Search results for: full factorial
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2515

Search results for: full factorial

2455 Application of Flexi-Wall in Noise Barriers Renewal

Authors: B. Daee, H. M. El Naggar

Abstract:

This paper presents an experimental study on structural performance of an innovative noise barrier consisting of poly-block, light polyurethane foam (LPF) and polyurea. This wall system (flexi-wall) is intended to be employed as a vertical extension to existing sound barriers in an accelerated construction method. To aid in the wall design, several mechanical tests were conducted on LPF specimens and two full-scale walls were then fabricated employing the same LPF material. The full-scale walls were subjected to lateral loading in order to establish their lateral resistance. A cyclic fatigue test was also performed on a full-scale flexi-wall in order to evaluate the performance of the wall under a repetitive loading condition. The result of the experiments indicated the suitability of flexi-wall in accelerated construction and confirmed that the structural performance of the wall system under lateral loading is satisfactory for the sound barrier application. The experimental results were discussed and a preliminary design procedure for application of flexi-wall in sound barrier applications was also developed.

Keywords: noise barrier, polyurethane foam, accelerated construction, full-scale experiment

Procedia PDF Downloads 260
2454 Teachers’ Protective Factors of Resilience Scale: Factorial Structure, Validity and Reliability Issues

Authors: Athena Daniilidou, Maria Platsidou

Abstract:

Recently developed scales addressed -specifically- teachers’ resilience. Although they profited from the field, they do not include some of the critical protective factors of teachers’ resilience identified in the literature. To address this limitation, we aimed at designing a more comprehensive scale for measuring teachers' resilience which encompasses various personal and environmental protective factors. To this end, two studies were carried out. In Study 1, 407 primary school teachers were tested with the new scale, the Teachers’ Protective Factors of Resilience Scale (TPFRS). Similar scales, such as the Multidimensional Teachers’ Resilience Scale and the Teachers’ Resilience Scale), were used to test the convergent validity, while the Maslach Burnout Inventory and the Teachers’ Sense of Efficacy Scale was used to assess the discriminant validity of the new scale. The factorial structure of the TPFRS was checked with confirmatory factor analysis and a good fit of the model to the data was found. Next, item response theory analysis using a two-parameter model (2PL) was applied to check the items within each factor. It revealed that 9 items did not fit the corresponding factors well and they were removed. The final version of the TPFRS includes 29 items, which assess six protective factors of teachers’ resilience: values and beliefs (5 items, α=.88), emotional and behavioral adequacy (6 items, α=.74), physical well-being (3 items, α=.68), relationships within the school environment, (6 items, α=.73) relationships outside the school environment (5 items, α=.84), and the legislative framework of education (4 items, α=.83). Results show that it presents a satisfactory convergent and discriminant validity. Study 2, in which 964 primary and secondary school teachers were tested, confirmed the factorial structure of the TPFRS as well as its discriminant validity, which was tested with the Schutte Emotional Intelligence Scale-Short Form. In conclusion, our results confirmed that the TPFRS is a valid instrument for assessing teachers' protective factors of resilience and it can be safely used in future research and interventions in the teaching profession. In conclusion, our results showed that the TPFRS is a new multi-dimensional instrument valid for assessing teachers' protective factors of resilience and it can be safely used in future research and interventions in the teaching profession.

Keywords: resilience, protective factors, teachers, item response theory

Procedia PDF Downloads 56
2453 Review of Full Body Imaging and High-Resolution Automatic 3D Mapping Systems for Medical Application

Authors: Jurijs Salijevs, Katrina Bolocko

Abstract:

The integration of artificial intelligence and neural networks has significantly changed full-body imaging and high-resolution 3D mapping systems, and this paper reviews research in these areas. With an emphasis on their use in the early identification of melanoma and other disorders, the goal is to give a wide perspective on the current status and potential future of these medical imaging technologies. Authors also examine methodologies such as machine learning and deep learning, seeking to identify efficient procedures that enhance diagnostic capabilities through the analysis of 3D body scans. This work aims to encourage further research and technological development to harness the full potential of AI in disease diagnosis.

Keywords: artificial intelligence, neural networks, 3D scan, body scan, 3D mapping system, healthcare

Procedia PDF Downloads 60
2452 Feature Extraction and Impact Analysis for Solid Mechanics Using Supervised Finite Element Analysis

Authors: Edward Schwalb, Matthias Dehmer, Michael Schlenkrich, Farzaneh Taslimi, Ketron Mitchell-Wynne, Horen Kuecuekyan

Abstract:

We present a generalized feature extraction approach for supporting Machine Learning (ML) algorithms which perform tasks similar to Finite-Element Analysis (FEA). We report results for estimating the Head Injury Categorization (HIC) of vehicle engine compartments across various impact scenarios. Our experiments demonstrate that models learned using features derived with a simple discretization approach provide a reasonable approximation of a full simulation. We observe that Decision Trees could be as effective as Neural Networks for the HIC task. The simplicity and performance of the learned Decision Trees could offer a trade-off of a multiple order of magnitude increase in speed and cost improvement over full simulation for a reasonable approximation. When used as a complement to full simulation, the approach enables rapid approximate feedback to engineering teams before submission for full analysis. The approach produces mesh independent features and is further agnostic of the assembly structure.

Keywords: mechanical design validation, FEA, supervised decision tree, convolutional neural network.

