Search results for: health monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10923

Search results for: health monitoring

10863 Low-Cost IoT System for Monitoring Ground Propagation Waves due to Construction and Traffic Activities to Nearby Construction

Authors: Lan Nguyen, Kien Le Tan, Bao Nguyen Pham Gia

Abstract:

Due to the high cost, specialized dynamic measurement devices for industrial lands are difficult for many colleges to equip for hands-on teaching. This study connects a dynamic measurement sensor and receiver utilizing an inexpensive Raspberry Pi 4 board, some 24-bit ADC circuits, a geophone vibration sensor, and embedded Python open-source programming. Gather and analyze signals for dynamic measuring, ground vibration monitoring, and structure vibration monitoring. The system may wirelessly communicate data to the computer and is set up as a communication node network, enabling real-time monitoring of background vibrations at various locations. The device can be utilized for a variety of dynamic measurement and monitoring tasks, including monitoring earthquake vibrations, ground vibrations from construction operations, traffic, and vibrations of building structures.

Keywords: sensors, FFT, signal processing, real-time data monitoring, ground propagation wave, python, raspberry Pi 4

Procedia PDF Downloads 69
10862 Development of a Serial Signal Monitoring Program for Educational Purposes

Authors: Jungho Moon, Lae-Jeong Park

Abstract:

This paper introduces a signal monitoring program developed with a view to helping electrical engineering students get familiar with sensors with digital output. Because the output of digital sensors cannot be simply monitored by a measuring instrument such as an oscilloscope, students tend to have a hard time dealing with digital sensors. The monitoring program runs on a PC and communicates with an MCU that reads the output of digital sensors via an asynchronous communication interface. Receiving the sensor data from the MCU, the monitoring program shows time and/or frequency domain plots of the data in real time. In addition, the monitoring program provides a serial terminal that enables the user to exchange text information with the MCU while the received data is plotted. The user can easily observe the output of digital sensors and configure the digital sensors in real time, which helps students who do not have enough experiences with digital sensors. Though the monitoring program was programmed in the Matlab programming language, it runs without the Matlab since it was compiled as a standalone executable.

Keywords: digital sensor, MATLAB, MCU, signal monitoring program

Procedia PDF Downloads 464
10861 Designing a Patient Monitoring System Using Cloud and Semantic Web Technologies

Authors: Chryssa Thermolia, Ekaterini S. Bei, Stelios Sotiriadis, Kostas Stravoskoufos, Euripides G. M. Petrakis

Abstract:

Moving into a new era of healthcare, new tools and devices are developed to extend and improve health services, such as remote patient monitoring and risk prevention. In this concept, Internet of Things (IoT) and Cloud Computing present great advantages by providing remote and efficient services, as well as cooperation between patients, clinicians, researchers and other health professionals. This paper focuses on patients suffering from bipolar disorder, a brain disorder that belongs to a group of conditions called effective disorders, which is characterized by great mood swings.We exploit the advantages of Semantic Web and Cloud Technologies to develop a patient monitoring system to support clinicians. Based on intelligently filtering of evidence-knowledge and individual-specific information we aim to provide treatment notifications and recommended function tests at appropriate times or concluding into alerts for serious mood changes and patient’s non-response to treatment. We propose an architecture, as the back-end part of a cloud platform for IoT, intertwining intelligence devices with patients’ daily routine and clinicians’ support.

Keywords: bipolar disorder, intelligent systems patient monitoring, semantic web technologies, healthcare

Procedia PDF Downloads 479
10860 Remote Patient Monitoring for Covid-19

Authors: Launcelot McGrath

Abstract:

The Coronavirus disease 2019 (COVID-19) has spread rapidly around the world, resulting in high mortality rates and very large numbers of people requiring medical treatment in ICU. Management of patient hospitalisation is a critical aspect to control this disease and reduce chaos in the healthcare systems. Remote monitoring provides a solution to protect vulnerable and elderly high-risk patients. Continuous remote monitoring of oxygen saturation, respiratory rate, heart rate, and temperature, etc., provides medical systems with up-to-the-minute information about their patients' statuses. Remote monitoring also limits the spread of infection by reducing hospital overcrowding. This paper examines the potential of remote monitoring for Covid-19 to assist in the rapid identification of patients at risk, facilitate the detection of patient deterioration, and enable early interventions.

