Search results for: genetic variations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2890

Search results for: genetic variations

2830 Metal-Oxide-Semiconductor-Only Process Corner Monitoring Circuit

Authors: Davit Mirzoyan, Ararat Khachatryan

Abstract:

A process corner monitoring circuit (PCMC) is presented in this work. The circuit generates a signal, the logical value of which depends on the process corner only. The signal can be used in both digital and analog circuits for testing and compensation of process variations (PV). The presented circuit uses only metal-oxide-semiconductor (MOS) transistors, which allow increasing its detection accuracy, decrease power consumption and area. Due to its simplicity the presented circuit can be easily modified to monitor parametrical variations of only n-type and p-type MOS (NMOS and PMOS, respectively) transistors, resistors, as well as their combinations. Post-layout simulation results prove correct functionality of the proposed circuit, i.e. ability to monitor the process corner (equivalently die-to-die variations) even in the presence of within-die variations.

Keywords: detection, monitoring, process corner, process variation

Procedia PDF Downloads 496
2829 An Optimization Algorithm Based on Dynamic Schema with Dissimilarities and Similarities of Chromosomes

Authors: Radhwan Yousif Sedik Al-Jawadi

Abstract:

Optimization is necessary for finding appropriate solutions to a range of real-life problems. In particular, genetic (or more generally, evolutionary) algorithms have proved very useful in solving many problems for which analytical solutions are not available. In this paper, we present an optimization algorithm called Dynamic Schema with Dissimilarity and Similarity of Chromosomes (DSDSC) which is a variant of the classical genetic algorithm. This approach constructs new chromosomes from a schema and pairs of existing ones by exploring their dissimilarities and similarities. To show the effectiveness of the algorithm, it is tested and compared with the classical GA, on 15 two-dimensional optimization problems taken from literature. We have found that, in most cases, our method is better than the classical genetic algorithm.

Keywords: chromosome injection, dynamic schema, genetic algorithm, similarity and dissimilarity

Procedia PDF Downloads 314
2828 Genetic Structure of Four Bovine Populations in the Philippines Using Microsatellites

Authors: Peter James C. Icalia, Agapita J. Salces, Loida Valenzuela, Kangseok Seo, Geronima Ludan

Abstract:

This study evaluated polymorphism of 11 microsatellite markers in four local genetic groups of cattle. Batanes cattle which has never been studied using microsatellites is evaluated for its genetic distance from the Ilocos cattle while Brahman and Holstein-Sahiwal are also included as there were insemination programs by the government using these two breeds. PCR products that were genotyped for each marker were analyzed using POPGENEv32. Results showed that 55% (Fst=0.5501) of the genetic variation is due to the differences between populations while the remaining 45% is due to individual variation. The Fst value also indicates that there were very great differences from population to population using the range proposed by Sewall and Wright. The constructed phylogenetic tree based on Nei’s genetic distance using the modified neighboor joining procedure of PHYLIPv3.5 showed the admixture of Brahman and Holstein-Sahiwal having them grouped in the same clade. Batanes and Ilocos cattle were grouped in a different cluster showing that they have descended from a single parental population. This would presumably address the claim that Batanes and Ilocos cattle are genetically distant from other groups and still exist despite the artificial insemination program of the government using Brahman and other imported breeds. The knowledge about the genetic structure of this population supports the development of conservation programs for the smallholder farmers.

Keywords: microsatellites, cattle, Philippines, populations, genetic structure

Procedia PDF Downloads 485
2827 Application of Molecular Markers for Crop Improvement

Authors: Monisha Isaac

Abstract:

Use of molecular markers for selecting plants with desired traits has been started long back. Due to their heritable characteristics, they are useful for identification and characterization of specific genotypes. The study involves various types of molecular markers used to select multiple desired characters in plants, their properties, and advantages to improve crop productivity in adverse climatological conditions for the purpose of providing food security to fast-growing global population. The study shows that genetic similarities obtained from molecular markers provide more accurate information and the genetic diversity can be better estimated from the genetic relationship obtained from the dendrogram. The information obtained from markers assisted characterization is more suitable for the crops of economic importance like sugarcane.