Procedia PDF Downloads 106
2451 Effects of Nitroxin Fertilizer on Physiological Characters Forage Millet under Drought Stress Conditions

Authors: Mohammad Darbani, Jafar Masoud Sinaki, Armaghan Abedzadeh Neyshaburi

Abstract:

An experiment was conducted as split plot factorial design using randomized complete block design in Damghan in 2012-2013 in order to investigate the effects of irrigation cut off (based on the Phenological stages of plants) on physiological properties of forage millet cultivars. The treatments included three irrigation levels (control with full irrigation, irrigation cut off when flowering started, and irrigation cut off when flowering ended) in the main plots, and applying nitroxin biofertilizer (+), not applying nitroxin biofertilizer (control), and Iranian forage millet cultivars (Bastan, Pishahang, and Isfahan) in the subplots. The highest rate of ashes and water-soluble carbohydrates content were observed in the cultivar Bastan (8.22 and 8.91%, respectively), the highest content of fiber and water (74.17 and 48.83%, respectively) in the treatment of irrigation cut off when flowering started, and the largest proline concentration (μmol/gfw-1) was seen in the treatment of irrigation cut off when flowering started. very rapid growth of millet, its short growing season, drought tolerance, its unique feature regarding harvest time, and its response to nitroxin biofertilizer can help expanding its cultivation in arid and semi-arid regions of Iran.

Keywords: irrigation cut off, forage millet, Nitroxin fertilizer, physiological properties

Procedia PDF Downloads 578
2450 Pyrolysis of Mixed Plastic Fractions with PP, PET and PA

Authors: Rudi P. Nielsen, Karina H. Hansen, Morten E. Simonsen

Abstract:

To improve the possibility of the chemical recycling of mixed plastic waste, such as municipal plastic waste, work has been conducted to gain an understanding of the effect of typical polymers from waste (PP, PET, and PA) on the quality of the pyrolysis oil produced. Plastic fractions were pyrolyzed in a lab-scale reactor system, with mixture compositions of up to 15 wt.% PET and five wt.% PA in a PP matrix and processing conditions from 400 to 450°C. The experiments were conducted as a full factorial design and in duplicates to provide reliable results and the possibility to determine any interactions between the parameters. The products were analyzed using FT-IR and GC-MS for compositional information as well as the determination of calorific value, ash content, acid number, density, viscosity, and elemental analysis to provide further data on the fuel quality of the pyrolysis oil. Oil yield was found to be between 61 and 84 wt.%, while char yield was below 2.6 wt.% in all cases. The calorific value of the produced oil was between 32 and 46 MJ/kg, averaging at approx. 41 MJ/kg, thus close to that of heavy fuel oil. The oil product was characterized to contain aliphatic and cyclic hydrocarbons, alcohols, and ethers with chain lengths between 10 and 25 carbon atoms. Overall, it was found that the addition of PET decreased oil yield, while the addition of both PA and PET decreased oil quality in general by increasing acid number (PET), decreasing calorific value (PA), and increasing nitrogen content (PA). Furthermore, it was identified that temperature increased ammonia production from PA during pyrolysis, while ammonia production was decreased by the addition of PET.

Keywords: PET, plastic waste, polyamide, polypropylene, pyrolysis

Procedia PDF Downloads 117
2449 Study on Impact of Road Loads on Full Vehicle Squeak and Rattle Performance

Authors: R. Praveen, B. R. Chandan Ravi, M. Harikrishna

Abstract:

Squeak and rattle noises are the most annoying transient vehicle noises produced due to different terrain conditions. Interpretation and prohibition of squeak and rattle noises are the dominant aspects of a vehicle refinement. This paper describes the computer-aided engineering (CAE) approach to evaluating the full vehicle squeak and rattle performance with the measured road surface profile as enforced excitation at the tire patch points. The E-Line methodology has been used to predict the relative displacement at the interface points and the risk areas were identified. Squeak and rattle performance has been evaluated at different speeds and at different road conditions to understand the vehicle characteristics. The competence of the process in predicting the risk and root cause of the problems showcased us a pleasing conformity between the physical testing and CAE simulation results.

Keywords: e-line, enforced excitation, full vehicle, squeak and rattle, road excitation

Procedia PDF Downloads 118
2448 Phosphorus Recovery Optimization in Microbial Fuel Cell

Authors: Abdullah Almatouq

Abstract:

Understanding the impact of key operational variables on concurrent energy generation and phosphorus recovery in microbial fuel cell is required to improve the process and reduce the operational cost. In this study, full factorial design (FFD) and central composite designs (CCD) were employed to identify the effect of influent COD concentration and cathode aeration flow rate on energy generation and phosphorus (P) recovery and to optimise MFC power density and P recovery. Results showed that influent chemical oxygen demand (COD) concentration and cathode aeration flow rate had a significant effect on power density, coulombic efficiency, phosphorus precipitation efficiency and phosphorus precipitation rate at the cathode. P precipitation was negatively affected by the generated current during the batch duration. The generated energy was reduced due to struvite being precipitated on the cathode surface, which might obstruct the mass transfer of ions and oxygen. Response surface mathematical model was used to predict the optimum operating conditions that resulted in a maximum power density and phosphorus precipitation efficiency of 184 mW/m² and 84%, and this corresponds to COD= 1700 mg/L and aeration flow rate=210 mL/min. The findings highlight the importance of the operational conditions of energy generation and phosphorus recovery.