Keywords: remote monitoring, patient care, oxygen saturation, Covid-19, hospital management

Procedia PDF Downloads 75
10859 Corrosion Monitoring Techniques Impact on Concrete Durability: A Review

Authors: Victor A. Okenyi, Kehinde A. Alawode

Abstract:

Corrosion of reinforcement in concrete structures remains a durability issue in structural engineering with the increasing cost of repair and maintenance. The mechanism and factors influencing reinforcement corrosion in concrete with various electrochemical monitoring techniques including non-destructive, destructive techniques and the roles of sensors have been reviewed with the aim of determining the monitoring technique that proved most effective in determining corrosion parameters and more practicable for the assessment of concrete durability. Electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR) techniques showed great performance in evaluating corrosion kinetics and corrosion rate, respectively, while the gravimetric weight loss (GWL) technique provided accurate measurements. However, no single monitoring technique showed to be the ultimate technique, and this calls for more research work in the development of more dynamic monitoring tools capable of considering all possible corrosion factors in the corrosion monitoring process.

Keywords: corrosion, concrete structures, durability, non-destructive technique, sensor

Procedia PDF Downloads 140
10858 Integrated Gas Turbine Performance Diagnostics and Condition Monitoring Using Adaptive GPA

Authors: Yi-Guang Li, Suresh Sampath

Abstract:

Gas turbine performance degrades over time, and the degradation is greatly affected by environmental, ambient, and operating conditions. The engines may degrade slowly under favorable conditions and result in a waste of engine life if a scheduled maintenance scheme is followed. They may also degrade fast and fail before a scheduled overhaul if the conditions are unfavorable, resulting in serious secondary damage, loss of engine availability, and increased maintenance costs. To overcome these problems, gas turbine owners are gradually moving from scheduled maintenance to condition-based maintenance, where condition monitoring is one of the key supporting technologies. This paper presents an integrated adaptive GPA diagnostics and performance monitoring system developed at Cranfield University for gas turbine gas path condition monitoring. It has the capability to predict the performance degradation of major gas path components of gas turbine engines, such as compressors, combustors, and turbines, using gas path measurement data. It is also able to predict engine key performance parameters for condition monitoring, such as turbine entry temperature that cannot be directly measured. The developed technology has been implemented into digital twin computer Software, Pythia, to support the condition monitoring of gas turbine engines. The capabilities of the integrated GPA condition monitoring system are demonstrated in three test cases using a model gas turbine engine similar to the GE aero-derivative LM2500 engine widely used in power generation and marine propulsion. It shows that when the compressor of the model engine degrades, the Adaptive GPA is able to predict the degradation and the changing engine performance accurately using gas path measurements. Such a presented technology and software are generic, can be applied to different types of gas turbine engines, and provide crucial engine health and performance parameters to support condition monitoring and condition-based maintenance.

Keywords: gas turbine, adaptive GPA, performance, diagnostics, condition monitoring

Procedia PDF Downloads 52
10857 Vibration-Based Data-Driven Model for Road Health Monitoring

Authors: Guru Prakash, Revanth Dugalam

Abstract:

A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.

Keywords: SVM, data-driven, road health monitoring, pot-hole

Procedia PDF Downloads 54
10856 Internet of Things Based Battery Management System

Authors: Pakhil Singh, Rahul Singh, Mohammad Saad Alam, Yasser Rafat

Abstract:

The battery management system is an essential package/system which ensures optimum performance and safety of a battery by monitoring the key essential parameters of the battery like the voltage, current, temperature, state of charge, state of health during charging and discharging. This can be accomplished using outputs of various sensors employed to serve the purpose. The increasing demand for electricity generation from renewable energy sources requires proper storage and hence a proper monitoring system as well. A battery management system is required in wide applications ranging from renewable energy storage systems, off-grid solar PV applications to electric vehicles. The aim of this paper is to study the parameters used in monitoring various battery operating conditions and proposes the usage of the internet of things (IoT) to implement a reliable battery management system.

Keywords: electric vehicles, internet of things, sensors, state of charge, state of health

Procedia PDF Downloads 155
10855 Lightweight Synergy IoT Framework for Smart Home Healthcare for the Elderly

Authors: Huawei Ma, Wencai Du, Shengbin Liang

Abstract:

Smart Home Healthcare technologies for the elderly represent a transformative paradigm that leverages emerging technologies to provide the elderly’ health indicators and daily life monitoring, emergency calls, environmental monitoring, behavior perception, and other services to ensure the health and safety of the elderly who are aging in their own home. However, the excessive complexity in the main adopted framework has affected the acceptance and adoption of the elderly. Therefore, this paper proposes a lightweight synergy architecture of IoT data and service for elderly home smart health environment. It includes the modeling of IoT applications and their workflows, data interoperability, interaction, and storage paradigms to meet the growing needs of older people so that they can lead an active, fulfilling, and quality life.

