Search results for: heavy metals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2104

Search results for: heavy metals

334 Recovering Copper From Tailing and E-Waste to Create Copper Nanoparticles with Antimicrobial Properties

Authors: Erico R. Carmona, Lucas Hernandez-Saravia, Aliro Villacorta, Felipe Carevic

Abstract:

Tailings and electronic waste (e-waste) are an important source of global contamination. Chile is one of Organisation for Economic Co-operation and Development (OECD) member countries that least recycled this kind of industrial waste, reaching only 3% of the total. Tailings and e-waste recycling offers a valuable tool to minimize the increasing accumulation of waste, supplement the scarcity of some raw materials and to obtain economic benefits through the commercialization of these. It should be noted that this type of industrial waste is an important source of valuable metals, such as copper, which allow generating new business and added value through its transformation into new materials with advanced physical and biological properties. In this sense, the development of nanotechnology has led to the creation of nanomaterials with multiple applications given their unique physicochemical properties. Among others, copper nanoparticles (CuNPs) have gained great interest due to their optical, catalytic, conductive properties, and particularly because of their broad-spectrum antimicrobial activity. There are different synthesis methods of copper nanoparticles; however, green synthesis is one of the most promising methodologies, since it is simple, low-cost, ecological, and generates stable nanoparticles, which makes it a promising methodology for scaling up. Currently, there are few initiatives that involve the development of methods for the recovery and transformation of copper from waste to produce nanoparticles with new properties and better technological benefits. Thus, the objective of this work is to show preliminary data about the develop a sustainable transformation process of tailings and e-waste that allows obtaining a copper-based nanotechnological product with potential antimicrobial applications. For this, samples of tailings and e-waste collected from Tarapacá and Antofagasta region of northern Chile were used to recover copper through efficient, ecological, and low-cost alkaline hydrometallurgical treatments, which to allow obtaining copper with a high degree of purity. On the other hand, the transformation process from recycled copper to a nanomaterial was carried out through a green synthesis approach by using vegetal organic residue extracts that allows obtaining CuNPs following methodologies previously reported by authors. Initial physical characterization with UV-Vis, FTIR, AFM, and TEM methodologies will be reported for CuNPs synthesized.

Keywords: nanomaterials, industrial waste, chile, recycling

Procedia PDF Downloads 64
333 Supply Chain of Energy Resources and Its Alternatives Due to the Arab Spring: The Case of Egyptian Natural Gas Flow to Jordan

Authors: Moh’d Anwer Al-Shboul

Abstract:

The year 2011 was a challenging year for Jordanian economy, which felt a variety of effects from the Arab Spring which took place in neighboring countries. Since February, 5th 2012, the Arab Gas Supply Pipeline, which carries natural gas from Egypt through the Sinai Peninsula and to Jordan and Israel, has been attacked more than 39 times. Jordan imported about 80 percent of its necessity of natural gas (about 250 million cubic feet of natural gas per day) from Egypt to generate particularly electricity, with the reminder of being produced locally. Jordan has utilized multiple alternatives to address the interruption of available natural gas supply from Egypt. The Jordanian distributed power plants now rely on the use of heavy fuel oil and diesel for electricity generation, in this case, it costs Jordan about four times than natural gas. The substitution of Egyptian natural gas supplies by fuel oil and diesel, coupled with the 32 percent rise in global fuel prices, has increased Jordan’s energy import bill by over 50 percent in 2011, reaching more than 16 percent of the 2011 GDP. The increase in the cost of electricity generation pushed the Jordanian economy to borrow from multiple internal and external resource channels, thus increasing the public debt. The Jordanian government’s short-term solution to the reduced natural gas supply from Egypt was alternatively purchasing the necessary quantities from some Gulf countries such as Qatar and/or Saudi Arabia, which can be imported with two possible methods. The first method is to rent a ship equipped with a liquefied natural gas (LNG) terminal, which is currently operating. The second method requires equipping the Aqaba port with an LNG terminal, which also currently is operating. In the long-term, a viable solution to depending on importing expensive and often unreliable natural gas supplies from surrounding countries is to depend more heavily on renewable supply energy, including solar, wind, and water energy.

Keywords: energy supply resources, Arab spring, liquefied natural gas, pipeline, Jordan

Procedia PDF Downloads 109
332 Leaching of Metal Cations from Basic Oxygen Furnace (BOF) Steelmaking Slag Immersed in Water

Authors: Umashankar Morya, Somnath Basu

Abstract:

Metalloids like arsenic are often present as contaminants in industrial effluents. Removal of the same is essential before the safe discharge of the wastewater into the environment. Otherwise, these pollutants tend to percolate into aquifers over a period of time and contaminate drinking water sources. Several adsorbents, including metal powders, carbon nanotubes and zeolites, are being used for this purpose, with varying degrees of success. However, most of these solutions are not only costly but also not always readily available. This restricts their use, especially among financially weaker communities. Slag generated globally from primary steelmaking operations exceeds 200 billion kg every year. Some of it is utilized for applications like road construction, filler in reinforced concrete, railway track ballast and recycled into iron ore agglomeration processes. However, these usually involve low-value addition, and a significant amount of the slag still ends up in a landfill. However, there is a strong possibility that the constituents in the steelmaking slag may immobilize metalloid contaminants present in wastewater through a combination of adsorption and precipitation of insoluble product(s). Preliminary experiments have already indicated that exposure to basic oxygen steelmaking slag does reduce pollutant concentration in wastewater. In addition, the slag is relatively inexpensive and available in large quantities and in several countries across the world. Investigations on the mechanism of interactions at the water-solid interfaces have been in progress for some time. However, at the same time, there are concerns about the possibility of leaching of metal ions from the slag particles in concentrations greater than what exists in the water bodies where the “treated” wastewater would eventually be discharged. The effect of such leached ions on the aquatic flora and fauna is yet uncertain. This has prompted the present investigation, which focuses on the leaching of metal ions from steelmaking slag particles in contact with wastewater, and the influence of these ions on the removal of contaminant species. Experiments were carried out to quantify the leaching behavior of different ionic species upon exposure of the slag particles to simulated wastewater, both with and without specific metalloid contaminants.

Keywords: slag, water, metalloid, heavy metal, wastewater

Procedia PDF Downloads 40
331 The 'Ineffectiveness' of Teaching Research Methods in Moroccan Higher Education: A Qualitative Study

Authors: Ahmed Chouari

Abstract:

Although research methods has been an integral part of the curriculum in Moroccan higher education for decades, it seems that the research methods teaching pedagogy that teachers use suffers from a serious absence of a body of literature in the field. Also, the various challenges that both teachers and students of research methods face have received little interest by researchers in comparison to other fields such as applied linguistics. Therefore, the main aim of this study is to remedy to this situation by exploring one of the major issues in teaching research methods – that is, the phenomenon of students’ dissatisfaction with the research methods course in higher education in Morocco. The aim is also to understand students’ attitudes and perceptions on how to make the research methods course more effective in the future. Three qualitative research questions were used: (1) To what extent are graduate students satisfied with the pedagogies used by the teachers of the research methods course in Moroccan higher education? (2) To what extent are graduate students satisfied with the approach used in assessing research methods in Moroccan higher education? (3) What are students’ perceptions on how to make the research methods course more effective in Moroccan higher education? In this study, a qualitative content analysis was adopted to analyze students’ views and perspectives about the major factors behind their dissatisfaction with the course at the School of Arts and Humanities – University of Moulay Ismail. A semi-structured interview was used to collect data from 14 respondents from two different Master programs. The results show that there is a general consensus among the respondents about the major factors behind the ineffectiveness of the course. These factors include theory-practice gap, heavy reliance on theoretical knowledge at the expense of procedural knowledge, and ineffectiveness of some teachers. The findings also reveal that teaching research methods in Morocco requires more time, better equipment, and more competent teachers. Above all, the findings indicate that today there is an urgent need in Morocco to shift from teacher-centered approaches to learner-centered approaches in teaching the research methods course. These findings, thus, contribute to the existing literature by unraveling the factors that impede the learning process, and by suggesting a set of strategies that can make course more effective.