Keywords: energy, microbial fuel cell, phosphorus, struvite

Procedia PDF Downloads 130
2447 Factors for Entry Timing Choices Using Principal Axis Factorial Analysis and Logistic Regression Model

Authors: C. M. Mat Isa, H. Mohd Saman, S. R. Mohd Nasir, A. Jaapar

Abstract:

International market expansion involves a strategic process of market entry decision through which a firm expands its operation from domestic to the international domain. Hence, entry timing choices require the needs to balance the early entry risks and the problems in losing opportunities as a result of late entry into a new market. Questionnaire surveys administered to 115 Malaysian construction firms operating in 51 countries worldwide have resulted in 39.1 percent response rate. Factor analysis was used to determine the most significant factors affecting entry timing choices of the firms to penetrate the international market. A logistic regression analysis used to examine the firms’ entry timing choices, indicates that the model has correctly classified 89.5 per cent of cases as late movers. The findings reveal that the most significant factor influencing the construction firms’ choices as late movers was the firm factor related to the firm’s international experience, resources, competencies and financing capacity. The study also offers valuable information to construction firms with intention to internationalize their businesses.

Keywords: factors, early movers, entry timing choices, late movers, logistic regression model, principal axis factorial analysis, Malaysian construction firms

Procedia PDF Downloads 353
2446 Biosynthesis of Silver Nanoparticles from Leaf Extract of Tithonia diversifolia and Its Antimicrobial Properties

Authors: Babatunde Oluwole Ogunsile, Omosola Monisola Fasoranti

Abstract:

High costs and toxicological hazards associated with the physicochemical methods of producing nanoparticles have limited their widespread use in clinical and biomedical applications. An ethically sound alternative is the utilization of plant bioresources as a low cost and eco–friendly biological approach. Silver nanoparticles (AgNPs) were synthesized from aqueous leaf extract of Tithonia diversifolia plant. The UV-Vis Spectrophotometer was used to monitor the formation of the AgNPs at different time intervals and different ratios of plant extract to the AgNO₃ solution. The biosynthesized AgNPs were characterized by FTIR, X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM). Antimicrobial activities of the AgNPs were investigated against ten human pathogens using agar well diffusion method. The AgNPs yields were modeled using a second-order factorial design. The result showed that the rate of formation of the AgNPs increased with respect to time while the optimum ratio of plant extract to the AgNO₃ solution was 1:1. The hydroxyl group was strongly involved in the bioreduction of the silver salt as indicated by the FTIR spectra. The synthesized AgNPs were crystalline in nature, with a uniformly distributed network of the web-like structure. The factorial model predicted the nanoparticles yields with minimal errors. The nanoparticles were active against all the tested pathogens and thus have great potentials as antimicrobial agents.

Keywords: antimicrobial activities, green synthesis, silver nanoparticles, Tithonia diversifolia

Procedia PDF Downloads 119
2445 Displacement Solution for a Static Vertical Rigid Movement of an Interior Circular Disc in a Transversely Isotropic Tri-Material Full-Space

Authors: D. Mehdizadeh, M. Rahimian, M. Eskandari-Ghadi

Abstract:

This article is concerned with the determination of the static interaction of a vertically loaded rigid circular disc embedded at the interface of a horizontal layer sandwiched in between two different transversely isotropic half-spaces called as tri-material full-space. The axes of symmetry of different regions are assumed to be normal to the horizontal interfaces and parallel to the movement direction. With the use of a potential function method, and by implementing Hankel integral transforms in the radial direction, the government partial differential equation for the solely scalar potential function is transformed to an ordinary 4th order differential equation, and the mixed boundary conditions are transformed into a pair of integral equations called dual integral equations, which can be reduced to a Fredholm integral equation of the second kind, which is solved analytically. Then, the displacements and stresses are given in the form of improper line integrals, which is due to inverse Hankel integral transforms. It is shown that the present solutions are in exact agreement with the existing solutions for a homogeneous full-space with transversely isotropic material. To confirm the accuracy of the numerical evaluation of the integrals involved, the numerical results are compared with the solutions exists for the homogeneous full-space. Then, some different cases with different degrees of material anisotropy are compared to portray the effect of degree of anisotropy.

Keywords: transversely isotropic, rigid disc, elasticity, dual integral equations, tri-material full-space

Procedia PDF Downloads 408
2444 Resilience in Refuge Context: The Validity Assessment Using Child and Youth Resilience Measure-28 among Afghan Young Immigrants in Iran

Authors: Baqir Rezai, Leila Heydarinasab, Rasol Roshan, Mohammad Ghulami

Abstract:

Introduction: The resilience process is one of the controversial and important subjects for child and youth immigrants throughout the world. Positive adaptation to the environment is a consequence of resilience which can affect the quality of life and physical and mental health among immigrants. Objective: A total of 714 Afghan young immigrants (14 to 18-years-old) who live in Iran for more than three years were entered into the study. A random sampling method was applied to obtain data. The study samples were divided into two groups (N1 =360 and N2=354) for exploratory and confirmation analysis. Exploratory factorial analysis was applied to confirm the construct validity of CYRM-28. Results: The results showed that this scale has useful validity content, and the study samples include three factors of individuals, context, and relational in child and youth resilience measure-28. However, from a total of 28 main items, only 15 items could identify these factors. Discussion: The resilience process among young immigrants is mainly explained by individuals, social and cultural conditions. For instance, young immigrants search the resilience process in conditions that caused their immigration. In this context, some questions about the content of security and personal promotion in society could identify three main factors.