Keywords: smart home healthcare, IoT, independent living, lightweight framework

Procedia PDF Downloads 14
10854 Static and Dynamic Tailings Dam Monitoring with Accelerometers

Authors: Cristiana Ortigão, Antonio Couto, Thiago Gabriel

Abstract:

In the wake of Samarco Fundão’s failure in 2015 followed by Vale’s Brumadinho disaster in 2019, the Brazilian National Mining Agency started a comprehensive dam safety programmed to rank dam safety risks and establish monitoring and analysis procedures. This paper focuses on the use of accelerometers for static and dynamic applications. Static applications may employ tiltmeters, as an example shown later in this paper. Dynamic monitoring of a structure with accelerometers yields its dynamic signature and this technique has also been successfully used in Brazil and this paper gives an example of tailings dam.

Keywords: instrumentation, dynamic, monitoring, tailings, dams, tiltmeters, automation

Procedia PDF Downloads 98
10853 Development of Monitoring Blood Bank Center Based PIC Microcontroller Using CAN Communication

Authors: Kaiwan S. Ismael, Ergun Ercelebi, Majeed Nader

Abstract:

This paper describes the design and implementation of a hardware setup for online monitoring of 24 refrigerators inside blood bank center using the microcontroller and CAN bus for communications between each node. Due to the security of locations in the blood bank hall and difficulty of monitoring of each refrigerator separately, this work proposes a solution to monitor all the blood bank refrigerators in one location. CAN-bus system is used because it has many applications and advantages, especially for this system due to easy in use, low cost, providing a reduction in wiring, fast to repair and easily expanding the project without a problem.

Keywords: control area network (CAN), monitoring blood bank center, PIC microcontroller, MPLAB IDE

Procedia PDF Downloads 443
10852 Development of a Miniature and Low-Cost IoT-Based Remote Health Monitoring Device

Authors: Sreejith Jayachandran, Mojtaba Ghods, Morteza Mohammadzaheri

Abstract:

The modern busy world is running behind new embedded technologies based on computers and software; meanwhile, some people forget to do their health condition and regular medical check-ups. Some of them postpone medical check-ups due to a lack of time and convenience, while others skip these regular evaluations and medical examinations due to huge medical bills and hospital expenses. Engineers and medical experts have come together to give birth to a new device in the telemonitoring system capable of monitoring, checking, and evaluating the health status of the human body remotely through the internet for the needs of all kinds of people. The remote health monitoring device is a microcontroller-based embedded unit. Various types of sensors in this device are connected to the human body, and with the help of an Arduino UNO board, the required analogue data is collected from the sensors. The microcontroller on the Arduino board processes the analogue data collected in this way into digital data and transfers that information to the cloud, and stores it there, and the processed digital data is instantly displayed through the LCD attached to the machine. By accessing the cloud storage with a username and password, the concerned person’s health care teams/doctors and other health staff can collect this data for the assessment and follow-up of that patient. Besides that, the family members/guardians can use and evaluate this data for awareness of the patient's current health status. Moreover, the system is connected to a Global Positioning System (GPS) module. In emergencies, the concerned team can position the patient or the person with this device. The setup continuously evaluates and transfers the data to the cloud, and also the user can prefix a normal value range for the evaluation. For example, the blood pressure normal value is universally prefixed between 80/120 mmHg. Similarly, the RHMS is also allowed to fix the range of values referred to as normal coefficients. This IoT-based miniature system (11×10×10) cm³ with a low weight of 500 gr only consumes 10 mW. This smart monitoring system is manufactured with 100 GBP, which can be used not only for health systems, it can be used for numerous other uses including aerospace and transportation sections.

Keywords: embedded technology, telemonitoring system, microcontroller, Arduino UNO, cloud storage, global positioning system, remote health monitoring system, alert system

Procedia PDF Downloads 58
10851 The Effect of Carbon Nanofibers on the Electrical Resistance of Cementitious Composites

Authors: Reza Pourjafar, Morteza Sohrabi-Gilani, Mostafa Jamshidi Avanaki, Malek Mohammad Ranjbar

Abstract:

Cementitious composites like concrete, are the most widely used materials in civil infrastructures. Numerous investigations on fiber’s effect on the properties of cement-based composites have been conducted in the last few decades. The use of fibers such as carbon nanofibers (CNFs) and carbon nanotubes (CNTs) in these materials is an ongoing field and needs further researches and studies. Excellent mechanical, thermal, and electrical properties of carbon nanotubes and nanofibers have motivated the development of advanced nanocomposites with outstanding and multifunctional properties. In this study, the electrical resistance of CNF reinforced cement mortar was examined. Three different dosages of CNF were used, and the resistances were compared to plain cement mortar. One of the biggest challenges in this study is dispersing CNF particles in the mortar mixture. Therefore, polycarboxylate superplasticizer and ultrasonication of the mixture have been selected for the purpose of dispersing CNFs in the cement matrix. The obtained results indicated that the electrical resistance of the CNF reinforced mortar samples decreases with increasing CNF content, which would be the first step towards examining strain and damage monitoring ability of cementitious composites containing CNF for structural health monitoring purposes.