Keywords: competencies, learner-centered teaching, research methods, student autonomy, pedagogy

Procedia PDF Downloads 233
330 Synthesis, Characterization and Photocatalytic Applications of Ag-Doped-SnO₂ Nanoparticles by Sol-Gel Method

Authors: M. S. Abd El-Sadek, M. A. Omar, Gharib M. Taha

Abstract:

In recent years, photocatalytic degradation of various kinds of organic and inorganic pollutants using semiconductor powders as photocatalysts has been extensively studied. Owing to its relatively high photocatalytic activity, biological and chemical stability, low cost, nonpoisonous and long stable life, Tin oxide materials have been widely used as catalysts in chemical reactions, including synthesis of vinyl ketone, oxidation of methanol and so on. Tin oxide (SnO₂), with a rutile-type crystalline structure, is an n-type wide band gap (3.6 eV) semiconductor that presents a proper combination of chemical, electronic and optical properties that make it advantageous in several applications. In the present work, SnO₂ nanoparticles were synthesized at room temperature by the sol-gel process and thermohydrolysis of SnCl₂ in isopropanol by controlling the crystallite size through calculations. The synthesized nanoparticles were identified by using XRD analysis, TEM, FT-IR, and Uv-Visible spectroscopic techniques. The crystalline structure and grain size of the synthesized samples were analyzed by X-Ray diffraction analysis (XRD) and the XRD patterns confirmed the presence of tetragonal phase SnO₂. In this study, Methylene blue degradation was tested by using SnO₂ nanoparticles (at different calculations temperatures) as a photocatalyst under sunlight as a source of irradiation. The results showed that the highest percentage of degradation of Methylene blue dye was obtained by using SnO₂ photocatalyst at calculations temperature 800 ᵒC. The operational parameters were investigated to be optimized to the best conditions which result in complete removal of organic pollutants from aqueous solution. It was found that the degradation of dyes depends on several parameters such as irradiation time, initial dye concentration, the dose of the catalyst and the presence of metals such as silver as a dopant and its concentration. Percent degradation was increased with irradiation time. The degradation efficiency decreased as the initial concentration of the dye increased. The degradation efficiency increased as the dose of the catalyst increased to a certain level and by further increasing the SnO₂ photocatalyst dose, the degradation efficiency is decreased. The best degradation efficiency on which obtained from pure SnO₂ compared with SnO₂ which doped by different percentage of Ag.

Keywords: SnO₂ nanoparticles, a sol-gel method, photocatalytic applications, methylene blue, degradation efficiency

Procedia PDF Downloads 122
329 The Influence of Organic Waste on Vegetable Nutritional Components and Healthy Livelihood, Minna, Niger State, Nigeria

Authors: A. Abdulkadir, A. A. Okhimamhe, Y. M. Bello, H. Ibrahim, D. H. Makun, M. T. Usman

Abstract:

Household waste form a larger proportion of waste generated across the state, accumulation of organic waste is an apparent problem and the existing dump sites could be overstressed. Niger state has abundant arable land and water resources thus should be one of the highest producers of agricultural crops in the country. However, the major challenge to agricultural sector today is the loss of soil nutrient coupled with high cost of fertilizer. These have continued to increase the use of fertilizer and decomposed solid waste for enhancing agricultural yield, which have varying effects on the soil as well a threat to human livelihood. Consequently, vegetable yield samples from poultry droppings decomposed household waste manure, NPK treatments and control from each replication were subjected to proximate analysis to determine the nutritional and anti-nutritional component as well as heavy metal concentration. Data collected was analyzed using SPSS software and Randomized complete Block Design means were compared. The result shows that the treatments do not devoid the concentrations of any nutritional components while the anti-nutritional analysis proved that NPK had higher oxalate content than control and organic treats. The concentration of lead and cadmium are within safe permissible level while the mercury level exceeded the FAO/WHO maximum permissible limit for the entire treatments depicts the need for urgent intervention to minimize mercury levels in soil and manure in order to mitigate its toxic effect. Thus, eco-agriculture should be widely accepted and promoted by the stakeholders for soil amendment, higher yield, strategies for sustainable environmental protection, food security, poverty eradication, attainment of sustainable development and healthy livelihood.

Keywords: anti-nutritional, healthy livelihood, nutritional waste, organic waste

Procedia PDF Downloads 355
328 Development of Hydrodynamic Drag Calculation and Cavity Shape Generation for Supercavitating Torpedoes

Authors: Sertac Arslan, Sezer Kefeli

Abstract:

In this paper, firstly supercavitating phenomenon and supercavity shape design parameters are explained and then drag force calculation methods of high speed supercavitating torpedoes are investigated with numerical techniques and verified with empirical studies. In order to reach huge speeds such as 200, 300 knots for underwater vehicles, hydrodynamic hull drag force which is proportional to density of water (ρ) and square of speed should be reduced. Conventional heavy weight torpedoes could reach up to ~50 knots by classic underwater hydrodynamic techniques. However, to exceed 50 knots and reach about 200 knots speeds, hydrodynamic viscous forces must be reduced or eliminated completely. This requirement revives supercavitation phenomena that could be implemented to conventional torpedoes. Supercavitation is the use of cavitation effects to create a gas bubble, allowing the torpedo to move at huge speed through the water by being fully developed cavitation bubble. When the torpedo moves in a cavitation envelope due to cavitator in nose section and solid fuel rocket engine in rear section, this kind of torpedoes could be entitled as Supercavitating Torpedoes. There are two types of cavitation; first one is natural cavitation, and second one is ventilated cavitation. In this study, disk cavitator is modeled with natural cavitation and supercavitation phenomenon parameters are studied. Moreover, drag force calculation is performed for disk shape cavitator with numerical techniques and compared via empirical studies. Drag forces are calculated with computational fluid dynamics methods and different empirical methods. Numerical calculation method is developed by comparing with empirical results. In verification study cavitation number (σ), drag coefficient (CD) and drag force (D), cavity wall velocity (U

Keywords: cavity envelope, CFD, high speed underwater vehicles, supercavitation, supercavity flows

Procedia PDF Downloads 143
327 Tree Resistance to Wind Storm: The Effects of Soil Saturation on Tree Anchorage of Young Pinus pinaster

Authors: P. Defossez, J. M. Bonnefond, D. Garrigou, P. Trichet, F. Danjon

Abstract:

Windstorm damage to European forests has ecological, social and economic consequences of major importance. Most trees during storms are uprooted. While a large amount of work has been done over the last decade on understanding the aerial tree response to turbulent wind flow, much less is known about the root-soil interface, and the impact of soil moisture and root-soil system fatiguing on tree uprooting. Anchorage strength is expected to be reduced by water-logging and heavy rain during storms due to soil strength decrease with soil water content. Our paper is focused on the maritime pine cultivated on sandy soil, as a representative species of the Forêt des Landes, the largest cultivated forest in Europe. This study aims at providing knowledge on the effects of soil saturation on root anchorage. Pulling experiments on trees were performed to characterize the resistance to wind by measuring the critical bending moment (Mc). Pulling tests were performed on 12 maritime pines of 13-years old for two unsaturated soil conditions that represent the soil conditions expected in winter when wind storms occur in France (w=11.46 to 23.34 % gg⁻¹). A magnetic field digitizing technique was used to characterize the three-dimensional architecture of root systems. The soil mechanical properties as function of soil water content were characterized by laboratory mechanical measurements as function of soil water content and soil porosity on remolded samples using direct shear tests at low confining pressure ( < 15 kPa). Remarkably Mc did not depend on w but mainly on the root system morphology. We suggested that the importance of soil water conditions on tree anchorage depends on the tree size. This study gives a new insight on young tree anchorage: roots may sustain by themselves anchorage, whereas adhesion between roots and surrounding soil may be negligible in sandy soil.