Keywords: CYRM-28, factorial analysis, resilience, Afghan young immigrants

Procedia PDF Downloads 118
2443 Development, Optimization, and Validation of a Synchronous Fluorescence Spectroscopic Method with Multivariate Calibration for the Determination of Amlodipine and Olmesartan Implementing: Experimental Design

Authors: Noha Ibrahim, Eman S. Elzanfaly, Said A. Hassan, Ahmed E. El Gendy

Abstract:

Objectives: The purpose of the study is to develop a sensitive synchronous spectrofluorimetric method with multivariate calibration after studying and optimizing the different variables affecting the native fluorescence intensity of amlodipine and olmesartan implementing an experimental design approach. Method: In the first step, the fractional factorial design used to screen independent factors affecting the intensity of both drugs. The objective of the second step was to optimize the method performance using a Central Composite Face-centred (CCF) design. The optimal experimental conditions obtained from this study were; a temperature of (15°C ± 0.5), the solvent of 0.05N HCl and methanol with a ratio of (90:10, v/v respectively), Δλ of 42 and the addition of 1.48 % surfactant providing a sensitive measurement of amlodipine and olmesartan. The resolution of the binary mixture with a multivariate calibration method has been accomplished mainly by using partial least squares (PLS) model. Results: The recovery percentage for amlodipine besylate and atorvastatin calcium in tablets dosage form were found to be (102 ± 0.24, 99.56 ± 0.10, for amlodipine and Olmesartan, respectively). Conclusion: Method is valid according to some International Conference on Harmonization (ICH) guidelines, providing to be linear over a range of 200-300, 500-1500 ng mL⁻¹ for amlodipine and Olmesartan. The methods were successful to estimate amlodipine besylate and olmesartan in bulk powder and pharmaceutical preparation.

Keywords: amlodipine, central composite face-centred design, experimental design, fractional factorial design, multivariate calibration, olmesartan

Procedia PDF Downloads 121
2442 An Embedded High Speed Adder for Arithmetic Computations

Authors: Kala Bharathan, R. Seshasayanan

Abstract:

In this paper, a 1-bit Embedded Logic Full Adder (EFA) circuit in transistor level is proposed, which reduces logic complexity, gives low power and high speed. The design is further extended till 64 bits. To evaluate the performance of EFA, a 16, 32, 64-bit both Linear and Square root Carry Select Adder/Subtractor (CSLAS) Structure is also proposed. Realistic testing of proposed circuits is done on 8 X 8 Modified Booth multiplier and comparison in terms of power and delay is done. The EFA is implemented for different multiplier architectures for performance parameter comparison. Overall delay for CSLAS is reduced to 78% when compared to conventional one. The circuit implementations are done on TSMC 28nm CMOS technology using Cadence Virtuoso tool. The EFA has power savings of up to 14% when compared to the conventional adder. The present implementation was found to offer significant improvement in terms of power and speed in comparison to other full adder circuits.

Keywords: embedded logic, full adder, pdp, xor gate

Procedia PDF Downloads 421
2441 BECOME: Body Experience-Based Co-Operation between Juveniles through Mutually Excited Team Gameplay

Authors: Tsugunosuke Sakai, Haruya Tamaki, Ryuichi Yoshida, Ryohei Egusa, Etsuji Yamaguchi, Shigenori Inagaki, Fusako Kusunoki, Miki Namatame, Masanori Sugimoto, Hiroshi Mizoguchi

Abstract:

We aim to develop a full-body interaction game that could let children cooperate and interact with other children in small groups. As the first step for our aim, the objective of the full-body interaction game developed in this study is to make interaction between children. The game requires two children to jump together with the same timing. We let children experience the game and answer the questionnaires. The children using several strategies to coordinate the timing of their jumps were observed. These included shouting time, watching each other, and jumping in a constant rhythm as if they were skipping rope. In this manner, we observed the children playing the game while cooperating with each other. The results of a questionnaire to evaluate the proposed interactive game indicate that the jumping game was a very enjoyable experience in which the participants could immerse themselves. Therefore, the game enabled children to experience cooperation with others by using body movements.

Keywords: children, cooperation, full-body interaction game, kinect sensor

Procedia PDF Downloads 345
2440 Preliminary Study of Water-Oil Separation Process in Three-Phase Separators Using Factorial Experimental Designs and Simulation

Authors: Caroline M. B. De Araujo, Helenise A. Do Nascimento, Claudia J. Da S. Cavalcanti, Mauricio A. Da Motta Sobrinho, Maria F. Pimentel

Abstract:

Oil production is often followed by the joint production of water and gas. During the journey up to the surface, due to severe conditions of temperature and pressure, the mixing between these three components normally occurs. Thus, the three phases separation process must be one of the first steps to be performed after crude oil extraction, where the water-oil separation is the most complex and important step, since the presence of water into the process line can increase corrosion and hydrates formation. A wide range of methods can be applied in order to proceed with oil-water separation, being more commonly used: flotation, hydrocyclones, as well as the three phase separator vessels. Facing what has been presented so far, it is the aim of this paper to study a system consisting of a three-phase separator, evaluating the influence of three variables: temperature, working pressure and separator type, for two types of oil (light and heavy), by performing two factorial design plans 23, in order to find the best operating condition. In this case, the purpose is to obtain the greatest oil flow rate in the product stream (m3/h) as well as the lowest percentage of water in the oil stream. The simulation of the three-phase separator was performed using Aspen Hysys®2006 simulation software in stationary mode, and the evaluation of the factorial experimental designs was performed using the software Statistica®. From the general analysis of the four normal probability plots of effects obtained, it was observed that interaction effects of two and three factors did not show statistical significance at 95% confidence, since all the values were very close to zero. Similarly, the main effect "separator type" did not show significant statistical influence in any situation. As in this case, it has been assumed that the volumetric flow of water, oil and gas were equal in the inlet stream, the effect separator type, in fact, may not be significant for the proposed system. Nevertheless, the main effect “temperature” was significant for both responses (oil flow rate and mass fraction of water in the oil stream), considering both light and heavy oil, so that the best operation condition occurs with the temperature at its lowest level (30oC), since the higher the temperature, the liquid oil components pass into the vapor phase, going to the gas stream. Furthermore, the higher the temperature, the higher the formation water vapor, so that ends up going into the lighter stream (oil stream), making the separation process more difficult. Regarding the “working pressure”, this effect showed to be significant only for the oil flow rate, so that the best operation condition occurs with the pressure at its highest level (9bar), since a higher operating pressure, in this case, indicated a lower pressure drop inside the vessel, generating lower level of turbulence inside the separator. In conclusion, the best-operating condition obtained for the proposed system, at the studied range, occurs for temperature is at its lowest level and the working pressure is at its highest level.

Keywords: factorial experimental design, oil production, simulation, three-phase separator

Procedia PDF Downloads 239
2439 Ab Initio Study of Co2ZrGe and Co2NbB Full Heusler Compounds

Authors: A. Abada, S. Hiadsi, T. Ouahrani, B. Amrani, K. Amara

Abstract:

Using the first-principles full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method based on density functional theory (DFT), we have investigated the electronic structure and magnetism of some Co2- based full Heusler alloys, namely Co2ZrGe and Co2NbB. The calculations show that these compounds are to be half-metallic ferromagnets (HMFs) with a total magnetic moment of 2.000 µB per formula unit, well consistent with the Slater-Pauling rule. Our calculations show indirect band gaps of 0.58 eV and 0.47 eV in the minority spin channel of density of states (DOS) for Co2ZrGe and Co2NbB, respectively. Analysis of the DOS and magnetic moments indicates that their magnetism is mainly related to the d-d hybridization between the Co and Zr (or Nb) atoms. The half metallicity is found to be robust against volume changes and the two alloys kept a 100% of spin polarization at the Fermi level. In addition, an atom inside molecule AIM formalism and an electron localization function ELF were also adopted to study the bonding properties of these compounds, building a bridge between their electronic and bonding behavior. As they have a good crystallographic compatibility with the lattice of semiconductors used industrially and negative calculated cohesive energies with considerable absolute values these two alloys could be promising magnetic materials in the spintronics field.

Keywords: half-metallic ferromagnets, full Heusler alloys, magnetic properties, electronic properties

Procedia PDF Downloads 380
2438 A Multilevel-Synthesis Approach with Reduced Number of Switches for 99-Level Inverter

Authors: P. Satish Kumar, V. Ramu, K. Ramakrishna

Abstract:

In this paper, an efficient multilevel wave form synthesis technique is proposed and applied to a 99-level inverter. The basic principle of the proposed scheme is that the continuous output voltage levels can be synthesized by the addition or subtraction of the instantaneous voltages generated from different voltage levels. This synthesis technique can be realized by an array of switching devices composing full-bridge inverter modules and proper mixing of each bi-directional switch modules. The most different aspect, compared to the conventional approach, in the synthesis of the multilevel output waveform is the utilization of a combination of bidirectional switches and full bridge inverter modules with reduced number of components. A 99-level inverter consists of three full-bridge modules and six bi-directional switch modules. The validity of the proposed scheme is verified by the simulation.

Keywords: cascaded connection, multilevel inverter, synthesis, total harmonic distortion

Procedia PDF Downloads 501
2437 Determining Full Stage Creep Properties from Miniature Specimen Creep Test

Authors: W. Sun, W. Wen, J. Lu, A. A. Becker

Abstract:

In this work, methods for determining creep properties which can be used to represent the full life until failure from miniature specimen creep tests based on analytical solutions are presented. Examples used to demonstrate the application of the methods include a miniature rectangular thin beam specimen creep test under three-point bending and a miniature two-material tensile specimen creep test subjected to a steady load. Mathematical expressions for deflection and creep strain rate of the two specimens were presented for the Kachanov-Rabotnov creep damage model. On this basis, an inverse procedure was developed which has potential applications for deriving the full life creep damage constitutive properties from a very small volume of material, in particular, for various microstructure constitutive  regions, e.g. within heat-affected zones of power plant pipe weldments. Further work on validation and improvement of the method is addressed.