Keywords: carbon nanofiber, cement and concrete, CNF reinforced mortar, smart mater, strain monitoring, structural health monitoring

Procedia PDF Downloads 111
10850 Smart Monitoring and Control of Tap Changer Using Intelligent Electronic Device

Authors: K. N. Dinesh Babu, M. V. Gopalan, G. R. Manjunatha, R. Ramaprabha, V. Rajini

Abstract:

In this paper, monitoring and control of tap changer mechanism of a transformer implementation in an intelligent electronic device (IED) is discussed. Its been a custom for decades to provide a separate panel for on load tap changer control for monitoring the tap position. However this facility cannot either record or transfer the information to remote control centers. As there is a technology shift towards the smart grid protection and control standards, the need for implementing remote control and monitoring has necessitated the implementation of this feature in numerical relays. This paper deals with the programming, settings and logic implementation which is applicable to both IEC 61850 compatible and non-compatible IEDs thereby eliminating the need for separate tap changer control equipment. The monitoring mechanism has been implemented in a 28MVA, 110 /6.9kV transformer with 16 tap position with GE make T60 IED at Ultratech cement limited Gulbarga, Karnataka and is in successful service.

Keywords: transformer protection, tap changer control, tap position monitoring, on load tap changer, intelligent electronic device (IED)

Procedia PDF Downloads 565
10849 Noninvasive Continuous Glucose Monitoring Device Using a Photon-Assisted Tunneling Photodetector Based on a Quantum Metal-Oxide-Semiconductor

Authors: Wannakorn Sangthongngam, Melissa Huerta, Jaewoo Kim, Doyeon Kim

Abstract:

Continuous glucose monitoring systems are essential for diabetics to avoid health complications but come at a costly price, especially when insurance does not fully cover the diabetic testing kits needed. This paper proposes a noninvasive continuous glucose monitoring system to provide an accessible, low-cost, and painless alternative method of accurate glucose measurements to help improve quality of life. Using a light source with a wavelength of 850nm illuminates the fingertip for the photodetector to detect the transmitted light. Utilizing SeeDevice’s photon-assisted tunneling photodetector (PAT-PD)-based QMOS™ sensor, fluctuations of voltage based on photon absorption in blood cells are comparable to traditional glucose measurements. The performance of the proposed method was validated using 4 test participants’ transmitted voltage readings compared with measurements obtained from the Accu-Chek glucometer. The proposed method was able to successfully measure concentrations from linear regression calculations.

Keywords: continuous glucose monitoring, non-invasive continuous glucose monitoring, NIR, photon-assisted tunneling photodetector, QMOS™, wearable device

Procedia PDF Downloads 59
10848 Generation of Automated Alarms for Plantwide Process Monitoring

Authors: Hyun-Woo Cho

Abstract:

Earlier detection of incipient abnormal operations in terms of plant-wide process management is quite necessary in order to improve product quality and process safety. And generating warning signals or alarms for operating personnel plays an important role in process automation and intelligent plant health monitoring. Various methodologies have been developed and utilized in this area such as expert systems, mathematical model-based approaches, multivariate statistical approaches, and so on. This work presents a nonlinear empirical monitoring methodology based on the real-time analysis of massive process data. Unfortunately, the big data includes measurement noises and unwanted variations unrelated to true process behavior. Thus the elimination of such unnecessary patterns of the data is executed in data processing step to enhance detection speed and accuracy. The performance of the methodology was demonstrated using simulated process data. The case study showed that the detection speed and performance was improved significantly irrespective of the size and the location of abnormal events.

Keywords: detection, monitoring, process data, noise

Procedia PDF Downloads 214
10847 Development of a Flexible Lora-Based Wireless Sensory System for Long-Time Health Monitoring of Civil Structures

Authors: Hui Zhang, Sherif Beskhyroun

Abstract:

In this study, a highly flexible LoRa-Based wireless sensing system was used to assess the strain state performance of building structures. The system was developed to address the local damage limitation of structural health monitoring (SHM) systems. The system is part of an intelligent SHM system designed to monitor, collect and transmit strain changes in key structural components. The main purpose of the wireless sensor system is to reduce the development and installation costs, and reduce the power consumption of the system, so as to achieve long-time monitoring. The highly stretchable flexible strain gauge is mounted on the surface of the structure and is waterproof, heat resistant, and low temperature resistant, greatly reducing the installation and maintenance costs of the sensor. The system was also developed with the aim of using LoRa wireless communication technology to achieve both low power consumption and long-distance transmission, therefore solving the problem of large-scale deployment of sensors to cover more areas in large structures. In the long-term monitoring of the building structure, the system shows very high performance, very low actual power consumption, and wireless transmission stability. The results show that the developed system has a high resolution, sensitivity, and high possibility of long-term monitoring.