Keywords: roots, sandy soil, shear strength, tree anchorage, unsaturated soil

Procedia PDF Downloads 258
326 The Effect of Air Injection in Irrigation Water on Sugar Beet Yield

Authors: Yusuf Ersoy Yildirim, Ismail Tas, Ceren Gorgusen, Tugba Yeter, Aysegul Boyacioglu, K. Mehmet Tugrul, Murat Tugrul, Ayten Namli, H. Sabri Ozturk, M. Onur Akca

Abstract:

In recent years, a lot of research has been done for the sustainable use of scarce resources in the world. Especially, effective and sustainable use of water resources has been researched for many years. Sub-surface drip irrigation (SDI) is one of the most effective irrigation methods in which efficient and sustainable use of irrigation water can be achieved. When the literature is taken into consideration, it is often emphasized that, besides its numerous advantages, it also allows the application of irrigation water to the plant root zone along with air. It is stated in different studies that the air applied to the plant root zone with irrigation water has a positive effect on the root zone. Plants need sufficient oxygen for root respiration as well as for the metabolic functions of the roots. Decreased root respiration due to low oxygen content reduces transpiration, disrupts the flow of ions, and increases the ingress of salt reaching toxic levels, seriously affecting plant growth. Lack of oxygen (Hypoxia) can affect the survival of plants. The lack of oxygen in the soil is related to the exchange of gases in the soil with the gases in the atmosphere. Soil aeration is an important physical parameter of a soil. It is highly dynamic and is closely related to the amount of water in the soil and its bulk weight. Subsurface drip irrigation; It has higher water use efficiency compared to irrigation methods such as furrow irrigation and sprinkler irrigation. However, in heavy clay soils, subsurface drip irrigation creates continuous wetting fronts that predispose the rhizosphere region to hypoxia or anoxia. With subsurface drip irrigation, the oxygen is limited for root microbial respiration and root development, with the continuous spreading of water to a certain region of the root zone. In this study, the change in sugar beet yield caused by air application in the SDI system will be explained.

Keywords: sugar beet, subsurface drip irrigation, air application, irrigation efficiency

Procedia PDF Downloads 51
325 Single and Sequential Extraction for Potassium Fractionation and Nano-Clay Flocculation Structure

Authors: Chakkrit Poonpakdee, Jing-Hua Tzen, Ya-Zhen Huang, Yao-Tung Lin

Abstract:

Potassium (K) is a known macro nutrient and essential element for plant growth. Single leaching and modified sequential extraction schemes have been developed to estimate the relative phase associations of soil samples. The sequential extraction process is a step in analyzing the partitioning of metals affected by environmental conditions, but it is not a tool for estimation of K bioavailability. While, traditional single leaching method has been used to classify K speciation for a long time, it depend on its availability to the plants and use for potash fertilizer recommendation rate. Clay mineral in soil is a factor for controlling soil fertility. The change of the micro-structure of clay minerals during various environment (i.e. swelling or shrinking) is characterized using Transmission X-Ray Microscopy (TXM). The objective of this study are to 1) compare the distribution of K speciation between single leaching and sequential extraction process 2) determined clay particle flocculation structure before/after suspension with K+ using TXM. Four tropical soil samples: farming without K fertilizer (10 years), long term applied K fertilizer (10 years; 168-240 kg K2O ha-1 year-1), red soil (450-500 kg K2O ha-1 year-1) and forest soil were selected. The results showed that the amount of K speciation by single leaching method were high in mineral K, HNO3 K, Non-exchangeable K, NH4OAc K, exchangeable K and water soluble K respectively. Sequential extraction process indicated that most K speciations in soil were associated with residual, organic matter, Fe or Mn oxide and exchangeable fractions and K associate fraction with carbonate was not detected in tropical soil samples. In farming long term applied K fertilizer and red soil were higher exchangeable K than farming long term without K fertilizer and forest soil. The results indicated that one way to increase the available K (water soluble K and exchangeable K) should apply K fertilizer and organic fertilizer for providing available K. The two-dimension of TXM image of clay particles suspension with K+ shows that the aggregation structure of clay mineral closed-void cellular networks. The porous cellular structure of soil aggregates in 1 M KCl solution had large and very larger empty voids than in 0.025 M KCl and deionized water respectively. TXM nanotomography is a new technique can be useful in the field as a tool for better understanding of clay mineral micro-structure.

Keywords: potassium, sequential extraction process, clay mineral, TXM

Procedia PDF Downloads 257
324 Acoustic Emission Monitoring of Surface Roughness in Ultra High Precision Grinding of Borosilicate-Crown Glass

Authors: Goodness Onwuka, Khaled Abou-El-Hossein

Abstract:

The increase in the demand for precision optics, coupled with the absence of much research output in the ultra high precision grinding of precision optics as compared to the ultrahigh precision diamond turning of optical metals has fostered the need for more research in the ultra high precision grinding of an optical lens. Furthermore, the increase in the stringent demands for nanometric surface finishes through lapping, polishing and grinding processes necessary for the use of borosilicate-crown glass in the automotive and optics industries has created the demand to effectively monitor the surface roughness during the production process. Acoustic emission phenomenon has been proven as useful monitoring technique in several manufacturing processes ranging from monitoring of bearing production to tool wear estimation. This paper introduces a rare and unique approach with the application of acoustic emission technique to monitor the surface roughness of borosilicate-crown glass during an ultra high precision grinding process. This research was carried out on a 4-axes Nanoform 250 ultrahigh precision lathe machine using an ultra high precision grinding spindle to machine the flat surface of the borosilicate-crown glass with the tip of the grinding wheel. A careful selection of parameters and design of experiment was implemented using Box-Behnken method to vary the wheel speed, feed rate and depth of cut at three levels with a 3-center point design. Furthermore, the average surface roughness was measured using Taylor Hobson PGI Dimension XL optical profilometer, and an acoustic emission data acquisition device from National Instruments was utilized to acquire the signals while the data acquisition codes were designed with National Instrument LabVIEW software for acquisition at a sampling rate of 2 million samples per second. The results show that the raw and root mean square amplitude values of the acoustic signals increased with a corresponding increase in the measured average surface roughness values for the different parameter combinations. Therefore, this research concludes that acoustic emission monitoring technique is a potential technique for monitoring the surface roughness in the ultra high precision grinding of borosilicate-crown glass.

Keywords: acoustic emission, borosilicate-crown glass, surface roughness, ultra high precision grinding

Procedia PDF Downloads 265
323 Optimizing the Design Parameters of Acoustic Power Transfer Model to Achieve High Power Intensity and Compact System

Authors: Ariba Siddiqui, Amber Khan

Abstract:

The need for bio-implantable devices in the field of medical sciences has been increasing day by day; however, the charging of these devices is a major issue. Batteries, a very common method of powering the implants, have a limited lifetime and bulky nature. Therefore, as a replacement of batteries, acoustic power transfer (APT) technology is being accepted as the most suitable technique to wirelessly power the medical implants in the present scenario. The basic model of APT consists of piezoelectric transducers that work on the principle of converse piezoelectric effect at the transmitting end and direct piezoelectric effect at the receiving end. This paper provides mechanistic insight into the parameters affecting the design and efficient working of acoustic power transfer systems. The optimum design considerations have been presented that will help to compress the size of the device and augment the intensity of the pressure wave. A COMSOL model of the PZT (Lead Zirconate Titanate) transducer was developed. The model was simulated and analyzed on a frequency spectrum. The simulation results displayed that the efficiency of these devices is strongly dependent on the frequency of operation, and a wrong choice of the operating frequency leads to the high absorption of acoustic field inside the tissue (medium), poor power strength, and heavy transducers, which in effect influence the overall configuration of the acoustic systems. Considering all the tradeoffs, the simulations were performed again by determining an optimum frequency (900 kHz) that resulted in the reduction of the transducer's thickness to 1.96 mm and augmented the power strength with an intensity of 432 W/m². Thus, the results obtained after the second simulation contribute to lesser attenuation, lightweight systems, high power intensity, and also comply with safety limits provided by the U.S Food and Drug Administration (FDA). It was also found that the chosen operating frequency enhances the directivity of the acoustic wave at the receiver side.