Keywords: creep damage property, miniature specimen, inverse approach, finite element modeling

Procedia PDF Downloads 205
2436 The Effect of Dynamic Eccentricity on the Stator Current Spectrum of 550 kW Induction Motor

Authors: Saleh Elawgali

Abstract:

In order to present the effect of the dynamic eccentricity on the stator currents of squirrel cage induction machines, the current spectrums of a 550 kW induction motor was calculated for the cases of full symmetry and dynamic eccentricity. The calculations presented in this paper are based on the Poly-Harmonic Model accounting for static and dynamic eccentricity, stator and rotor slotting, parallel branches as well as cage asymmetry. The calculations were followed by Fourier analysis of the stator currents in steady state operation. The paper presents the stator current spectrums for full symmetry and dynamic eccentricity cases, and demonstrates the harmonics present in each case. The effect of dynamic eccentricity is demonstrating via comparing the current spectrums related to dynamic eccentricity cases with the full symmetry one.

Keywords: current spectrum, dynamic eccentricity, harmonics, Induction machine, slot harmonic zone.

Procedia PDF Downloads 361
2435 Shrinkage Evaluation in a Stepped Wax Pattern – a Simulation Approach

Authors: Alok S Chauhan, Sridhar S., Pradyumna R.

Abstract:

In the process of precision investment casting of turbine hollow blade/vane components, a part of the dimensional deviations observed in the castings can be attributed to the wax pattern. In the process of injection moulding of wax to produce patterns, heated wax shrinks in size during cooling in the die, leading to a reduction in the dimensions of the pattern. Also, flow and thermal induced residual stresses result in shrinkage & warpage of the component after removal from the die, further adding to the deviations. Injection moulding parameters such as wax temperature, flow rate, packing pressure, etc. affect the flow and thermal behavior of the component and hence are directly responsible for the dimensional deviations. There is a need to precisely determine and control these deviations in order to achieve stringent dimensional accuracies imposed on these castings by aerospace standards. Simulation based approaches provide a platform to predict these dimensional deviations without resorting to elaborate experimentation. In the present paper, Moldex3D simulation package has been utilized to analyze the effect of variations in injection temperature, packing pressure and cooling time on the shrinkage behavior of a stepped pattern. Two types of waxes with different rheological properties have been included in the study to gauge the effect of change in wax on the dimensional deviations. A full factorial design of experiments has been configured with these parameters and results of analysis of variance have been presented.

Keywords: wax patterns, investment casting, pattern die/mould, wax injection, Moldex3D simulation

Procedia PDF Downloads 341
2434 Trehalose-Based Nanocarriers for Alleviation of Inflammation in Colitis

Authors: Wessam H. Abd-Elsalam, Mona M. Saber, Samar M. Abouelatta

Abstract:

Non-steroidal anti-inflammatory drugs (NSAIDs) are considered a double edged sword in inflammatory bowel diseases (IBDs). Some studies reported their advantageous effect in decreasing inflammation, and other studies reported that their use is associated with colitis aggravation. This study aimed to use specifically formulated trehalose-based nano-carriers that targets the colon in an attempt to alleviate inflammation caused by NSAIDs. L-α-phosphatidylcholine (PL), trehalose, and transcutol were used to prepare the trehalosomes (THs), which were also loaded with Tenoxicam(TXM) as a model NSAID. To optimize the formulation variables, a full 23 factorial design, using Design-Expert® software, was performed. The optimized formulation composed of trehalose: PL at a weight ratio of 1:1, 377.72 mg transcutol, and sonicated for 4 min, possessed a spherical shape with a size of 268.61 nm and EE% of 97.83% and released 70.22% of its drug content over 24 h. The superior protective action of TXM loaded THs compared to TXM suspension and drug-free THs was shown by the inhibition of the inflammatory biomarkers, namely; IL-1ß, IL-6, and TNF-alpha levels, as well as oxidative stress markers, measured as GSH and MDA. Improved histopathology of the colonic tissue in male New Zealand rabbits also confirmed the superiority of the TXM loaded THs compared to the unformulated drug or the drug free nano-carriers. Our findings highlight the prosperous role of THs in colon targeting and its anti-inflammatory characteristics in guarding against possible NSAIDs-driven exacerbation of colitis.

Keywords: inflammatory bowel disease, trehalose, trehalosomes, colon targeting

Procedia PDF Downloads 107
2433 A Comparative Soft Computing Approach to Supplier Performance Prediction Using GEP and ANN Models: An Automotive Case Study

Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari

Abstract:

In multi-echelon supply chain networks, optimal supplier selection significantly depends on the accuracy of suppliers’ performance prediction. Different methods of multi criteria decision making such as ANN, GA, Fuzzy, AHP, etc have been previously used to predict the supplier performance but the “black-box” characteristic of these methods is yet a major concern to be resolved. Therefore, the primary objective in this paper is to implement an artificial intelligence-based gene expression programming (GEP) model to compare the prediction accuracy with that of ANN. A full factorial design with %95 confidence interval is initially applied to determine the appropriate set of criteria for supplier performance evaluation. A test-train approach is then utilized for the ANN and GEP exclusively. The training results are used to find the optimal network architecture and the testing data will determine the prediction accuracy of each method based on measures of root mean square error (RMSE) and correlation coefficient (R2). The results of a case study conducted in Supplying Automotive Parts Co. (SAPCO) with more than 100 local and foreign supply chain members revealed that, in comparison with ANN, gene expression programming has a significant preference in predicting supplier performance by referring to the respective RMSE and R-squared values. Moreover, using GEP, a mathematical function was also derived to solve the issue of ANN black-box structure in modeling the performance prediction.