Keywords: LoRa, SHM system, strain measurement, civil structures, flexible sensing system

Procedia PDF Downloads 58
10846 End to End Monitoring in Oracle Fusion Middleware for Data Verification

Authors: Syed Kashif Ali, Usman Javaid, Abdullah Chohan

Abstract:

In large enterprises multiple departments use different sort of information systems and databases according to their needs. These systems are independent and heterogeneous in nature and sharing information/data between these systems is not an easy task. The usage of middleware technologies have made data sharing between systems very easy. However, monitoring the exchange of data/information for verification purposes between target and source systems is often complex or impossible for maintenance department due to security/access privileges on target and source systems. In this paper, we are intended to present our experience of an end to end data monitoring approach at middle ware level implemented in Oracle BPEL for data verification without any help of monitoring tool.

Keywords: service level agreement, SOA, BPEL, oracle fusion middleware, web service monitoring

Procedia PDF Downloads 450
10845 Use of In-line Data Analytics and Empirical Model for Early Fault Detection

Authors: Hyun-Woo Cho

Abstract:

Automatic process monitoring schemes are designed to give early warnings for unusual process events or abnormalities as soon as possible. For this end, various techniques have been developed and utilized in various industrial processes. It includes multivariate statistical methods, representation skills in reduced spaces, kernel-based nonlinear techniques, etc. This work presents a nonlinear empirical monitoring scheme for batch type production processes with incomplete process measurement data. While normal operation data are easy to get, unusual fault data occurs infrequently and thus are difficult to collect. In this work, noise filtering steps are added in order to enhance monitoring performance by eliminating irrelevant information of the data. The performance of the monitoring scheme was demonstrated using batch process data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.

Keywords: batch process, monitoring, measurement, kernel method

Procedia PDF Downloads 294
10844 Protection Not Punishment: Use of Electronic Monitoring to Reduce the Risk of Cross-Border Parental Child Abduction

Authors: Nazia Yaqub

Abstract:

Globally, the number of cases of international parental child abduction has remained consistent in the past decade despite the legal provision designed to prevent and deter abduction, and so it appears the current legal approach to prevent abduction is lacking. Reflecting on the findings of an empirical study conducted by the author between 2017-19 on parental abduction from the UK, the article considers a solution to the predicament of protecting children at risk of abduction through electronic monitoring. The electronic monitoring of children has negative connotations, particularly in its use in the criminal justice system, yet in the context of family law proceedings, the article considers whether electronic monitoring could serve a protective rather than a punitive purpose. The article reflects on the use of electronic monitoring in parental abduction cases by the Family Courts and examines the ethical considerations of the proposal, drawing on the rights found in the European Convention on Human Rights and the UN Convention on the Rights of the Child.

Keywords: law, parental child abduction, electronic monitoring, legal solutions

Procedia PDF Downloads 40
10843 Examining How Youth Use Mobile Devices for Health Information: Preliminary Findings of a Survey Study with High School Students in Croatia

Authors: Sung Un Kim, Ivana Martinović, Snježana Stanarević Katavić

Abstract:

As more and more youth use mobile devices, such as tablets and smartphones, for information seeking in their everyday lives, the purpose of this study is to understand the behaviors of youth seeking health information on mobile devices. The specific objective of this study is to examine 1) for what health issues youth use mobile devices, 2) for what reasons youth use mobile devices to obtain health information, 3) in what ways youth use mobile devices for health information, and 4) the features of health applications that youth find useful. The researchers devised a questionnaire for this study. Four hundred eight students from two high schools, located in Osijek, Croatia, participated by answering the questionnaire (281 girls and 127 boys). The collected data were analyzed using descriptive statistics and content analysis. The results show that among all participants, about 85 percent (n = 344) reported having used mobile devices for health information. The most frequent health topic for which they had been using mobile devices is physical activity (n = 273), followed by eating issues and nutrition (n = 224), mental health (n = 160), sexual health (n = 157), alcohol, drugs, and tobacco (n = 125), safety (n = 96) and particular diseases (n = 62). They use mobile devices to obtain health information due to the ease of use (n = 342), the ease of sharing health information (n = 281), portability (n = 215), timeliness (n = 162), and the ease of tracking/recording/monitoring health status (n = 147). Of those who have used mobile devices for health information, three-quarters (n = 261) use mobile devices to search health information, while 32.8% (n =113) use applications and 31.7% (n =109) browse information. Those who have used applications for health information (n = 113) consider the alert feature (n=107) as the most useful, followed by the tracking/recording/monitoring feature (n =92), the customized information feature (n = 86), the video feature (n = 58), and the sharing feature (n =39). It is notable that although health applications have been actively developed and studied, a majority of the participants search for or browse information on mobile devices, instead of using applications. The researchers will discuss reasons that some of them did not use mobile devices to obtain health information, students’ concerns about using health applications, and features that they wish to have in health applications.