Keywords: molecular markers, crop productivity, genetic diversity, genotype

Procedia PDF Downloads 484
2826 Genomic Adaptation to Local Climate Conditions in Native Cattle Using Whole Genome Sequencing Data

Authors: Rugang Tian

Abstract:

In this study, we generated whole-genome sequence (WGS) data from110 native cattle. Together with whole-genome sequences from world-wide cattle populations, we estimated the genetic diversity and population genetic structure of different cattle populations. Our findings revealed clustering of cattle groups in line with their geographic locations. We identified noticeable genetic diversity between indigenous cattle breeds and commercial populations. Among all studied cattle groups, lower genetic diversity measures were found in commercial populations, however, high genetic diversity were detected in some local cattle, particularly in Rashoki and Mongolian breeds. Our search for potential genomic regions under selection in native cattle revealed several candidate genes related with immune response and cold shock protein on multiple chromosomes such as TRPM8, NMUR1, PRKAA2, SMTNL2 and OXR1 that are involved in energy metabolism and metabolic homeostasis.

Keywords: cattle, whole-genome, population structure, adaptation

Procedia PDF Downloads 22
2825 Genetics, Law and Society: Regulating New Genetic Technologies

Authors: Aisling De Paor

Abstract:

Scientific and technological developments are driving genetics and genetic technologies into the public sphere. Scientists are making genetic discoveries as to the make up of the human body and the cause and effect of disease, diversity and disability amongst individuals. Technological innovation in the field of genetics is also advancing, with the development of genetic testing, and other emerging genetic technologies, including gene editing (which offers the potential for genetic modification). In addition to the benefits for medicine, health care and humanity, these genetic advances raise a range of ethical, legal and societal concerns. From an ethical perspective, such advances may, for example, change the concept of humans and what it means to be human. Science may take over in conceptualising human beings, which may push the boundaries of existing human rights. New genetic technologies, particularly gene editing techniques create the potential to stigmatise disability, by highlighting disability or genetic difference as something that should be eliminated or anticipated. From a disability perspective, use (and misuse) of genetic technologies raise concerns about discrimination and violations to the dignity and integrity of the individual. With an acknowledgement of the likely future orientation of genetic science, and in consideration of the intersection of genetics and disability, this paper highlights the main concerns raised as genetic science and technology advances (particularly with gene editing developments), and the consequences for disability and human rights. Through the use of traditional doctrinal legal methodologies, it investigates the use (and potential misuse) of gene editing as creating the potential for a unique form of discrimination and stigmatization to develop, as well as a potential gateway to a form of new, subtle eugenics. This article highlights the need to maintain caution as to the use, application and the consequences of genetic technologies. With a focus on the law and policy position in Europe, it examines the need to control and regulate these new technologies, particularly gene editing. In addition to considering the need for regulation, this paper highlights non-normative approaches to address this area, including awareness raising and education, public discussion and engagement with key stakeholders in the field and the development of a multifaceted genetics advisory network.

Keywords: disability, gene-editing, genetics, law, regulation

Procedia PDF Downloads 330
2824 Implementation of CNV-CH Algorithm Using Map-Reduce Approach

Authors: Aishik Deb, Rituparna Sinha

Abstract:

We have developed an algorithm to detect the abnormal segment/"structural variation in the genome across a number of samples. We have worked on simulated as well as real data from the BAM Files and have designed a segmentation algorithm where abnormal segments are detected. This algorithm aims to improve the accuracy and performance of the existing CNV-CH algorithm. The next-generation sequencing (NGS) approach is very fast and can generate large sequences in a reasonable time. So the huge volume of sequence information gives rise to the need for Big Data and parallel approaches of segmentation. Therefore, we have designed a map-reduce approach for the existing CNV-CH algorithm where a large amount of sequence data can be segmented and structural variations in the human genome can be detected. We have compared the efficiency of the traditional and map-reduce algorithms with respect to precision, sensitivity, and F-Score. The advantages of using our algorithm are that it is fast and has better accuracy. This algorithm can be applied to detect structural variations within a genome, which in turn can be used to detect various genetic disorders such as cancer, etc. The defects may be caused by new mutations or changes to the DNA and generally result in abnormally high or low base coverage and quantification values.

