery. Its transfection efficiency is similar to the best available commercial agent, without the usually associated toxicity. The promising results lead to its use for the treatment of hypercholesterolemia on a mice model. Anticancer applications and pulmonary chronic disease are also currently investigated.

Keywords: liposomes, siRNA, pH-sensitive, molecular switch

Procedia PDF Downloads 184
184 Effect of Rolling Shear Modulus and Geometric Make up on the Out-Of-Plane Bending Performance of Cross-Laminated Timber Panel

Authors: Md Tanvir Rahman, Mahbube Subhani, Mahmud Ashraf, Paul Kremer

Abstract:

Cross-laminated timber (CLT) is made from layers of timber boards orthogonally oriented in the thickness direction, and due to this, CLT can withstand bi-axial bending in contrast with most other engineered wood products such as laminated veneer lumber (LVL) and glued laminated timber (GLT). Wood is cylindrically anisotropic in nature and is characterized by significantly lower elastic modulus and shear modulus in the planes perpendicular to the fibre direction, and is therefore classified as orthotropic material and is thus characterized by 9 elastic constants which are three elastic modulus in longitudinal direction, tangential direction and radial direction, three shear modulus in longitudinal tangential plane, longitudinal radial plane and radial tangential plane and three Poisson’s ratio. For simplification, timber materials are generally assumed to be transversely isotropic, reducing the number of elastic properties characterizing it to 5, where the longitudinal plane and radial planes are assumed to be planes of symmetry. The validity of this assumption was investigated through numerical modelling of CLT with both orthotropic mechanical properties and transversely isotropic material properties for three softwood species, which are Norway spruce, Douglas fir, Radiata pine, and three hardwood species, namely Victorian ash, Beech wood, and Aspen subjected to uniformly distributed loading under simply supported boundary condition. It was concluded that assuming the timber to be transversely isotropic results in a negligible error in the order of 1 percent. It was also observed that along with longitudinal elastic modulus, ratio of longitudinal shear modulus (GL) and rolling shear modulus (GR) has a significant effect on a deflection for CLT panels of lower span to depth ratio. For softwoods such as Norway spruce and Radiata pine, the ratio of longitudinal shear modulus, GL to rolling shear modulus GR is reported to be in the order of 12 to 15 times in literature. This results in shear flexibility in transverse layers leading to increased deflection under out-of-plane loading. The rolling shear modulus of hardwoods has been found to be significantly higher than those of softwoods, where the ratio between longitudinal shear modulus to rolling shear modulus as low as 4. This has resulted in a significant rise in research into the manufacturing of CLT from entirely from hardwood, as well as from a combination of softwood and hardwoods. The commonly used beam theory to analyze the performance of CLT panels under out-of-plane loads are the Shear analogy method, Gamma method, and k-method. The shear analogy method has been found to be the most effective method where shear deformation is significant. The effect of the ratio of longitudinal shear modulus and rolling shear modulus of cross-layer on the deflection of CLT under uniformly distributed load with respect to its length to depth ratio was investigated using shear analogy method. It was observed that shear deflection is reduced significantly as the ratio of the shear modulus of the longitudinal layer and rolling shear modulus of cross-layer decreases. This indicates that there is significant room for improvement of the bending performance of CLT through developing hybrid CLT from a mix of softwood and hardwood.

Keywords: rolling shear modulus, shear deflection, ratio of shear modulus and rolling shear modulus, timber

Procedia PDF Downloads 98
183 Improving Ghana's Oil Industry Through Integrated Operations

Authors: Esther Simpson, Evans Addo Tetteh

Abstract:

One of the most important sectors in Ghana’s economy is the oil and gas sector. Effective supply chain management is required to ensure the timely delivery of these products to the end users, given the rise in nationwide demand for petroleum products. Contrarily, freight forwarding plays a crucial role in facilitating intra- and intra-country trade, particularly the movement of oil goods. Nevertheless, there has not been enough scientific study done on how marketing, supply chain management, and freight forwarding are integrated in the oil business. By highlighting possible areas for development in the supply chain management of petroleum products, this article seeks to close this gap. The study was predominantly qualitative and featured semi-structured interviews with influential figures in the oil and gas sector, such as marketers, distributors, freight forwarders, and regulatory organizations. The purpose of the interviews was to determine the difficulties and possibilities for enhancing the management of the petroleum products supply chain. Thematic analysis was used to examine the data obtained in order to find patterns and themes that arose. The findings from the study revealed that the oil sector faced a number of issues in terms of supply chain management. Inadequate infrastructure, insufficient storage facilities, a lack of cooperation among parties, and an inadequate regulatory framework were among the obstacles. Furthermore, the study indicated significant prospects for enhancing petroleum product supply chain management, such as the integration of more advanced digital technologies, the formation of strategic alliances, and the adoption of sustainable practices in petroleum product supply chain management. The study's conclusions have far-reaching ramifications for the oil and gas sector, freight forwarding, and Ghana’s economy as a whole. Marketing, supply chain management, and freight forwarding has high prospects from being integrated to improve the efficiency of the petroleum product supply chain, resulting in considerable cost savings for the industry. Furthermore, the use of sustainable practices will improve the industry's sustainability and lessen the environmental effect of the petroleum product supply chain. Based on the findings, we propose that stakeholders in Ghana’s oil and gas sector work together and collaborate to enhance petroleum supply chain management. This collaboration should include the use of digital technologies, the formation of strategic alliances, and the implementation of sustainable practices. Moreover, we urge that governments establish suitable rules to guarantee the efficient and sustainable management of petroleum product supply chains. In conclusion, the integration and combination of marketing, supply chain management, and freight forwarding in the oil business gives a tremendous opportunity for enhancing petroleum product supply chain management. The study's conclusions have far-reaching ramifications for the sector, freight forwarding, and the economy as a whole. Using sustainable practices, integrating digital technology, and forming strategic alliances will improve the efficiency and sustainability of the petroleum product supply chain. We expect that this conference paper will encourage more study and collaboration among oil and gas sector stakeholders to improve petroleum supply chain management.

Keywords: collaboration, logistics, sustainability, supply chain management

Procedia PDF Downloads 59
182 Estimation of State of Charge, State of Health and Power Status for the Li-Ion Battery On-Board Vehicle

Authors: S. Sabatino, V. Calderaro, V. Galdi, G. Graber, L. Ippolito

Abstract:

Climate change is a rapidly growing global threat caused mainly by increased emissions of carbon dioxide (CO₂) into the atmosphere. These emissions come from multiple sources, including industry, power generation, and the transport sector. The need to tackle climate change and reduce CO₂ emissions is indisputable. A crucial solution to achieving decarbonization in the transport sector is the adoption of electric vehicles (EVs). These vehicles use lithium (Li-Ion) batteries as an energy source, making them extremely efficient and with low direct emissions. However, Li-Ion batteries are not without problems, including the risk of overheating and performance degradation. To ensure its safety and longevity, it is essential to use a battery management system (BMS). The BMS constantly monitors battery status, adjusts temperature and cell balance, ensuring optimal performance and preventing dangerous situations. From the monitoring carried out, it is also able to optimally manage the battery to increase its life. Among the parameters monitored by the BMS, the main ones are State of Charge (SoC), State of Health (SoH), and State of Power (SoP). The evaluation of these parameters can be carried out in two ways: offline, using benchtop batteries tested in the laboratory, or online, using batteries installed in moving vehicles. Online estimation is the preferred approach, as it relies on capturing real-time data from batteries while operating in real-life situations, such as in everyday EV use. Actual battery usage conditions are highly variable. Moving vehicles are exposed to a wide range of factors, including temperature variations, different driving styles, and complex charge/discharge cycles. This variability is difficult to replicate in a controlled laboratory environment and can greatly affect performance and battery life. Online estimation captures this variety of conditions, providing a more accurate assessment of battery behavior in real-world situations. In this article, a hybrid approach based on a neural network and a statistical method for real-time estimation of SoC, SoH, and SoP parameters of interest is proposed. These parameters are estimated from the analysis of a one-day driving profile of an electric vehicle, assumed to be divided into the following four phases: (i) Partial discharge (SoC 100% - SoC 50%), (ii) Partial discharge (SoC 50% - SoC 80%), (iii) Deep Discharge (SoC 80% - SoC 30%) (iv) Full charge (SoC 30% - SoC 100%). The neural network predicts the values of ohmic resistance and incremental capacity, while the statistical method is used to estimate the parameters of interest. This reduces the complexity of the model and improves its prediction accuracy. The effectiveness of the proposed model is evaluated by analyzing its performance in terms of square mean error (RMSE) and percentage error (MAPE) and comparing it with the reference method found in the literature.