Keywords: Croatia, health information, information seeking behaviors, mobile devices, youth

Procedia PDF Downloads 364
10842 Adverse Drug Reactions Monitoring in the Northern Region of Zambia

Authors: Ponshano Kaselekela, Simooya O. Oscar, Lunshano Boyd

Abstract:

The Copperbelt University Health Services (CBUHS) was designated by the Zambia Medicines Regulatory Authority (ZAMRA), formally the Pharmaceutical Regulatory Authority (PRA) as a regional pharmacovigilance centre to carryout activities of drug safety monitoring in four provinces in Zambia. CBUHS’s mandate included stimulating the reporting of adverse drug reactions (ADRs), as well as collecting and collating ADR reports from health institutions in the four provinces. This report covers the researchers’ experiences from May 2008 to September, 2016. The main objectives are 1) to monitor ADRs in the Zambian population, 2) to disseminate information to all health professionals in the region advising that the CBU health was a centre for reporting ADRs in the region, 3) to monitor polypharmacy as well as the benefit-risk profile of medicines, 4) to generate independent, evidence based recommendations on the safety of medicines, 5) to support ZAMRA in formulating safety related regulatory decisions for medicines, and 6) to communicate findings with all key stakeholders. The methodology involved monthly visits, beginning in early May 2008 to September, 2016, by the CBUHS to health institutions in the programme areas. Activities included holding discussions with health workers, distribution of ADR forms and collection of ADRs reports. These reports, once collected, were documented and assessed at the CBUHS. A report was then prepared for ZAMRA on quarterly basis. At ZAMRA, serious ADRs were noted and recommendations made to the Ministry of Health of the Republic of Zambia. The results show that 2,600 ADRs reports were received at the pharmacovigilance regional centre. Most of the ADRs reports that received were due to antiretroviral drugs, as well as a few from anti-malarial drugs like Artemether/Lumefantrine – Coartem®. Three hundred and twelve ADRs were entered in the Uppsala Monitoring Centre WHO Vigiflow for further analysis. It was concluded that in general, 2008-16 were exciting years for the pharmacovigilance group at CBUHS. From a very tentative beginning, a lot of strides were made and contacts established with healthcare facilities in the region. The researchers were encouraged by the support received from the Copperbelt University management, the motivation provided by ZAMRA and most importantly the enthusiasm of health workers in all the health care facilities visited. As a centre for drug safety in Zambia, the results show it achieves its objectives for monitoring ADRs, Pharmacovigilance (drug safety monitoring), and activities of monitoring ADRs as well as preventing them. However, the centre faces critical challenges caused by erratic funding that prevents the smooth running of the programme.

Keywords: adverse drug reactions, drug safety, monitoring, pharmacovigilance

Procedia PDF Downloads 175
10841 Mental Health Monitoring System as an Effort for Prevention and Handling of Psychological Problems in Students

Authors: Arif Tri Setyanto, Aditya Nanda Priyatama, Nugraha Arif Karyanta, Fadjri Kirana A., Afia Fitriani, Rini Setyowati, Moh.Abdul Hakim

Abstract:

The Basic Health Research Report by the Ministry of Health (2018) shows an increase in the prevalence of mental health disorders in the adolescent and early adult age ranges. Supporting this finding, data on the psychological examination of the student health service unit at one State University recorded 115 cases of moderate and severe health problems in the period 2016 - 2019. More specifically, the highest number of cases was experienced by clients in the age range of 21-23 years or equivalent, with the mid-semester stage towards the end. Based on the distribution of cases experienced and the disorder becomes a psychological problem experienced by students. A total of 29% or the equivalent of 33 students experienced anxiety disorders, 25% or 29 students experienced problems ranging from mild to severe, as well as other classifications of disorders experienced, including adjustment disorders, family problems, academics, mood disorders, self-concept disorders, personality disorders, cognitive disorders, and others such as trauma and sexual disorders. Various mental health disorders have a significant impact on the academic life of students, such as low GPA, exceeding the limit in college, dropping out, disruption of social life on campus, to suicide. Based on literature reviews and best practices from universities in various countries, one of the effective ways to prevent and treat student mental health disorders is to implement a mental health monitoring system in universities. This study uses a participatory action research approach, with a sample of 423 from a total population of 32,112 students. The scale used in this study is the Beck Depression Inventory (BDI) to measure depression and the Taylor Minnesota Anxiety Scale (TMAS) to measure anxiety levels. This study aims to (1) develop a digital-based health monitoring system for students' mental health situations in the mental health category. , dangers, or those who have mental disorders, especially indications of symptoms of depression and anxiety disorders, and (2) implementing a mental health monitoring system in universities at the beginning and end of each semester. The results of the analysis show that from 423 respondents, the main problems faced by all coursework, such as thesis and academic assignments. Based on the scoring and categorization of the Beck Depression Inventory (BDI), 191 students experienced symptoms of depression. A total of 24.35%, or 103 students experienced mild depression, 14.42% (61 students) had moderate depression, and 6.38% (27 students) experienced severe or extreme depression. Furthermore, as many as 80.38% (340 students) experienced anxiety in the high category. This article will review this review of the student mental health service system on campus.