Keywords: cancer detection, convex hull segmentation, map reduce, next generation sequencing

Procedia PDF Downloads 102
2823 Genomic Diversity of Clostridium perfringens Strains in Food and Human Sources

Authors: Asma Afshari, Abdollah Jamshidi, Jamshid Razmyar, Mehrnaz Rad

Abstract:

Clostridium perfringens is a serious pathogen which causes enteric diseases in domestic animals and food poisoning in humans. Spores can survive cooking processes and play an important role in the possible onset of disease. In this study RAPD-PCR and REP-PCR were used to examine the genetic diversity of 49isolates ofC. Perfringens type A from 3 different sources. The results of RAPD-PCR revealed the most genetic diversity among poultry isolates, while human isolates showed the least genetic diversity. Cluster analysis obtained from RAPD_PCR and based on the genetic distances split the 49 strains into five distinct major clusters (A, B, C, D, and E). Cluster A and C were composed of isolates from poultry meat, cluster B was composed of isolates from human feces, cluster D was composed of isolates from minced meat, poultry meat and human feces and cluster E was composed of isolates from minced meat. Further characterization of these strains by using (GTG) 5 fingerprint repetitive sequence-based PCR analysis did not show further differentiation between various types of strains. To our knowledge, this is the first study in which the genetic diversity of C. perfringens isolates from different types of meats and human feces has been investigated.

Keywords: C. perfringens, genetic diversity, RAPD-PCR, REP-PCR

Procedia PDF Downloads 459
2822 Methods for Distinction of Cattle Using Supervised Learning

Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl

Abstract:

Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.

Keywords: genetic data, Pinzgau cattle, supervised learning, machine learning

Procedia PDF Downloads 517
2821 A Dynamic Software Product Line Approach to Self-Adaptive Genetic Algorithms

Authors: Abdelghani Alidra, Mohamed Tahar Kimour

Abstract:

Genetic algorithm must adapt themselves at design time to cope with the search problem specific requirements and at runtime to balance exploration and convergence objectives. In a previous article, we have shown that modeling and implementing Genetic Algorithms (GA) using the software product line (SPL) paradigm is very appreciable because they constitute a product family sharing a common base of code. In the present article we propose to extend the use of the feature model of the genetic algorithms family to model the potential states of the GA in what is called a Dynamic Software Product Line. The objective of this paper is the systematic generation of a reconfigurable architecture that supports the dynamic of the GA and which is easily deduced from the feature model. The resultant GA is able to perform dynamic reconfiguration autonomously to fasten the convergence process while producing better solutions. Another important advantage of our approach is the exploitation of recent advances in the domain of dynamic SPLs to enhance the performance of the GAs.

Keywords: self-adaptive genetic algorithms, software engineering, dynamic software product lines, reconfigurable architecture

Procedia PDF Downloads 256
2820 Investigation of Genetic Diversity in Bread Wheat by RAPD and SSR Markers

Authors: Mohammad Sadegh Khavarinejad

Abstract:

In this study, genetic diversity of 10 bread wheat genotypes by SSR and RAPD markers was evaluated. 11 primers were used included 6 RAPD primers and 5 SSR primers. RAPDs and SSRs could find 33 and 17 polymorphism respectively. In RAPDs, primers UBC 350 and UBC 109 and in SSRs, Primers Xgwm 469-6D and Xgwm120-2B showed genetic diversity among genotypes more than others.

Keywords: wheat, molecular markers, SSR, RAPD

Procedia PDF Downloads 405
2819 Optimization of Steel Moment Frame Structures Using Genetic Algorithm

Authors: Mohammad Befkin, Alireza Momtaz

Abstract:

Structural design is the challenging aspect of every project due to limitations in dimensions, functionality of the structure, and more importantly, the allocated budget for construction. This research study aims to investigate the optimized design for three steel moment frame buildings with different number of stories using genetic algorithm code. The number and length of spans, and height of each floor were constant in all three buildings. The design of structures are carried out according to AISC code within the provisions of plastic design with allowable stress values. Genetic code for optimization is produced using MATLAB program, while buildings modeled in Opensees program and connected to the MATLAB code to perform iterations in optimization steps. In the end designs resulted from genetic algorithm code were compared with the analysis of buildings in ETABS program. The results demonstrated that suggested structural elements by the code utilize their full capacity, indicating the desirable efficiency of produced code.