Keywords: acoustic power, bio-implantable, COMSOL, Lead Zirconate Titanate, piezoelectric, transducer

Procedia PDF Downloads 141
322 Financing Energy Efficiency: Innovative Options

Authors: Rahul Ravindranathan, R. P. Gokul

Abstract:

India, in its efforts towards economic and social development, is currently experiencing a heavy demand for energy. Due to the lack of sufficient domestic energy reserves, the country is highly dependent on energy imports which has increased rapidly at a rate of about 12 % per annum since 2005. Hence, India is currently focusing its efforts to manage this energy supply and demand gap and eventually achieve energy security. One of the most cost effective means to reduce this gap is by adopting Energy efficiency measures in the country. Initial assessments have shown that Energy efficiency measures have an energy conservation potential of about 23%. For an estimated investment potential of USD 8 Billion, the annual energy savings was estimated to be about 180 Billion Units per annum. In order to explore this huge energy conservation potential, many critical factors need to be considered to achieve practical energy savings. Financing options for these investments is one such major factor. Not only has India come out with various policy level as well as technology level drives to promote Energy efficiency but it has also developed various financing schemes to promote investment in Energy Efficiency projects. The Public sector has already come out with certain financing schemes such as the Partial Risk Guarantee Fund (PRGF), Venture Capital Fund (VCF), Partial Risk Sharing Fund (PRSF) etc., and various sectors are gradually utilizing these schemes to implement energy saving measures. However, additional financing options are required in order to explore the untouched energy conservation potential in the country. Hence, there is a need to develop some innovative financing options for India which would motivate the private sectors as well as financing institutions to invest in these energy saving measures. This paper shall review the existing financing schemes launched by the Government of India and highlight the key benefits as well as challenges with respect to these schemes. In addition to this, the paper would also review new and innovative financing schemes for India and how the same could be adopted in other parts of the globe especially in South and South East Asia. This review would provide an insight to the various Governments as well as Financial Institutions in coming out with new financing schemes for their country.

Keywords: energy, efficiency, financing, India

Procedia PDF Downloads 310
321 A Case Study on Vocational Teachers’ Perceptions on Their Linguistically and Culturally Responsive Teaching

Authors: Kirsi Korkealehto

Abstract:

In Finland the transformation from homogenous culture into multicultural one as a result of heavy immigration has been rapid in the recent decades. As multilingualism and multiculturalism are growing features in our society, teachers in all educational levels need to be competent for encounters with students from diverse cultural backgrounds. Consequently, also the number of multicultural and multilingual vocational school students has increased which has not been taken into consideration in teacher education enough. To bridge this gap between teachers’ competences and the requirements of the contemporary school world, Finnish Ministry of Culture and Education established the DivEd-project. The aim of the project is to prepare all teachers to work in the linguistically and culturally diverse world they live in, to develop and increase culturally sustaining and linguistically responsive pedagogy in Finland, increase awareness among Teacher Educators working with preservice teachers and to increase awareness and provide specific strategies to in-service teachers. The partners in the nationwide project are 6 universities and 2 universities of applied sciences. In this research, the linguistically and culturally sustainable teaching practices developed within the DivEd-project are tested in practice. This research aims to explore vocational teachers’ perceptions of these multilingualism and multilingual educational practices. The participants of this study are vocational teachers in of different fields. The data were collected by individual, face-to-face interviews. The data analysis was conducted through content analysis. The findings indicate that the vocational teachers experience that they lack knowledge on linguistically and culturally responsive pedagogy. Moreover, they regard themselves in some extent incompetent in incorporating multilingually and multiculturally sustainable pedagogy in everyday teaching work. Therefore, they feel they need more training pertaining multicultural and multilingual knowledge, competences and suitable pedagogical methods for teaching students from diverse linguistic and cultural backgrounds.

Keywords: multicultural, multilingual, teacher competence, vocational school

Procedia PDF Downloads 115
320 In-Vitro Evaluation of the Long-Term Stability of PEDOT:PSS Coated Microelectrodes for Chronic Recording and Electrical Stimulation

Authors: A. Schander, T. Tessmann, H. Stemmann, S. Strokov, A. Kreiter, W. Lang

Abstract:

For the chronic application of neural prostheses and other brain-computer interfaces, long-term stable microelectrodes for electrical stimulation are essential. In recent years many developments were done to investigate different appropriate materials for these electrodes. One of these materials is the electrical conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT), which has lower impedance and higher charge injection capacity compared to noble metals like gold and platinum. However the long-term stability of this polymer is still unclear. Thus this paper reports on the in-vitro evaluation of the long-term stability of PEDOT coated gold microelectrodes. For this purpose a highly flexible electrocorticography (ECoG) electrode array, based on the polymer polyimide, is used. This array consists of circular gold electrodes with a diameter of 560 µm (0.25 mm2). In total 25 electrodes of this array were coated simultaneously with the polymer PEDOT:PSS in a cleanroom environment using a galvanostatic electropolymerization process. After the coating the array is additionally sterilized using a steam sterilization process (121°C, 1 bar, 20.5 min) to simulate autoclaving prior to the implantation of such an electrode array. The long-term measurements were performed in phosphate-buffered saline solution (PBS, pH 7.4) at the constant body temperature of 37°C. For the in-vitro electrical stimulation a one channel bipolar current stimulator is used. The stimulation protocol consists of a bipolar current amplitude of 5 mA (cathodal phase first), a pulse duration of 100 µs per phase, a pulse pause of 50 µs and a frequency of 1 kHz. A PEDOT:PSS coated gold electrode with an area of 1 cm2 serves as the counter electrode. The electrical stimulation is performed continuously with a total amount of 86.4 million bipolar current pulses per day. The condition of the PEDOT coated electrodes is monitored in between with electrical impedance spectroscopy measurements. The results of this study demonstrate that the PEDOT coated electrodes are stable for more than 3.6 billion bipolar current pulses. Also the unstimulated electrodes show currently no degradation after the time period of 5 months. These results indicate an appropriate long-term stability of this electrode coating for chronic recording and electrical stimulation. The long-term measurements are still continuing to investigate the life limit of this electrode coating.

Keywords: chronic recording, electrical stimulation, long-term stability, microelectrodes, PEDOT

Procedia PDF Downloads 555
319 Reduction of Nitrogen Monoxide with Carbon Monoxide from Gas Streams by 10% wt. Cu-Ce-Fe-Co/Activated Carbon

Authors: K. L. Pan, M. B. Chang

Abstract:

Nitrogen oxides (NOₓ) is regarded as one of the most important air pollutants. It not only causes adverse environmental effects but also harms human lungs and respiratory system. As a post-combustion treatment, selective catalytic reduction (SCR) possess the highest NO removal efficiency ( ≥ 85%), which is considered as the most effective technique for removing NO from gas streams. However, injection of reducing agent such as NH₃ is requested, and it is costly and may cause secondary pollution. Reduction of NO with carbon monoxide (CO) as reducing agent has been previously investigated. In this process, the key step involves the NO adsorption and dissociation. Also, the high performance mainly relies on the amounts of oxygen vacancy on catalyst surface and redox ability of catalyst, because oxygen vacancy can activate the N-O bond to promote its dissociation. Additionally, perfect redox ability can promote the adsorption of NO and oxidation of CO. Typically, noble metals such as iridium (Ir), platinum (Pt), and palladium (Pd) are used as catalyst for the reduction of NO with CO; however, high cost has limited their applications. Recently, transition metal oxides have been investigated for the reduction of NO with CO, especially CuₓOy, CoₓOy, Fe₂O₃, and MnOₓ are considered as effective catalysts. However, deactivation is inevitable as oxygen (O₂) exists in the gas streams because active sites (oxygen vacancies) of catalyst are occupied by O₂. In this study, Cu-Ce-Fe-Co is prepared and supported on activated carbon by impregnation method to form 10% wt. Cu-Ce-Fe-Co/activated carbon catalyst. Generally, addition of activated carbon on catalyst can bring several advantages: (1) NO can be effectively adsorbed by interaction between catalyst and activated carbon, resulting in the improvement of NO removal, (2) direct NO decomposition may be achieved over carbon associated with catalyst, and (3) reduction of NO could be enhanced by a reducing agent over carbon-supported catalyst. Therefore, 10% wt. Cu-Ce-Fe-Co/activated carbon may have better performance for reduction of NO with CO. Experimental results indicate that NO conversion achieved with 10% wt. Cu-Ce-Fe-Co/activated carbon reaches 83% at 150°C with 300 ppm NO and 10,000 ppm CO. As temperature is further increased to 200°C, 100% NO conversion could be achieved, implying that 10% wt. Cu-Ce-Fe-Co/activated carbon prepared has good activity for the reduction of NO with CO. In order to investigate the effect of O₂ on reduction of NO with CO, 1-5% O₂ are introduced into the system. The results indicate that NO conversions still maintain at ≥ 90% with 1-5% O₂ conditions at 200°C. It is worth noting that effect of O₂ on reduction of NO with CO could be significantly improved as carbon is used as support. It is inferred that carbon support can react with O₂ to produce CO₂ as O₂ exists in the gas streams. Overall, 10% wt. Cu-Ce-Fe-Co/activated carbon is demonstrated with good potential for reduction of NO with CO, and possible mechanisms will be elucidated in this paper.

Keywords: nitrogen oxides (NOₓ), carbon monoxide (CO), reduction of NO with CO, carbon material, catalysis

Procedia PDF Downloads 218
318 Comparison of Bismuth-Based Nanoparticles as Radiosensitization Agents for Radiotherapy

Authors: Merfat Algethami, Anton Blencowe, Bryce Feltis, Stephen Best, Moshi Geso

Abstract:

Nano-materials with high atomic number atoms have been demonstrated to enhance the effective radiation dose and thus potentially could improve therapeutic efficacy in radiotherapy. The optimal nanoparticulate agents require high X-ray absorption coefficients, low toxicity, and should be cost effective. The focus of our research is the development of a nanoparticle therapeutic agent that can be used in radiotherapy to provide optimal enhancement of the radiation effects on the target. In this study, we used bismuth (Bi) nanoparticles coated with starch and bismuth sulphide nanoparticles (Bi2S3) coated with polyvinylpyrrolidone (PVP). These NPs are of low toxicity and are one of the least expensive heavy metal-based nanoparticles. The aims of this study were to synthesise Bi2S3 and Bi NPs, and examine their cytotoxicity to human lung adenocarcinoma epithelial cells (A549). The dose enhancing effects of NPs on A549 cells were examined at both KV and MV energies. The preliminary results revealed that bismuth based nanoparticles show increased radio-sensitisation of cells, displaying dose enhancement with KV X-ray energies and to a lesser degree for the MV energies. We also observed that Bi NPs generated a greater dose enhancement effect than Bi2S3 NPs in irradiated A549 cells. The maximum Dose Enhancement Factor (DEF) was obtained at lower energy KV range when cells treated with Bi NPs (1.5) compared to the DEF of 1.2 when cells treated with Bi2S3NPs. Less radiation dose enhancement was observed when using high energy MV beam with higher DEF value of Bi NPs treatment (1.26) as compared to 1.06 DEF value with Bi2S3 NPs. The greater dose enhancement was achieved at KV energy range, due the effect of the photoelectric effect which is the dominant process of interaction of X-ray. The cytotoxic effect of Bi NPs on enhancing the X-ray dose was higher due to the higher amount of elemental Bismuth present in Bi NPs compared to Bi2S3 NPs. The results suggest that Bismuth based NPs can be considered as valuable dose enhancing agents when used in clinical applications.

Keywords: A549 lung cancer cells, Bi2S3 nanoparticles, dose enhancement effect, radio-sensitising agents

Procedia PDF Downloads 241
317 The Microstructure and Corrosion Behavior of High Entropy Metallic Layers Electrodeposited by Low and High-Temperature Methods

Authors: Zbigniew Szklarz, Aldona Garbacz-Klempka, Magdalena Bisztyga-Szklarz

Abstract:

Typical metallic alloys bases on one major alloying component, where the addition of other elements is intended to improve or modify certain properties, most of all the mechanical properties. However, in 1995 a new concept of metallic alloys was described and defined. High Entropy Alloys (HEA) contains at least five alloying elements in an amount from 5 to 20 at.%. A common feature this type of alloys is an absence of intermetallic phases, high homogeneity of the microstructure and unique chemical composition, what leads to obtaining materials with very high strength indicators, stable structures (also at high temperatures) and excellent corrosion resistance. Hence, HEA can be successfully used as a substitutes for typical metallic alloys in various applications where a sufficiently high properties are desirable. For fabricating HEA, a few ways are applied: 1/ from liquid phase i.e. casting (usually arc melting); 2/ from solid phase i.e. powder metallurgy (sintering methods preceded by mechanical synthesis) and 3/ from gas phase e.g. sputtering or 4/ other deposition methods like electrodeposition from liquids. Application of different production methods creates different microstructures of HEA, which can entail differences in their properties. The last two methods also allows to obtain coatings with HEA structures, hereinafter referred to as High Entropy Films (HEF). With reference to above, the crucial aim of this work was the optimization of the manufacturing process of the multi-component metallic layers (HEF) by the low- and high temperature electrochemical deposition ( ED). The low-temperature deposition process was crried out at ambient or elevated temperature (up to 100 ᵒC) in organic electrolyte. The high-temperature electrodeposition (several hundred Celcius degrees), in turn, allowed to form the HEF layer by electrochemical reduction of metals from molten salts. The basic chemical composition of the coatings was CoCrFeMnNi (known as Cantor’s alloy). However, it was modified by other, selected elements like Al or Cu. The optimization of the parameters that allow to obtain as far as it possible homogeneous and equimolar composition of HEF is the main result of presented studies. In order to analyse and compare the microstructure, SEM/EBSD, TEM and XRD techniques were employed. Morover, the determination of corrosion resistance of the CoCrFeMnNi(Cu or Al) layers in selected electrolytes (i.e. organic and non-organic liquids) was no less important than the above mentioned objectives.

Keywords: high entropy alloys, electrodeposition, corrosion behavior, microstructure

Procedia PDF Downloads 51
316 [Keynote Speech]: Curiosity, Innovation and Technological Advancements Shaping the Future of Science, Technology, Engineering and Mathematics Education

Authors: Ana Hol

Abstract:

We live in a constantly changing environment where technology has become an integral component of our day to day life. We rely heavily on mobile devices, we search for data via web, we utilise smart home sensors to create the most suited ambiences and we utilise applications to shop, research, communicate and share data. Heavy reliance on technology therefore is creating new connections between STEM (Science, Technology, Engineering and Mathematics) fields which in turn rises a question of what the STEM education of the future should be like? This study was based on the reviews of the six Australian Information Systems students who undertook an international study tour to India where they were given an opportunity to network, communicate and meet local students, staff and business representatives and from them learn about the local business implementations, local customs and regulations. Research identifies that if we are to continue to implement and utilise electronic devices on the global scale, such as for example implement smart cars that can smoothly cross borders, we will need the workforce that will have the knowledge about the cars themselves, their parts, roads and transport networks, road rules, road sensors, road monitoring technologies, graphical user interfaces, movement detection systems as well as day to day operations, legal rules and regulations of each region and country, insurance policies, policing and processes so that the wide array of sensors can be controlled across country’s borders. In conclusion, it can be noted that allowing students to learn about the local conditions, roads, operations, business processes, customs and values in different countries is giving students a cutting edge advantage as such knowledge cannot be transferred via electronic sources alone. However once understanding of each problem or project is established, multidisciplinary innovative STEM projects can be smoothly conducted.

