Search results for: fork split trees
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 994

Search results for: fork split trees

874 Discerning Divergent Nodes in Social Networks

Authors: Mehran Asadi, Afrand Agah

Abstract:

In data mining, partitioning is used as a fundamental tool for classification. With the help of partitioning, we study the structure of data, which allows us to envision decision rules, which can be applied to classification trees. In this research, we used online social network dataset and all of its attributes (e.g., Node features, labels, etc.) to determine what constitutes an above average chance of being a divergent node. We used the R statistical computing language to conduct the analyses in this report. The data were found on the UC Irvine Machine Learning Repository. This research introduces the basic concepts of classification in online social networks. In this work, we utilize overfitting and describe different approaches for evaluation and performance comparison of different classification methods. In classification, the main objective is to categorize different items and assign them into different groups based on their properties and similarities. In data mining, recursive partitioning is being utilized to probe the structure of a data set, which allow us to envision decision rules and apply them to classify data into several groups. Estimating densities is hard, especially in high dimensions, with limited data. Of course, we do not know the densities, but we could estimate them using classical techniques. First, we calculated the correlation matrix of the dataset to see if any predictors are highly correlated with one another. By calculating the correlation coefficients for the predictor variables, we see that density is strongly correlated with transitivity. We initialized a data frame to easily compare the quality of the result classification methods and utilized decision trees (with k-fold cross validation to prune the tree). The method performed on this dataset is decision trees. Decision tree is a non-parametric classification method, which uses a set of rules to predict that each observation belongs to the most commonly occurring class label of the training data. Our method aggregates many decision trees to create an optimized model that is not susceptible to overfitting. When using a decision tree, however, it is important to use cross-validation to prune the tree in order to narrow it down to the most important variables.

Keywords: online social networks, data mining, social cloud computing, interaction and collaboration

Procedia PDF Downloads 118
873 A Relative Analysis of Carbon and Dust Uptake by Important Tree Species in Tehran, Iran

Authors: Sahar Elkaee Behjati

Abstract:

Air pollution, particularly with dust, is one of the biggest issues Tehran is dealing with, and the city's green space which consists of trees has a critical role in absorption of it. The question this study aimed to investigate was which tree species the highest uptake capacity of the dust and carbon have suspended in the air. On this basis, 30 samples of trees from two different districts in Tehran were collected, and after washing and centrifuging, the samples were oven dried. The results of the study revealed that Ulmus minor had the highest amount of deposited dust in both districts. In addition, it was found that in Chamran district Ailanthus altissima and in Gandi district Ulmus minor has had the highest absorption of deposited carbon. Therefore, it could be argued that decision making on the selection of species for urban green spaces should take the above-mentioned parameters into account.

Keywords: dust, leaves, uptake total carbon, Tehran, tree species

Procedia PDF Downloads 110
872 Advanced Technology for Natural Gas Liquids (NGL) Recovery Using Residue Gas Split

Authors: Riddhiman Sherlekar, Umang Paladia, Rachit Desai, Yash Patel

Abstract:

The competitive scenario of the oil and gas market is a challenge for today’s plant designers to achieve designs that meet client expectations with shrinking budgets, safety requirements, and operating flexibility. Natural Gas Liquids have three main industrial uses. They can be used as fuels, or as petrochemical feedstock or as refinery blends that can be further processed and sold as straight run cuts, such as naphtha, kerosene and gas oil. NGL extraction is not a chemical reaction. It involves the separation of heavier hydrocarbons from the main gas stream through pressure as temperature reduction, which depending upon the degree of NGL extraction may involve cryogenic process. Previous technologies i.e. short cycle dry desiccant absorption, Joule-Thompson or Low temperature refrigeration, lean oil absorption have been giving results of only 40 to 45% ethane recoveries, which were unsatisfying depending upon the current scenario of down turn market. Here new technology has been suggested for boosting up the recoveries of ethane+ up to 95% and up to 99% for propane+ components. Cryogenic plants provide reboiling to demethanizers by using part of inlet feed gas, or inlet feed split. If the two stream temperatures are not similar, there is lost work in the mixing operation unless the designer has access to some proprietary design. The concept introduced in this process consists of reboiling the demethanizer with the residue gas, or residue gas split. The innovation of this process is that it does not use the typical inlet gas feed split type of flow arrangement to reboil the demethanizer or deethanizer column, but instead uses an open heat pump scheme to that effect. The residue gas compressor provides the heat pump effect. The heat pump stream is then further cooled and entered in the top section of the column as a cold reflux. Because of the nature of this design, this process offers the opportunity to operate at full ethane rejection or recovery. The scheme is also very adaptable to revamp existing facilities. This advancement can be proven not only in enhancing the results but also provides operational flexibility, optimize heat exchange, introduces equipment cost reduction, opens a future for the innovative designs while keeping execution costs low.