Keywords: genetic algorithm, structural analysis, steel moment frame, structural design

Procedia PDF Downloads 83
2818 Development of Microsatellite Markers for Genetic Variation Analysis in House Cricket, Acheta domesticus

Authors: Yash M. Gupta, Kittisak Buddhachat, Surin Peyachoknagul, Somjit Homchan

Abstract:

The house cricket, Acheta domesticus is one of the commonly found species of field crickets. Although it is very commonly used as food and feed, the genomic information of house cricket is still missing for genetic investigation. DNA sequencing technology has evolved over the decades, and it has also revolutionized the molecular marker development for genetic analysis. In the present study, we have sequenced the whole genome of A. domesticus using illumina platform based HiSeq X Ten sequencing technology for searching simple sequence repeats (SSRs) in DNA to develop polymorphic microsatellite markers for population genetic analysis. A total of 112,157 SSRs with primer pairs were identified, 91 randomly selected SSRs used to check DNA amplification, of which nine primers were polymorphic. These microsatellite markers have shown cross-amplification with other three species of crickets which are Gryllus bimaculatus, Gryllus testaceus and Brachytrupes portentosus. These nine polymorphic microsatellite markers were used to check genetic variation for forty-five individuals of A. domesticus, Phitsanulok population, Thailand. For nine loci, the number of alleles was ranging from 5 to 15. The observed heterozygosity was ranged from 0.4091 to 0.7556. These microsatellite markers will facilitate population genetic analysis for future studies of A. domesticus populations. Moreover, the transferability of these SSR makers would also enable researchers to conduct genetic studies for other closely related species.

Keywords: cross-amplification, microsatellite markers, observed heterozygosity, population genetic, simple sequence repeats

Procedia PDF Downloads 115
2817 Genetic Variations of Two Casein Genes among Maghrabi Camels Reared in Egypt

Authors: Othman E. Othman, Amira M. Nowier, Medhat El-Denary

Abstract:

Camels play an important socio-economic role within the pastoral and agricultural system in the dry and semidry zones of Asia and Africa. Camels are economically important animals in Egypt where they are dual purpose animals (meat and milk). The analysis of chemical composition of camel milk showed that the total protein contents ranged from 2.4% to 5.3% and it is divided into casein and whey proteins. The casein fraction constitutes 52% to 89% of total camel milk protein and it divided into 4 fractions namely αs1, αs2, β and κ-caseins which are encoded by four tightly genes. In spite of the important role of casein genes and the effects of their genetic polymorphisms on quantitative traits and technological properties of milk, the studies for the detection of genetic polymorphism of camel milk genes are still limited. Due to this fact, this work focused - using PCR-RFP and sequencing analysis - on the identification of genetic polymorphisms and SNPs of two casein genes in Maghrabi camel breed which is a dual purpose camel breed in Egypt. The amplified fragments at 488-bp of the camel κ-CN gene were digested with AluI endonuclease. The results showed the appearance of three different genotypes in the tested animals; CC with three digested fragments at 203-, 127- and 120-bp, TT with three digested fragments at 203-, 158- and 127-bp and CT with four digested fragments at 203-, 158-, 127- and 120-bp. The frequencies of three detected genotypes were 11.0% for CC, 48.0% for TT and 41.0% for CT genotypes. The sequencing analysis of the two different alleles declared the presence of a single nucleotide polymorphism (C→T) at position 121 in the amplified fragments which is responsible for the destruction of a restriction site (AG/CT) in allele T and resulted in the presence of two different alleles C and T in tested animals. The nucleotide sequences of κ-CN alleles C and T were submitted to GenBank with the accession numbers; KU055605 and KU055606, respectively. The primers used in this study amplified 942-bp fragments spanning from exon 4 to exon 6 of camel αS1-Casein gene. The amplified fragments were digested with two different restriction enzymes; SmlI and AluI. The results of SmlI digestion did not show any restriction site whereas the digestion with AluI endonuclease revealed the presence of two restriction sites AG^CT at positions 68^69 and 631^632 yielding the presence of three digested fragments with sizes 68-, 563- and 293-bp.The nucleotide sequences of this fragment from camel αS1-Casein gene were submitted to GenBank with the accession number KU145820. In conclusion, the genetic characterization of quantitative traits genes which are associated with the production traits like milk yield and composition is considered an important step towards the genetic improvement of livestock species through the selection of superior animals depending on the favorable alleles and genotypes; marker assisted selection (MAS).