Keywords: STEM, curiosity, innovation, advancements

Procedia PDF Downloads 167
315 Highway Waste Management in Zambia Policy Preparedness and Remedies: The Case of Great East Road

Authors: Floyd Misheck Mwanza, Paul Boniface Majura

Abstract:

The paper looked at highways/ roadside waste generation, disposal and the consequent environmental impacts. The dramatic increase in vehicular and paved roads in the recent past in Zambia, has given rise to the indiscriminate disposal of litter that now poses a threat to health and the environment. Primary data was generated by carrying out oral interviews and field observations for holistic and in–depth assessment of the environment and the secondary data was obtained from desk review method, information on effects of roadside wastes on environment were obtained from relevant literatures. The interviews were semi structured and a purposive sampling method was adopted and analyzed descriptively. The results of the findings showed that population growth and unplanned road expansion has exceeded the expected limit in recent time with resultant poor system of roadside wastes disposal. Roadside wastes which contain both biodegradable and non-biodegradable roadside wastes are disposed at the shoulders of major highways in temporary dumpsites and are never collected by a road development agency (RDA). There is no organized highway to highway or street to street collection of the wastes in Zambia by the key organization the RDA. The study revealed that roadside disposal of roadside wastes has serious impacts on the environment. Some of these impacts include physical nuisance of the wastes to the environment, the waste dumps also serve as hideouts for rodents and snakes which are dangerous. Waste are blown around by wind making the environment filthy, most of the wastes are also been washed by overland flow during heavy downpour to block drainage channels and subsequently lead to flooding of the environment. Most of the non- biodegradable wastes contain toxic chemicals which have serious implications on the environmental sustainability and human health. The paper therefore recommends that Government/ RDA should come up with proper orientation and environmental laws should be put in place for the general public and also to provide necessary facilities and arrange for better methods of collection of wastes.

Keywords: biodegradable, disposal, environment, impacts

Procedia PDF Downloads 308
314 Knowledge, Attitude, and Practices of Small Scale Farmers on Organic Agriculture in a Rural Community in Ifugao, Philippines

Authors: Marah Joy A. Nanglegan

Abstract:

A survey was conducted to describe knowledge, attitude, practices, information needs, and information seeking behavior of small-scale farmers on Organic Agriculture Production (OAP) in a rural community in Ifugao, Philippines. Respondents’ age ranged from 23-67 years old. Most of them are male, married, and have reached high school level. The major source of income is farming with an average monthly income of less than Php 5,000 for a household size of seven. More than fifty percent of the respondents are members of a farmer’s organization. Farm size is less than one hectare. Majority of them own their farms and have been farming for more than twenty years. Very few attended training on Organic Agriculture Production (OAP). Most of them are not aware of any OAP program in their community. Hence, their farming practices are mostly conventional. The overall level of knowledge on OAP among all respondents was below the average. On attitude, most of the respondents agreed that organic farming would decrease production costs by reducing input purchases. They believe it benefits both the consumer and the producer. In fact, they are aware of the many benefits of organic farming, especially on health. Likewise, many of them agreed on the benefits of organic farming to soil fertility, to the environment, and to increase the income of farmers. Many of them, however, see organic farming as troublesome and difficult in terms of time and effort, obtaining organic inputs, limited production, and marketing aspects. They also have heavy reliance on pesticides and herbicides to control pests and diseases. On practices, majority of the respondents stated that they practiced crop rotation, manual weeding, and the use of animal manure. Most of them desired to do organic farming but needed information such as production techniques, costs, and marketing opportunities. Their most preferred communication channel is through extension agents and contact farmers. Their most preferred communication method is through trainings and seminars as well as through farm demonstrations. Results of this study will serve as a basis for developing appropriate communication strategies to improve knowledge, attitude, and practices of respondents on organic agriculture as well as enhance the promotion of organic agriculture production in the community.

Keywords: Ifugao, knowledge attitude practices, organic agriculture, Philippines

Procedia PDF Downloads 130
313 Using Geographic Information System and Analytic Hierarchy Process for Detecting Forest Degradation in Benslimane Forest, Morocco

Authors: Loubna Khalile, Hicham Lahlaoi, Hassan Rhinane, A. Kaoukaya, S. Fal

Abstract:

Green spaces is an essential element, they contribute to improving the quality of lives of the towns around them. They are a place of relaxation, walk and rest a playground for sport and youths. According to United Nations Organization Forests cover 31% of the land. In Morocco in 2013 that cover 12.65 % of the total land area, still, a small proportion compared to the natural needs of forests as a green lung of our planet. The Benslimane Forest is a large green area It belongs to Chaouia-Ouardigha Region and Greater Casablanca Region, it is located geographically between Casablanca is considered the economic and business Capital of Morocco and Rabat the national political capital, with an area of 12261.80 Hectares. The essential problem usually encountered in suburban forests, is visitation and tourism pressure it is anthropogenic actions, as well as other ecological and environmental factors. In recent decades, Morocco has experienced a drought year that has influenced the forest with increasing human pressure and every day it suffers heavy losses, as well as over-exploitation. The Moroccan forest ecosystems are weak with intense ecological variation, domanial and imposed usage rights granted to the population; forests are experiencing a significant deterioration due to forgetfulness and immoderate use of forest resources which can influence the destruction of animal habitats, vegetation, water cycle and climate. The purpose of this study is to make a model of the degree of degradation of the forest and know the causes for prevention by using remote sensing and geographic information systems by introducing climate and ancillary data. Analytic hierarchy process was used to find out the degree of influence and the weight of each parameter, in this case, it is found that anthropogenic activities have a fairly significant impact has thus influenced the climate.

Keywords: analytic hierarchy process, degradation, forest, geographic information system

Procedia PDF Downloads 298
312 Composition Dependence of Ni 2p Core Level Shift in Fe1-xNix Alloys

Authors: Shakti S. Acharya, V. R. R. Medicherla, Rajeev Rawat, Komal Bapna, Deepnarayan Biswas, Khadija Ali, K. Maiti

Abstract:

The discovery of invar effect in 35% Ni concentration Fe1-xNix alloy has stimulated enormous experimental and theoretical research. Elemental Fe and low Ni concentration Fe1-xNix alloys which possess body centred cubic (bcc) crystal structure at ambient temperature and pressure transform to hexagonally close packed (hcp) phase at around 13 GPa. Magnetic order was found to be absent at 11K for Fe92Ni8 alloy when subjected to a high pressure of 26 GPa. The density functional theoretical calculations predicted substantial hyperfine magnetic fields, but were not observed in Mossbaur spectroscopy. The bulk modulus of fcc Fe1-xNix alloys with Ni concentration more than 35%, is found to be independent of pressure. The magnetic moment of Fe is also found be almost same in these alloys from 4 to 10 GPa pressure. Fe1-xNix alloys exhibit a complex microstructure which is formed by a series of complex phase transformations like martensitic transformation, spinodal decomposition, ordering, mono-tectoid reaction, eutectoid reaction at temperatures below 400°C. Despite the existence of several theoretical models the field is still in its infancy lacking full knowledge about the anomalous properties exhibited by these alloys. Fe1-xNix alloys have been prepared by arc melting the high purity constituent metals in argon ambient. These alloys have annealed at around 3000C in vacuum sealed quartz tube for two days to make the samples homogeneous. These alloys have been structurally characterized by x-ray diffraction and were found to exhibit a transition from bcc to fcc for x > 0.3. Ni 2p core levels of the alloys have been measured using high resolution (0.45 eV) x-ray photoelectron spectroscopy. Ni 2p core level shifts to lower binding energy with respect to that of pure Ni metal giving rise to negative core level shifts (CLSs). Measured CLSs exhibit a linear dependence in fcc region (x > 0.3) and were found to deviate slightly in bcc region (x < 0.3). ESCA potential model fails correlate CLSs with site potentials or charges in metallic alloys. CLSs in these alloys occur mainly due to shift in valence bands with composition due to intra atomic charge redistribution.