Keywords: deethanizer, demethanizer, residue gas, NGL

Procedia PDF Downloads 232
871 Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data Towards Mapping Fruit Plantations in Highly Heterogenous Landscapes

Authors: Yingisani Chabalala, Elhadi Adam, Khalid Adem Ali

Abstract:

Mapping smallholder fruit plantations using optical data is challenging due to morphological landscape heterogeneity and crop types having overlapped spectral signatures. Furthermore, cloud covers limit the use of optical sensing, especially in subtropical climates where they are persistent. This research assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for mapping fruit trees and co-existing land-use types by using support vector machine (SVM) and random forest (RF) classifiers independently. These classifiers were also applied to fused data from the two sensors. Feature ranks were extracted using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. Based on RF MDA and FVS, the SVM classifier resulted in relatively high classification accuracy with overall accuracy (OA) = 0.91.6% and kappa coefficient = 0.91% when applied to the fused satellite data. Application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; OA = 87.01%, Kappa coefficient = 87%, respectively. Results also indicated that the optimal spectral bands for fruit tree mapping are green (B3) and SWIR_2 (B10) for S2, whereas for S1, the vertical-horizontal (VH) polarization band. Including the textural metrics from the VV channel improved crop discrimination and co-existing land use cover types. The fusion approach proved robust and well-suited for accurate smallholder fruit plantation mapping.

Keywords: smallholder agriculture, fruit trees, data fusion, precision agriculture

Procedia PDF Downloads 21
870 Heat Stress Adaptive Urban Design Intervention for Planned Residential Areas of Khulna City: Case Study of Sonadanga

Authors: Tanjil Sowgat, Shamim Kobir

Abstract:

World is now experiencing the consequences of climate change such as increased heat stress due to high temperature rise. In the context of changing climate, this study intends to find out the planning interventions necessary to adapt to the current heat stress in the planned residential areas of Khulna city. To carry out the study Sonadanga residential area (phase I) of Khulna city has been taken as the study site. This residential neighbourhood covering an area of 30 acres has 206 residential plots. The study area comprises twelve access roads, one park, one playfield, one water body and two street furniture’s. This study conducts visual analysis covering green, open space, water body, footpath, drainage and street trees and furniture and questionnaire survey deals with socio-economic, housing tenancy, experience of heat stress and urban design interventions. It finds that the current state that accelerates the heat stress condition such as lack of street trees and inadequate shading, maximum uses are not within ten minutes walking distance, no footpath for the pedestrians and lack of well-maintained street furniture. It proposes that to adapt to the heat stress pedestrian facilities, buffer sidewalk with landscaping, street trees and open spaces, soft scape, natural and man-made water bodies, green roofing could be effective urban design interventions. There are evidences of limited number of heat stress adaptive planned residential area. Since current sub-division planning practice focuses on rigid land use allocation, it partly addresses the climatic concerns through creating open space and street trees. To better respond to adapt to the heat stress, urban design considerations in the context of sub-division practice would bring more benefits.

Keywords: climate change, urban design, adaptation, heat stress, water-logging

Procedia PDF Downloads 268
869 Measures of Phylogenetic Support for Phylogenomic and the Whole Genomes of Two Lungfish Restate Lungfish and Origin of Land Vertebrates

Authors: Yunfeng Shan, Xiaoliang Wang, Youjun Zhou

Abstract:

Whole-genome data from two lungfish species, along with other species, present a valuable opportunity to reassess the longstanding debate regarding the evolutionary relationships among tetrapods, lungfishes, and coelacanths. However, the use of bootstrap support has become outdated for large-scale phylogenomic data. Without robust phylogenetic support, the phylogenetic trees become meaningless. Therefore, it is necessary to re-evaluate the phylogenies of tetrapods, lungfishes, and coelacanths using novel measures of phylogenetic support specifically designed for phylogenomic data, as the previous phylogenies were based on 100% bootstrap support. Our findings consistently provide strong evidence favoring lungfish as the closest living relative of tetrapods. This conclusion is based on high gene support confidence with confidence intervals exceeding 95%, high internode certainty, and high gene concordance factor. The evidence stems from two datasets containing recently deciphered whole genomes of two lungfish species, as well as five previous datasets derived from lungfish transcriptomes. These results yield fresh insights into the three hypotheses regarding the phylogenies of tetrapods, lungfishes, and coelacanths. Importantly, these hypotheses are not mere conjectures but are substantiated by a significant number of genes. Analyzing real biological data further demonstrates that the inclusion of additional taxa diminishes the number of orthologues and leads to more diverse tree topologies. Consequently, gene trees and species trees may not be identical even when whole-genome sequencing data is utilized. However, it is worth noting that many gene trees can accurately reflect the species tree if an appropriate number of taxa, typically ranging from six to ten, are sampled. Therefore, it is crucial to carefully select the number of taxa and an appropriate outgroup while excluding fast-evolving taxa as outgroups to mitigate the adverse effects of long-branch attraction (LBA) and achieve an accurate reconstruction of the species tree. This is particularly important as more whole-genome sequencing data becomes available.