Keywords: genetic polymorphism, SNP polymorphism, Maghrabi camels, κ-Casein gene, αS1-Casein gene

Procedia PDF Downloads 580
2816 Dual Band Antenna Design with Compact Radiator for 2.5/5.2/5.8 Ghz Wlan Application Using Genetic Algorithm

Authors: Ramnath Narhete, Saket Pandey, Puran Gour

Abstract:

This paper presents of dual-band planner antenna with a compact radiator for 2.4/5.2/5.8 proposed by optimizing its resonant frequency, Bandwidth of operation and radiation frequency using the genetic algorithm. The antenna consists L-shaped and E-shaped radiating element to generate two resonant modes for dual band operation. The above techniques have been successfully used in many applications. Dual band antenna with the compact radiator for 2.4/5.2/5.8 GHz WLAN application design and radiator size only width 8mm and a length is 11.3 mm. The antenna can we used for various application in the field of communication. Genetic algorithm will be used to design the antenna and impedance matching network.

Keywords: genetic algorithm, dual-band E, dual-band L, WLAN, compact radiator

Procedia PDF Downloads 554
2815 Solving Process Planning and Scheduling with Number of Operation Plus Processing Time Due-Date Assignment Concurrently Using a Genetic Search

Authors: Halil Ibrahim Demir, Alper Goksu, Onur Canpolat, Caner Erden, Melek Nur

Abstract:

Traditionally process planning, scheduling and due date assignment are performed sequentially and separately. High interrelation between these functions makes integration very useful. Although there are numerous works on integrated process planning and scheduling and many works on scheduling with due date assignment, there are only a few works on the integration of these three functions. Here we tested the different integration levels of these three functions and found a fully integrated version as the best. We applied genetic search and random search and genetic search was found better compared to the random search. We penalized all earliness, tardiness and due date related costs. Since all these three terms are all undesired, it is better to penalize all of them.

Keywords: process planning, scheduling, due-date assignment, genetic algorithm, random search

Procedia PDF Downloads 351
2814 Approximately Similarity Measurement of Web Sites Using Genetic Algorithms and Binary Trees

Authors: Doru Anastasiu Popescu, Dan Rădulescu

Abstract:

In this paper, we determine the similarity of two HTML web applications. We are going to use a genetic algorithm in order to determine the most significant web pages of each application (we are not going to use every web page of a site). Using these significant web pages, we will find the similarity value between the two applications. The algorithm is going to be efficient because we are going to use a reduced number of web pages for comparisons but it will return an approximate value of the similarity. The binary trees are used to keep the tags from the significant pages. The algorithm was implemented in Java language.

Keywords: Tag, HTML, web page, genetic algorithm, similarity value, binary tree

Procedia PDF Downloads 330
2813 Reliability Improvement of Power System Networks Using Adaptive Genetic Algorithm

Authors: Alireza Alesaadi

Abstract:

Reliability analysis is a powerful method for determining the weak points of the electrical networks. In designing of electrical network, it is tried to design the most reliable network with minimal system shutting down, but it is usually associated with increasing the cost. In this paper, using adaptive genetic algorithm, a method was presented that provides the most reliable system with a certain economical cost. Finally, the proposed method is applied to a sample network and results will be analyzed.