Keywords: Supplier Performance Prediction, ANN, GEP, Automotive, SAPCO

Procedia PDF Downloads 392
2432 First Principles Study of a New Half-Metallic Ferrimagnets Mn2–Based Full Heusler Compounds: Mn2ZrSi and Mn2ZrGe

Authors: Ahmed Abada, Kadda Amara, Said Hiadsi, Bouhalouane Amrani

Abstract:

Half-metallic properties of new predicted Mn2-based full Heusler alloys Mn2ZrSi and Mn2ZrGe have been studied by first-principles full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method based on density functional theory (DFT). Our investigation is focused on the structural, elastic, electronic and magnetic properties of these compounds. The AlCu2Mn-type structure is found to be energetically more favorable than the CuHg2Ti-type structure for both compounds and are half-metallic ferrimagnets (HMFIs) with total magnetic moments of 2.000 µB per formula unit, well consistent with Slater-Pauling rule (Mtot = ( 24 – Ztot ) µB). Calculations show that both the alloys have an indirect band gaps, in the majority-spin channel, with values of 0.505 eV and 0.278 eV for Mn2ZrSi and Mn2ZrGe, respectively. It was found that Mn2ZrSi and Mn2ZrGe preserved their half-metallicity for lattice constants range of 5.85–6.38 Å and 6.05–6.38 Å, respectively, and kept a 100% of spin polarization at the Fermi level. Moreover, the calculated formation energies and elastic constants confirm that these compounds are stable chemically and mechanically, and the good crystallographic compatibility with the lattice of semiconductors used industrially makes them promising magnetic materials in spintronic applications.

Keywords: first-principles calculations, full Heusler structure, half-metallic ferrimagnets, elastic properties

Procedia PDF Downloads 343
2431 Removal of Heavy Metals by KOH Activated Diplotaxis harra Biomass: Experimental Design Optimization

Authors: H. Tounsadi, A. Khalidi, M. Abdennouri, N. Barka

Abstract:

The objective of this study was to produce high quality activated carbons from Diplotaxis harra biomass by potassium hydroxide activation and their application for heavy metals removal. To reduce the number of experiments, full factorial experimental design at two levels were carried out to occur optimal preparation conditions and better conditions for the removal of cadmium and cobalt ions from aqueous solutions. The influence of different variables during the activation process, such as carbonization temperature, activation temperature, activation time and impregnation ratio (g KOH/g carbon) have been investigated, and the best production conditions were determined. The experimental results showed that removal of cadmium and cobalt ions onto activated carbons was more sensitive to methylene blue index instead of iodine number. Although, the removal of cadmium and cobalt ions is more influenced by activation temperature with a negative effect followed by the impregnation ratio with a positive impact. Based on the statistical data, the best conditions for the removal of cadmium and cobalt by prepared activated carbons have been established. The maximum iodine number and methylene blue index obtained under these conditions and the greater sorption capacities for cadmium and cobalt were investigated. These sorption capacities were greater than those of a commercial activated carbon used in water treatment.

Keywords: activated carbon, cadmium, cobalt, Diplotaxis harra, experimental design, potassium hydroxide

Procedia PDF Downloads 172
2430 Visco-Acoustic Full Wave Inversion in the Frequency Domain with Mixed Grids

Authors: Sheryl Avendaño, Miguel Ospina, Hebert Montegranario

Abstract:

Full Wave Inversion (FWI) is a variant of seismic tomography for obtaining velocity profiles by an optimization process that combine forward modelling (or solution of wave equation) with the misfit between synthetic and observed data. In this research we are modelling wave propagation in a visco-acoustic medium in the frequency domain. We apply finite differences for the numerical solution of the wave equation with a mix between usual and rotated grids, where density depends on velocity and there exists a damping function associated to a linear dissipative medium. The velocity profiles are obtained from an initial one and the data have been modeled for a frequency range 0-120 Hz. By an iterative procedure we obtain an estimated velocity profile in which are detailed the remarkable features of the velocity profile from which synthetic data were generated showing promising results for our method.

Keywords: seismic inversion, full wave inversion, visco acoustic wave equation, finite diffrence methods

Procedia PDF Downloads 436
2429 A Fast Convergence Subband BSS Structure

Authors: Salah Al-Din I. Badran, Samad Ahmadi, Ismail Shahin

Abstract:

A blind source separation method is proposed; in this method we use a non-uniform filter bank and a novel normalisation. This method provides a reduced computational complexity and increased convergence speed comparing to the full-band algorithm. Recently, adaptive sub-band scheme has been recommended to solve two problems: reduction of computational complexity and increase the convergence speed of the adaptive algorithm for correlated input signals. In this work the reduction in computational complexity is achieved with the use of adaptive filters of orders less than the full-band adaptive filters, which operate at a sampling rate lower than the sampling rate of the input signal. The decomposed signals by analysis bank filter are less correlated in each sub-band than the input signal at full bandwidth, and can promote better rates of convergence.