Keywords: arc melting, core level shift, ESCA potential model, valence band

Procedia PDF Downloads 351
311 Development of a Robot Assisted Centrifugal Casting Machine for Manufacturing Multi-Layer Journal Bearing and High-Tech Machine Components

Authors: Mohammad Syed Ali Molla, Mohammed Azim, Mohammad Esharuzzaman

Abstract:

Centrifugal-casting machine is used in manufacturing special machine components like multi-layer journal bearing used in all internal combustion engine, steam, gas turbine and air craft turboengine where isotropic properties and high precisions are desired. Moreover, this machine can be used in manufacturing thin wall hightech machine components like cylinder liners and piston rings of IC engine and other machine parts like sleeves, and bushes. Heavy-duty machine component like railway wheel can also be prepared by centrifugal casting. A lot of technological developments are required in casting process for production of good casted machine body and machine parts. Usually defects like blowholes, surface roughness, chilled surface etc. are found in sand casted machine parts. But these can be removed by centrifugal casting machine using rotating metallic die. Moreover, die rotation, its temperature control, and good pouring practice can contribute to the quality of casting because of the fact that the soundness of a casting in large part depends upon how the metal enters into the mold or dies and solidifies. Poor pouring practice leads to variety of casting defects such as temperature loss, low quality casting, excessive turbulence, over pouring etc. Besides these, handling of molten metal is very unsecured and dangerous for the workers. In order to get rid of all these problems, the need of an automatic pouring device arises. In this research work, a robot assisted pouring device and a centrifugal casting machine are designed, developed constructed and tested experimentally which are found to work satisfactorily. The robot assisted pouring device is further modified and developed for using it in actual metal casting process. Lot of settings and tests are required to control the system and ultimately it can be used in automation of centrifugal casting machine to produce high-tech machine parts with desired precision.

Keywords: bearing, centrifugal casting, cylinder liners, robot

Procedia PDF Downloads 380
310 A Method for Solid-Liquid Separation of Cs+ from Radioactive Waste by Using Ionic Liquids and Extractants

Authors: J. W. Choi, S. Y. Cho, H. J. Lee, W. Z. Oh, S. J. Choi

Abstract:

Ionic liquids (ILs), which is alternative to conventional organic solvent, were used for extraction of Cs ions. ILs, as useful environment friendly green solvents, have been recently applied as replacement for traditional volatile organic compounds (VOCs) in liquid/liquid extraction of heavy metal ions as well as organic and inorganic species and pollutants. Thus, Ionic liquids were used for extraction of Cs ions from the liquid radioactive waste. In most cases, Cs ions present in radioactive wastes in very low concentration, approximately less than 1ppm. Therefore, unlike established extraction system the required amount of ILs as extractant is comparatively very small. This extraction method involves cation exchange mechanism in which Cs ion transfers to the organic phase and binds to one crown ether by chelation in exchange of single ILs cation, IL_cation+, transfer to the aqueous phase. In this extraction system showed solid-liquid separation in which the Ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonly)imide (C2mimTf2N) and the crown ether Dicyclohexano-18-crown-6 (DCH18C6) both were used here in very little amount as solvent and as extractant, respectively. 30 mM of CsNO3 was used as simulated waste solution cesium ions. Generally, in liquid-liquid extraction, the molar ratio of CE:Cs+:ILs was 1:5~10:>100, while our applied molar ratio of CE:Cs+:ILs was 1:2:1~10. The quantity of CE and Cs ions were fixed to 0.6 and 1.2 mmol, respectively. The phenomenon of precipitation showed two kinds of separation: solid-liquid separation in the ratio of 1:2:1 and 1:2:2; solid-liquid-liquid separation (3 phase) in the ratio of 1:2:5 and 1:2:10. In the last system, 3 phases were precipitate-ionic liquids-aqueous. The precipitate was verified to consist of Cs+, DCH18C6, Tf2N- based on the cation exchange mechanism. We analyzed precipitate using scanning electron microscopy with X-ray microanalysis (SEM-EDS), an elemental analyser, Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The experimental results showed an easy extraction method and confirmed the composition of solid precipitate. We also obtained information that complex formation ratio of Cs+ to DCH18C6 is 0.88:1 regardless of C2mimTf2N quantities.

Keywords: extraction, precipitation, solid-liquid seperation, ionic liquid, precipitate

Procedia PDF Downloads 388
309 Fabrication and Characteristics of Ni Doped Titania Nanotubes by Electrochemical Anodization

Authors: J. Tirano, H. Zea, C. Luhrs

Abstract:

It is well known that titanium dioxide is a semiconductor with several applications in photocatalytic process. Its band gap makes it very interesting in the photoelectrodes manufacturing used in photoelectrochemical cells for hydrogen production, a clean and environmentally friendly fuel. The synthesis of 1D titanium dioxide nanostructures, such as nanotubes, makes possible to produce more efficient photoelectrodes for solar energy to hydrogen conversion. In essence, this is because it increases the charge transport rate, decreasing recombination options. However, its principal constraint is to be mainly sensitive to UV range, which represents a very low percentage of solar radiation that reaches earth's surface. One of the alternatives to modifying the TiO2’s band gap and improving its photoactivity under visible light irradiation is to dope the nanotubes with transition metals. This option requires fabricating efficient nanostructured photoelectrodes with controlled morphology and specific properties able to offer a suitable surface area for metallic doping. Hence, currently one of the central challenges in photoelectrochemical cells is the construction of nanomaterials with a proper band position for driving the reaction while absorbing energy over the VIS spectrum. This research focuses on the synthesis and characterization of Nidoped TiO2 nanotubes for improving its photocatalytic activity in solar energy conversion applications. Initially, titanium dioxide nanotubes (TNTs) with controlled morphology were synthesized by two-step potentiostatic anodization of titanium foil. The anodization was carried out at room temperature in an electrolyte composed of ammonium fluoride, deionized water and ethylene glycol. Consequent thermal annealing of as-prepared TNTs was conducted in the air between 450 °C - 550 °C. Afterwards, the nanotubes were superficially modified by nickel deposition. Morphology and crystalline phase of the samples were carried out by SEM, EDS and XRD analysis before and after nickel deposition. Determining the photoelectrochemical performance of photoelectrodes is based on typical electrochemical characterization techniques. Also, the morphological characterization associated electrochemical behavior analysis were discussed to establish the effect of nickel nanoparticles modification on the TiO2 nanotubes. The methodology proposed in this research allows using other transition metal for nanotube surface modification.