Keywords: reliability, adaptive genetic algorithm, electrical network, communication engineering

Procedia PDF Downloads 465
2812 Agro-Morphological Traits Based Genetic Diversity Analysis of ‘Ethiopian Dinich’ Plectranthus edulis (Vatke) Agnew Populations Collected from Diverse Agro-Ecologies in Ethiopia

Authors: Fekadu Gadissa, Kassahun Tesfaye, Kifle Dagne, Mulatu Geleta

Abstract:

‘Ethiopian dinich’ also called ‘Ethiopian potato’ is one of the economically important ‘orphan’ edible tuber crops indigenous to Ethiopia. We evaluated the morphological and agronomic traits performances of 174 samples from Ethiopia at multiple locations using 12 qualitative and 16 quantitative traits, recorded at the correct growth stages. We observed several morphotypes and phenotypic variations for qualitative traits along with a wide range of mean performance values for all quantitative traits. Analysis of variance for each quantitative trait showed a highly significant (p<0.001) variation among the collections with eventually non-significant variation for environment-traits interaction for all but flower length. A comparatively high phenotypic and genotypic coefficient of variation was observed for plant height, days to flower initiation, days to 50% flowering and tuber number per hill. Moreover, the variability and coefficients of variation due to genotype-environment interaction was nearly zero for all the traits except flower length. High genotypic coefficients of variation coupled with a high estimate of broad sense heritability and high genetic advance as a percent of collection mean were obtained for tuber weight per hill, number of primary branches per plant, tuber number per hill and number of plants per hill. Association of tuber yield per hectare of land showed a large magnitude of positive phenotypic and genotypic correlation with those traits. Principal components analysis revealed 76% of the total variation for the first six principal axes with high factor loadings again from tuber number per hill, number of primary branches per plant and tuber weight. The collections were grouped into four clusters with the weak region (zone) of origin based pattern. In general, there is high genetic-based variability for ‘Ethiopian dinich’ improvement and conservation. DNA based markers are recommended for further genetic diversity estimation for use in breeding and conservation.

Keywords: agro-morphological traits, Ethiopian dinich, genetic diversity, variance components

Procedia PDF Downloads 161
2811 A Preliminary Study for Design of Automatic Block Reallocation Algorithm with Genetic Algorithm Method in the Land Consolidation Projects

Authors: Tayfun Çay, Yasar İnceyol, Abdurrahman Özbeyaz

Abstract:

Land reallocation is one of the most important steps in land consolidation projects. Many different models were proposed for land reallocation in the literature such as Fuzzy Logic, block priority based land reallocation and Spatial Decision Support Systems. A model including four parts is considered for automatic block reallocation with genetic algorithm method in land consolidation projects. These stages are preparing data tables for a project land, determining conditions and constraints of land reallocation, designing command steps and logical flow chart of reallocation algorithm and finally writing program codes of Genetic Algorithm respectively. In this study, we designed the first three steps of the considered model comprising four steps.

Keywords: land consolidation, landholding, land reallocation, optimization, genetic algorithm

Procedia PDF Downloads 395
2810 Macroeconomic Determinants of Cyclical Variations in Value, Size, and Momentum Premium in the UK

Authors: G. Sarwar, C. Mateus, N. Todorovic

Abstract:

The paper examines the asymmetries in size, value and momentum premium over the economic cycles in the UK and their macroeconomic determinants. Using Markov switching approach we find clear evidence of cyclical variations of the three premiums, most noticeably variations in size premium. We associate Markov switching regime 1 with economic upturn and regime 2 with economic downturn as per OECD’s Composite Leading Indicator. The macroeconomic indicators prompting such cyclicality the most are interest rates, term structure and credit spread. The role of GDP growth, money supply and inflation is less pronounced in our sample.

Keywords: macroeconomic determinants, Markorv Switching, size, value

Procedia PDF Downloads 459
2809 Optimal Portfolio Selection under Treynor Ratio Using Genetic Algorithms

Authors: Imad Zeyad Ramadan

Abstract:

In this paper a genetic algorithm was developed to construct the optimal portfolio based on the Treynor method. The GA maximizes the Treynor ratio under budget constraint to select the best allocation of the budget for the companies in the portfolio. The results show that the GA was able to construct a conservative portfolio which includes companies from the three sectors. This indicates that the GA reduced the risk on the investor as it choose some companies with positive risks (goes with the market) and some with negative risks (goes against the market).