Keywords: monitoring system, mental health, psychological problems, students

Procedia PDF Downloads 75
10840 Structural Health Monitoring of Buildings–Recorded Data and Wave Method

Authors: Tzong-Ying Hao, Mohammad T. Rahmani

Abstract:

This article presents the structural health monitoring (SHM) method based on changes in wave traveling times (wave method) within a layered 1-D shear beam model of structure. The wave method measures the velocity of shear wave propagating in a building from the impulse response functions (IRF) obtained from recorded data at different locations inside the building. If structural damage occurs in a structure, the velocity of wave propagation through it changes. The wave method analysis is performed on the responses of Torre Central building, a 9-story shear wall structure located in Santiago, Chile. Because events of different intensity (ambient vibrations, weak and strong earthquake motions) have been recorded at this building, therefore it can serve as a full-scale benchmark to validate the structural health monitoring method utilized. The analysis of inter-story drifts and the Fourier spectra for the EW and NS motions during 2010 Chile earthquake are presented. The results for the NS motions suggest the coupling of translation and torsion responses. The system frequencies (estimated from the relative displacement response of the 8th-floor with respect to the basement from recorded data) were detected initially decreasing approximately 24% in the EW motion. Near the end of shaking, an increase of about 17% was detected. These analysis and results serve as baseline indicators of the occurrence of structural damage. The detected changes in wave velocities of the shear beam model are consistent with the observed damage. However, the 1-D shear beam model is not sufficient to simulate the coupling of translation and torsion responses in the NS motion. The wave method is proven for actual implementation in structural health monitoring systems based on carefully assessing the resolution and accuracy of the model for its effectiveness on post-earthquake damage detection in buildings.

Keywords: Chile earthquake, damage detection, earthquake response, impulse response function, shear beam model, shear wave velocity, structural health monitoring, torre central building, wave method

Procedia PDF Downloads 342
10839 Flow Conservation Framework for Monitoring Software Defined Networks

Authors: Jesús Antonio Puente Fernández, Luis Javier Garcia Villalba

Abstract:

New trends on streaming videos such as series or films require a high demand of network resources. This fact results in a huge problem within traditional IP networks due to the rigidity of its architecture. In this way, Software Defined Networks (SDN) is a new concept of network architecture that intends to be more flexible and it simplifies the management in networks with respect to the existing ones. These aspects are possible due to the separation of control plane (controller) and data plane (switches). Taking the advantage of this separated control, it is easy to deploy a monitoring tool independent of device vendors since the existing ones are dependent on the installation of specialized and expensive hardware. In this paper, we propose a framework that optimizes the traffic monitoring in SDN networks that decreases the number of monitoring queries to improve the network traffic and also reduces the overload. The performed experiments (with and without the optimization) using a video streaming delivery between two hosts demonstrate the feasibility of our monitoring proposal.

Keywords: optimization, monitoring, software defined networking, statistics, query

Procedia PDF Downloads 295
10838 Structural Health Monitoring Method Using Stresses Occurring on Bridge Bearings Under Temperature

Authors: T. Nishido, S. Fukumoto

Abstract:

The functions of movable bearings decline due to corrosion and sediments. As the result, they cannot move or rotate according to the behaviors of girders. Because of the constraints, the bending moments are generated by the horizontal reaction forces and the heights of girders. Under these conditions, the authors obtained the following results by analysis and experiment. Tensile stresses due to the moments occurred at temperature fluctuations. The large tensile stresses on concrete slabs around the bearings caused cracks. Even if concrete slabs are newly replaced, cracks will come out again with function declined bearings. The functional declines of bearings are generally found by using displacement gauges. However the method is not suitable for long-term measurements. We focused on the change in the strains at the bearings and the lower flanges near them at temperature fluctuations. It was found that their strains were particularly large when the movements of the bearings were constrained. Therefore, we developed a long-term health monitoring wireless system with FBG (Fiber Bragg Grating) sensors which were attached to bearings and lower flanges. The FBG sensors have the characteristics such as non-electrical influence, resistance to weather, and high strain sensitivity. Such characteristics are suitable for long-term measurements. The monitoring system was inexpensive because it was limited to the purpose of measuring strains and temperature. Engineers can monitor the behaviors of bearings in real time with the wireless system. If an office is away from bridge sites, the system will save traveling time and cost.