Keywords: dimensionally stable electrode, nickel nanoparticles, photo-electrode, TiO₂ nanotubes

Procedia PDF Downloads 150
308 In situ Immobilization of Mercury in a Contaminated Calcareous Soil Using Water Treatment Residual Nanoparticles

Authors: Elsayed A. Elkhatib, Ahmed M. Mahdy, Mohamed L. Moharem, Mohamed O. Mesalem

Abstract:

Mercury (Hg) is one of the most toxic and bio-accumulative heavy metal in the environment. However, cheap and effective in situ remediation technology is lacking. In this study, the effects of water treatment residuals nanoparticles (nWTR) on mobility, fractionation and speciation of mercury in an arid zone soil from Egypt were evaluated. Water treatment residual nanoparticles with high surface area (129 m 2 g-1) were prepared using Fritsch planetary mono mill. Scanning and transmission electron microscopy revealed that the nanoparticles of WTR nanoparticles are spherical in shape, and single particle sizes are in the range of 45 to 96 nm. The x-ray diffraction (XRD) results ascertained that amorphous iron, aluminum (hydr)oxides and silicon oxide dominating all nWTR, with no apparent crystalline iron–Al (hydr)oxides. Addition of nWTR, greatly increased the Hg sorption capacities of studied soils and greatly reduced the cumulative Hg released from the soils. Application of nWTR at 0.10 and 0.30 % rates reduced the released Hg from the soil by 50 and 85 % respectively. The power function and first order kinetics models well described the desorption process from soils and nWTR amended soils as evidenced by high coefficient of determination (R2) and low SE values. Application of nWTR greatly increased the association of Hg with the residual fraction. Meanwhile, application of nWTR at a rate of 0.3% greatly increased the association of Hg with the residual fraction (>93%) and significantly increased the most stable Hg species (Hg(OH)2 amor) which in turn enhanced Hg immobilization in the studied soils. Fourier transmission infrared spectroscopy analysis indicated the involvement of nWTR in the retention of Hg (II) through OH groups which suggest inner-sphere adsorption of Hg ions to surface functional groups on nWTR. These results demonstrated the feasibility of using a low-cost nWTR as best management practice to immobilize excess Hg in contaminated soils.

Keywords: release kinetics, Fourier transmission infrared spectroscopy, Hg fractionation, Hg species

Procedia PDF Downloads 199
307 Contribution of Hydrogen Peroxide in the Selective Aspect of Prostate Cancer Treatment by Cold Atmospheric Plasma

Authors: Maxime Moreau, Silvère Baron, Jean-Marc Lobaccaro, Karine Charlet, Sébastien Menecier, Frédéric Perisse

Abstract:

Cold Atmospheric Plasma (CAP) is an ionized gas generated at atmospheric pressure with the temperature of heavy particles (molecules, ions, atoms) close to the room temperature. Recent studies have shown that both in-vitro and in-vivo plasma exposition to many cancer cell lines are efficient to induce the apoptotic way of cell death. In some other works, normal cell lines seem to be less impacted by plasma than cancer cell lines. This is called selectivity of plasma. It is highly likely that the generated RNOS (Reactive Nitrogen Oxygen Species) in the plasma jet, but also in the medium, play a key-role in this selectivity. In this study, two CAP devices will be compared to electrical power, chemical species composition and their efficiency to kill cancer cells. A particular focus on the action of hydrogen peroxide will be made. The experiments will take place as described next for both devices: electrical and spectroscopic characterization for different voltages, plasma treatment of normal and cancer cells to compare the CAP efficiency between cell lines and to show that death is induced by an oxidative stress. To enlighten the importance of hydrogen peroxide, an inhibitor of H2O2 will be added in cell culture medium before treatment and a comparison will be made between the results of cell viability in this case and those from a simple plasma exposition. Besides, H2O2 production will be measured by only treating medium with plasma. Cell lines will also be exposed to different concentrations of hydrogen peroxide in order to characterize the cytotoxic threshold for cells and to make a comparison with the quantity of H2O2 produced by CAP devices. Finally, the activity of catalase for different cell lines will be quantified. This enzyme is an important antioxidant agent against hydrogen peroxide. A correlation between cells response to plasma exposition and this activity could be a strong argument in favor of the predominant role of H2O2 to explain the selectivity of plasma cancer treatment by cold atmospheric plasma.

Keywords: cold atmospheric plasma, hydrogen peroxide, prostate cancer, selectivity

Procedia PDF Downloads 116
306 Phi Thickening Induction as a Response to Abiotic Stress in the Orchid Miltoniopsis

Authors: Nurul Aliaa Idris, David A. Collings

Abstract:

Phi thickenings are specialized secondary cell wall thickenings that are found in the cortex of the roots in a wide range of plant species, including orchids. The role of phi thickenings in the root is still under debate through research have linked environmental conditions, particularly abiotic stresses such as water stress, heavy metal stress and salinity to their induction in the roots. It has also been suggested that phi thickenings may act as a barrier to regulate solute uptake, act as a physical barrier against fungal hyphal penetration due to its resemblance to the Casparian strip and play a mechanical role to support cortical cells. We have investigated phi thickening function in epiphytic orchids of the genus Miltoniopsis through induction experiment against factors such as soil compaction and water stress. The permeability of the phi thickenings in Miltoniopsis was tested through uptake experiments using the fluorescent tracer dyes Calcofluor white, Lucifer yellow and Propidium iodide then viewed with wide-field or confocal microscopy. To test whether phi thickening may prevent fungal colonization in the root cell, fungal re-infection experiment was conducted by inoculating isolated symbiotic fungus to sterile in vitro Miltoniopsis explants. As the movement of fluorescent tracers through the apoplast was not blocked by phi thickenings, and as phi thickenings developed in the roots of sterile cultures in the absence of fungus and did not prevent fungal colonization of cortical cells, the phi thickenings in Miltoniopsis do not function as a barrier. Phi thickenings were found to be absent in roots grown on agar and remained absent when plants were transplanted to moist soil. However, phi thickenings were induced when plants were transplanted to well-drained media, and by the application of water stress in all soils tested. It is likely that phi thickenings stabilize the root cortex during dehydration. Nevertheless, the varied induction responses present in different plant species suggest that the phi thickenings may play several adaptive roles, instead of just one, depending on species.

Keywords: abiotic stress, Miltoniopsis, orchid, phi thickening

Procedia PDF Downloads 119
305 Effect of Different Methods to Control the Parasitic Weed Phelipanche ramosa (L. Pomel) in Tomato Crop

Authors: Disciglio G., Lops F., Carlucci A., Gatta G., Tarantino A., Frabboni L, Tarantino E.

Abstract:

The Phelipanche ramosa is considered the most damaging obligate flowering parasitic weed on a wide species of cultivated plants. The semiarid regions of the world are considered the main center of this parasitic weed, where heavy infestation are due to the ability to produce high numbers of seeds (up to 200,000), that remain viable for extended period (more than 19 years). In this paper 13 treatments of parasitic weed control, as physical, chemical, biological and agronomic methods, including the use of the resistant plants, have been carried out. In 2014 a trial was performed on processing tomato (cv Docet), grown in pots filled with soil taken from a plot heavily infested by Phelipanche ramosa, at the Department of Agriculture, Food and Environment, University of Foggia (southern Italy). Tomato seedlings were transplanted on August 8, 2014 on a clay soil (USDA) 100 kg ha-1 of N; 60 kg ha-1 of P2O5 and 20 kg ha-1 of S. Afterwards, top dressing was performed with 70 kg ha-1 of N. The randomized block design with 3 replicates was adopted. During the growing cycle of the tomato, at 70-75-81 and 88 days after transplantation the number of parasitic shoots emerged in each pot was detected. Also values of leaf chlorophyll Meter SPAD of tomato plants were measured. All data were subjected to analysis of variance (ANOVA) using the JMP software (SAS Institute Inc., Cary, NC, USA), and for comparison of means was used Tukey's test. The results show lower values of the color index SPAD in tomato plants parasitized compared to those healthy. In addition, each treatment studied did not provide complete control against Phelipanche ramosa. However the virulence of the attacks was mitigated by some treatments: radicon product, compost activated with Fusarium, mineral fertilizer nitrogen, sulfur, enzone and resistant tomato genotype. It is assumed that these effects can be improved by combining some of these treatments each other, especially for a gradual and continuing reduction of the “seed bank” of the parasite in the soil.

Keywords: control methods, Phelipanche ramose, tomato crop

Procedia PDF Downloads 590