Keywords: oOptimization, genetic algorithm, portfolio selection, Treynor method

Procedia PDF Downloads 420
2808 Seismic Retrofitting of Structures Using Steel Plate Slit Dampers Based on Genetic Algorithm

Authors: Mohamed Noureldin, Jinkoo Kim

Abstract:

In this study, a genetic algorithm was used to find out the optimum locations of the slit dampers satisfying a target displacement. A seismic retrofit scheme for a building structure was presented using steel plate slit dampers. A cyclic loading test was used to verify the energy dissipation capacity of the slit damper. The seismic retrofit of the model structure using the slit dampers was compared with the retrofit with enlarging shear walls. The capacity spectrum method was used to propose a simple damper distribution scheme proportional to the inter-story drifts. The validity of the simple story-wise damper distribution procedure was verified by comparing the results of the genetic algorithm. It was observed that the proposed simple damper distribution pattern was in a good agreement with the optimum distribution obtained from the genetic algorithm. Acknowledgment: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03032809).

Keywords: slit dampers, seismic retrofit, genetic algorithm, optimum design

Procedia PDF Downloads 196
2807 Applications of AFM in 4D to Optimize the Design of Genetic Nanoparticles

Authors: Hosam Abdelhady

Abstract:

Filming the behaviors of individual DNA molecules in their environment when they interact with individual medicinal nano-polymers in a molecular scale has opened the door to understand the effect of the molecular shape, size, and incubation time with nanocarriers on optimizing the design of robust genetic Nano molecules able to resist the enzymatic degradation, enter the cell, reach to the nucleus and kill individual cancer cells in their environment. To this end, we will show how we applied the 4D AFM as a guide to finetune the design of genetic nanoparticles and to film the effects of these nanoparticles on the nanomechanical and morphological profiles of individual cancer cells.

Keywords: AFM, dendrimers, nanoparticles, DNA, gene therapy, imaging

Procedia PDF Downloads 49
2806 Nurse’s Role in Early Detection of Breast Cancer through Mammography and Genetic Screening and Its Impact on Patient's Outcome

Authors: Salwa Hagag Abdelaziz, Dorria Salem, Hoda Zaki, Suzan Atteya

Abstract:

Early detection of breast cancer saves many thousands of lives each year via application of mammography and genetic screening and many more lives could be saved if nurses are involved in breast care screening practices. So, the aim of the study was to identify nurse's role in early detection of breast cancer through mammography and genetic screening and its impact on patient's outcome. In order to achieve this aim, 400 women above 40 years, asymptomatic were recruited for mammography and genetic screening. In addition, 50 nurses and 6 technologists were involved in the study. A descriptive analytical design was used. Five tools were utilized: sociodemographic, mammographic examination and risk factors, women's before, during and after mammography, items relaying to technologists, and items related to nurses were also obtained. The study finding revealed that 3% of women detected for malignancy and 7.25% for fibroadenoma. Statistically, significant differences were found between mammography results and age, family history, genetic screening, exposure to smoke, and using contraceptive pills. Nurses have insufficient knowledge about screening tests. Based on these findings the present study recommended involvement of nurses in breast care which is very important to in force population about screening practices.

Keywords: mammography, early detection, genetic screening, breast cancer

Procedia PDF Downloads 535
2805 Computational Analyses of Persian Walnut Genetic Data: Notes on Genetic Diversity and Cultivar Phylogeny

Authors: Masoud Sheidaei, Melica Tabasi, Fahimeh Koohdar, Mona Sheidaei

Abstract:

Juglans regia L. is an economically important species of edible nuts. Iran is known as a center of origin of genetically rich walnut germplasm and expected to be found a large diversity within Iranian walnut populations. A detailed population genetic of local populations is useful for developing an optimal strategy for in situ conservation and can assist the breeders in crop improvement programs. Different phylogenetic studies have been carried out in this genus, but none has been concerned with genetic changes associated with geographical divergence and the identification of adaptive SNPs. Therefore, we carried out the present study to identify discriminating ITS nucleotides among Juglans species and also reveal association between ITS SNPs and geographical variables. We used different computations approaches like DAPC, CCA, and RDA analyses for the above-mentioned tasks. We also performed population genetics analyses for population effective size changes associated with the species expansion. The results obtained suggest that latitudinal distribution has a more profound effect on the species genetic changes. Similarly, multiple analytical approaches utilized for the identification of both discriminating DNA nucleotides/ SNPs almost produced congruent results. The SNPs with different phylogenetic importance were also identified by using a parsimony approach.

Keywords: Persian walnut, adaptive SNPs, data analyses, genetic diversity

Procedia PDF Downloads 96
2804 Transfer Knowledge From Multiple Source Problems to a Target Problem in Genetic Algorithm

Authors: Terence Soule, Tami Al Ghamdi

Abstract:

To study how to transfer knowledge from multiple source problems to the target problem, we modeled the Transfer Learning (TL) process using Genetic Algorithms as the model solver. TL is the process that aims to transfer learned data from one problem to another problem. The TL process aims to help Machine Learning (ML) algorithms find a solution to the problems. The Genetic Algorithms (GA) give researchers access to information that we have about how the old problem is solved. In this paper, we have five different source problems, and we transfer the knowledge to the target problem. We studied different scenarios of the target problem. The results showed combined knowledge from multiple source problems improves the GA performance. Also, the process of combining knowledge from several problems results in promoting diversity of the transferred population.

Keywords: transfer learning, genetic algorithm, evolutionary computation, source and target

Procedia PDF Downloads 113
2803 Inverse Mapping of Weld Bead Geometry in Shielded Metal Arc-Welding: Genetic Algorithm Approach

Authors: D. S. Nagesh, G. L. Datta

Abstract:

In the field of welding, various studies had been made by some of the previous investigators to predict as well as optimize weld bead geometric descriptors. Modeling of weld bead shape is important for predicting the quality of welds. In most of the cases, design of experiments technique to postulate multiple linear regression equations have been used. Nowadays, Genetic Algorithm (GA) an intelligent information treatment system with the characteristics of treating complex relationships as seen in welding processes used as a tool for inverse mapping/optimization of the process is attempted.

Keywords: smaw, genetic algorithm, bead geometry, optimization/inverse mapping

Procedia PDF Downloads 423
2802 Genetic Algorithm Approach for Inverse Mapping of Weld Bead Geometry in Shielded Metal Arc-Welding

Authors: D. S. Nagesh, G. L. Datta

Abstract:

In the field of welding, various studies had been made by some of the previous investigators to predict as well as optimize weld bead geometric descriptors. Modeling of weld bead shape is important for predicting the quality of welds. In most of the cases design of experiments technique to postulate multiple linear regression equations have been used. Nowadays Genetic Algorithm (GA) an intelligent information treatment system with the characteristics of treating complex relationships as seen in welding processes used as a tool for inverse mapping/optimization of the process is attempted.

Keywords: SMAW, genetic algorithm, bead geometry, optimization/inverse mapping

Procedia PDF Downloads 390
2801 Maximum Efficiency of the Photovoltaic Cells Using a Genetic Algorithm

Authors: Latifa Sabri, Mohammed Benzirar, Mimoun Zazoui

Abstract:

The installation of photovoltaic systems is one of future sources to generate electricity without emitting pollutants. The photovoltaic cells used in these systems have demonstrated enormous efficiencies and advantages. Several researches have discussed the maximum efficiency of these technologies, but only a few experiences have succeeded to right weather conditions to get these results. In this paper, two types of cells were selected: crystalline and amorphous silicon. Using the method of genetic algorithm, the results show that for an ambient temperature of 25°C and direct irradiation of 625 W/m², the efficiency of crystalline silicon is 12% and 5% for amorphous silicon.

Keywords: PV, maximum efficiency, solar cell, genetic algorithm

Procedia PDF Downloads 398