Keywords: electric vehicle, Li-Ion battery, BMS, state-of-charge, state-of-health, state-of-power, artificial neural networks

Procedia PDF Downloads 41
181 Primary-Color Emitting Photon Energy Storage Nanophosphors for Developing High Contrast Latent Fingerprints

Authors: G. Swati, D. Haranath

Abstract:

Commercially available long afterglow /persistent phosphors are proprietary materials and hence the exact composition and phase responsible for their luminescent characteristics such as initial intensity and afterglow luminescence time are not known. Further to generate various emission colors, commercially available persistence phosphors are physically blended with fluorescent organic dyes such as rodhamine, kiton and methylene blue etc. Blending phosphors with organic dyes results into complete color coverage in visible spectra, however with time, such phosphors undergo thermal and photo-bleaching. This results in the loss of their true emission color. Hence, the current work is dedicated studies on inorganic based thermally and chemically stable primary color emitting nanophosphors namely SrAl2O4:Eu2+, Dy3+, (CaZn)TiO3:Pr3+, and Sr2MgSi2O7:Eu2+, Dy3+. SrAl2O4: Eu2+, Dy3+ phosphor exhibits a strong excitation in UV and visible region (280-470 nm) with a broad emission peak centered at 514 nm is the characteristic emission of parity allowed 4f65d1→4f7 transitions of Eu2+ (8S7/2→2D5/2). Sunlight excitable Sr2MgSi2O7:Eu2+,Dy3+ nanophosphors emits blue color (464 nm) with Commercial international de I’Eclairage (CIE) coordinates to be (0.15, 0.13) with a color purity of 74 % with afterglow time of > 5 hours for dark adapted human eyes. (CaZn)TiO3:Pr3+ phosphor system possess high color purity (98%) which emits intense, stable and narrow red emission at 612 nm due intra 4f transitions (1D2 → 3H4) with afterglow time of 0.5 hour. Unusual property of persistence luminescence of these nanophoshphors supersedes background effects without losing sensitive information these nanophosphors offer several advantages of visible light excitation, negligible substrate interference, high contrast bifurcation of ridge pattern, non-toxic nature revealing finger ridge details of the fingerprints. Both level 1 and level 2 features from a fingerprint can be studied which are useful for used classification, indexing, comparison and personal identification. facile methodology to extract high contrast fingerprints on non-porous and porous substrates using a chemically inert, visible light excitable, and nanosized phosphorescent label in the dark has been presented. The chemistry of non-covalent physisorption interaction between the long afterglow phosphor powder and sweat residue in fingerprints has been discussed in detail. Real-time fingerprint development on porous and non-porous substrates has also been performed. To conclude, apart from conventional dark vision applications, as prepared primary color emitting afterglow phosphors are potentional candidate for developing high contrast latent fingerprints.

Keywords: fingerprints, luminescence, persistent phosphors, rare earth

Procedia PDF Downloads 181