Keywords: bridge bearing, concrete slab,  FBG sensor, health monitoring

Procedia PDF Downloads 200
10837 Considerations upon Structural Health Monitoring of Small to Medium Wind Turbines

Authors: Nicolae Constantin, Ştefan Sorohan

Abstract:

The small and medium wind turbines are running in quite different conditions as compared to the big ones. Consequently, they need also a different approach concerning the structural health monitoring (SHM) issues. There are four main differences between the above mentioned categories: (i) significantly smaller dimensions, (ii) considerably higher rotation speed, (iii) generally small distance between the turbine and the energy consumer and (iv) monitoring assumed in many situations by the owner. In such conditions, nondestructive inspections (NDI) have to be made as much as possible with affordable, yet effective techniques, requiring portable and accessible equipment. Additionally, the turbines and accessories should be easy to mount, dispose and repair. As the materials used for such unit can be metals, composites and combined, the technologies should be adapted accordingly. An example in which the two materials co-exist is the situation in which the damaged metallic skin of a blade is repaired with a composite patch. The paper presents the inspection of the bonding state of the patch, using portable ultrasonic equipment, able to put in place the Lamb wave method, which proves efficient in global and local inspections as well. The equipment is relatively easy to handle and can be borrowed from specialized laboratories or used by a community of small wind turbine users, upon the case. This evaluation is the first in a row, aimed to evaluate efficiency of NDI performed with rather accessible, less sophisticated equipment and related inspection techniques, having field inspection capabilities. The main goal is to extend such inspection procedures to other components of the wind power unit, such as the support tower, water storage tanks, etc.

Keywords: structural health monitoring, small wind turbines, non-destructive inspection, field inspection capabilities

Procedia PDF Downloads 314
10836 Monitoring of Hydrological Parameters in the Alexandra Jukskei Catchment in South Africa

Authors: Vhuhwavho Gadisi, Rebecca Alowo, German Nkhonjera

Abstract:

It has been noted that technical programming for handling groundwater resources is not accessible. The lack of these systems hinders groundwater management processes necessary for decision-making through monitoring and evaluation regarding the Jukskei River of the Crocodile River (West) Basin in Johannesburg, South Africa. Several challenges have been identified in South Africa's Jukskei Catchment concerning groundwater management. Some of those challenges will include the following: Gaps in data records; there is a need for training and equipping of monitoring staff; formal accreditation of monitoring capacities and equipment; there is no access to regulation terms (e.g., meters). Taking into consideration necessities and human requirements as per typical densities in various regions of South Africa, there is a need to construct several groundwater level monitoring stations in a particular segment; the available raw data on groundwater level should be converted into consumable products for example, short reports on delicate areas (e.g., Dolomite compartments, wetlands, aquifers, and sole source) and considering the increasing civil unrest there has been vandalism and theft of groundwater monitoring infrastructure. GIS was employed at the catchment level to plot the relationship between those identified groundwater parameters in the catchment area and the identified borehole. GIS-based maps were designed for groundwater monitoring to be pretested on one borehole in the Jukskei catchment. This data will be used to establish changes in the borehole compared to changes in the catchment area according to identified parameters.

Keywords: GIS, monitoring, Jukskei, catchment

Procedia PDF Downloads 63
10835 A Procedure for Post-Earthquake Damage Estimation Based on Detection of High-Frequency Transients

Authors: Aleksandar Zhelyazkov, Daniele Zonta, Helmut Wenzel, Peter Furtner

Abstract:

In the current research structural health monitoring is considered for addressing the critical issue of post-earthquake damage detection. A non-standard approach for damage detection via acoustic emission is presented - acoustic emissions are monitored in the low frequency range (up to 120 Hz). Such emissions are termed high-frequency transients. Further a damage indicator defined as the Time-Ratio Damage Indicator is introduced. The indicator relies on time-instance measurements of damage initiation and deformation peaks. Based on the time-instance measurements a procedure for estimation of the maximum drift ratio is proposed. Monitoring data is used from a shaking-table test of a full-scale reinforced concrete bridge pier. Damage of the experimental column is successfully detected and the proposed damage indicator is calculated.

Keywords: acoustic emission, damage detection, shaking table test, structural health monitoring

Procedia PDF Downloads 196
10834 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge

Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi

Abstract:

Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.

Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring

Procedia PDF Downloads 177