Keywords: blind source separation, computational complexity, subband, convergence speed, mixture

Procedia PDF Downloads 524
2428 Degradation Kinetics of Cardiovascular Implants Employing Full Blood and Extra-Corporeal Circulation Principles: Mimicking the Human Circulation In vitro

Authors: Sara R. Knigge, Sugat R. Tuladhar, Hans-Klaus HöFfler, Tobias Schilling, Tim Kaufeld, Axel Haverich

Abstract:

Tissue engineered (TE) heart valves based on degradable electrospun fiber scaffold represent a promising approach to overcome the known limitations of mechanical or biological prostheses. But the mechanical stress in the high-pressure system of the human circulation is a severe challenge for the delicate materials. Hence, the prediction of the scaffolds` in vivo degradation kinetics must be as accurate as possible to prevent fatal events in future animal or even clinical trials. Therefore, this study investigates whether long-term testing in full blood provides more meaningful results regarding the degradation behavior than conventional tests in simulated body fluids (SBF) or Phosphate Buffered Saline (PBS). Fiber mats were produced from a polycaprolactone (PCL)/tetrafluoroethylene solution by electrospinning. The morphology of the fiber mats was characterized via scanning electron microscopy (SEM). A maximum physiological degradation environment utilizing a test set-up with porcine full blood was established. The set-up consists of a reaction vessel, an oxygenator unit, and a roller pump. The blood parameters (pO2, pCO2, temperature, and pH) were monitored with an online test system. All tests were also carried out in the test circuit with SBF and PBS to compare conventional degradation media with the novel full blood setting. The polymer's degradation is quantified by SEM picture analysis, differential scanning calorimetry (DSC), and Raman spectroscopy. Tensile and cyclic loading tests were performed to evaluate the mechanical integrity of the scaffold. Preliminary results indicate that PCL degraded slower in full blood than in SBF and PBS. The uptake of water is more pronounced in the full blood group. Also, PCL preserved its mechanical integrity longer when degraded in full blood. Protein absorption increased during the degradation process. Red blood cells, platelets, and their aggregates adhered on the PCL. Presumably, the degradation led to a more hydrophilic polymeric surface which promoted the protein adsorption and the blood cell adhesion. Testing degradable implants in full blood allows for developing more reliable scaffold materials in the future. Material tests in small and large animal trials thereby can be focused on testing candidates that have proven to function well in an in-vivo-like setting.

Keywords: Electrospun scaffold, full blood degradation test, long-term polymer degradation, tissue engineered aortic heart valve

Procedia PDF Downloads 122
2427 Optimal Harmonic Filters Design of Taiwan High Speed Rail Traction System

Authors: Ying-Pin Chang

Abstract:

This paper presents a method for combining a particle swarm optimization with nonlinear time-varying evolution and orthogonal arrays (PSO-NTVEOA) in the planning of harmonic filters for the high speed railway traction system with specially connected transformers in unbalanced three-phase power systems. The objective is to minimize the cost of the filter, the filters loss, the total harmonic distortion of currents and voltages at each bus simultaneously. An orthogonal array is first conducted to obtain the initial solution set. The set is then treated as the initial training sample. Next, the PSO-NTVEOA method parameters are determined by using matrix experiments with an orthogonal array, in which a minimal number of experiments would have an effect that approximates the full factorial experiments. This PSO-NTVEOA method is then applied to design optimal harmonic filters in Taiwan High Speed Rail (THSR) traction system, where both rectifiers and inverters with IGBT are used. From the results of the illustrative examples, the feasibility of the PSO-NTVEOA to design an optimal passive harmonic filter of THSR system is verified and the design approach can greatly reduce the harmonic distortion. Three design schemes are compared that V-V connection suppressing the 3rd order harmonic, and Scott and Le Blanc connection for the harmonic improvement is better than the V-V connection.

Keywords: harmonic filters, particle swarm optimization, nonlinear time-varying evolution, orthogonal arrays, specially connected transformers

Procedia PDF Downloads 365
2426 Full-Scale Test of a Causeway Embankment Supported by Raft-Aggregate Column Foundation on Soft Clay Deposit

Authors: Tri Harianto, Lawalenna Samang, St. Hijraini Nur, Arwin

Abstract:

Recently, a port development is constructed in Makassar city, South Sulawesi Province, Indonesia. Makassar city is located in lowland area that dominated by soft marine clay deposit. A two kilometers causeway construction was built which is situated on the soft clay layer. In order to investigate the behavior of causeway embankment, a full-scale test was conducted of high embankment built on a soft clay deposit. The embankment with 3,5 m high was supported by two types of reinforcement such as raft and raft-aggregate column foundation. Since the ground was undergoing consolidation due to the preload, the raft and raft-aggregate column foundations were monitored in order to analyze the vertical ground movement by inducing the settlement of the foundation. In this study, two types of foundation (raft and raft-aggregate column) were tested to observe the effectiveness of raft-aggregate column compare to raft foundation in reducing the settlement. The settlement monitored during the construction stage by using the settlement plates, which is located in the center and toe of the embankment. Measurements were taken every day for each embankment construction stage (4 months). In addition, an analytical calculation was conducted in this study to compare the full-scale test result. The result shows that the raft-aggregate column foundation significantly reduces the settlement by 30% compared to the raft foundation. A raft-aggregate column foundation also reduced the time period of each loading stage. The Good agreement of analytical calculation compared to the full-scale test result also found in this study.

Keywords: full-scale, preloading, raft-aggregate column, soft clay

Procedia PDF Downloads 260