Keywords: gene support confidence (GSC), origin of land vertebrates, coelacanth, two whole genomes of lungfishes, confidence intervals

Procedia PDF Downloads 49
868 Community Forest Management and Ecological and Economic Sustainability: A Two-Way Street

Authors: Sony Baral, Harald Vacik

Abstract:

This study analyzes the sustainability of community forest management in two community forests in Terai and Hills of Nepal, representing four forest types: 1) Shorearobusta, 2) Terai hardwood, 3) Schima-Castanopsis, and 4) other Hills. The sustainability goals for this region include maintaining and enhancing the forest stocks. Considering this, we analysed changes in species composition, stand density, growing stock volume, and growth-to-removal ratio at 3-5 year intervals from 2005-2016 within 109 permanent forest plots (57 in the Terai and 52 in the Hills). To complement inventory data, forest users, forest committee members, and forest officials were consulted. The results indicate that the relative representation of economically valuable tree species has increased. Based on trends in stand density, both forests are being sustainably managed. Pole-sized trees dominated the diameter distribution, however, with a limited number of mature trees and declined regeneration. The forests were over-harvested until 2013 but under-harvested in the recent period in the Hills. In contrast, both forest types were under-harvested throughout the inventory period in the Terai. We found that the ecological dimension of sustainable forest management is strongly achieved while the economic dimension is lacking behind the current potential. Thus, we conclude that maintaining a large number of trees in the forest does not necessarily ensure both ecological and economical sustainability. Instead, priority should be given on a rational estimation of the annual harvest rates to enhance forest resource conditions together with regular benefits to the local communities.

Keywords: community forests, diversity, growing stock, forest management, sustainability, nepal

Procedia PDF Downloads 68
867 Identification of Healthy and BSR-Infected Oil Palm Trees Using Color Indices

Authors: Siti Khairunniza-Bejo, Yusnida Yusoff, Nik Salwani Nik Yusoff, Idris Abu Seman, Mohamad Izzuddin Anuar

Abstract:

Most of the oil palm plantations have been threatened by Basal Stem Rot (BSR) disease which causes serious economic impact. This study was conducted to identify the healthy and BSR-infected oil palm tree using thirteen color indices. Multispectral and thermal camera was used to capture 216 images of the leaves taken from frond number 1, 9 and 17. Indices of normalized difference vegetation index (NDVI), red (R), green (G), blue (B), near infrared (NIR), green – blue (GB), green/blue (G/B), green – red (GR), green/red (G/R), hue (H), saturation (S), intensity (I) and thermal index (T) were used. From this study, it can be concluded that G index taken from frond number 9 is the best index to differentiate between the healthy and BSR-infected oil palm trees. It not only gave high value of correlation coefficient (R=-0.962), but also high value of separation between healthy and BSR-infected oil palm tree. Furthermore, power and S model developed using G index gave the highest R2 value which is 0.985.

Keywords: oil palm, image processing, disease, leaves

Procedia PDF Downloads 475
866 Preliminary WRF SFIRE Simulations over Croatia during the Split Wildfire in July 2017

Authors: Ivana Čavlina Tomašević, Višnjica Vučetić, Maja Telišman Prtenjak, Barbara Malečić

Abstract:

The Split wildfire on the mid-Adriatic Coast in July 2017 is one of the most severe wildfires in Croatian history, given the size and unexpected fire behavior, and it is used in this research as a case study to run the Weather Research and Forecasting Spread Fire (WRF SFIRE) model. This coupled fire-atmosphere model was successfully run for the first time ever for one Croatian wildfire case. Verification of coupled simulations was possible by using the detailed reconstruction of the Split wildfire. Specifically, precise information on ignition time and location, together with mapped fire progressions and spotting within the first 30 hours of the wildfire, was used for both – to initialize simulations and to evaluate the model’s ability to simulate fire’s propagation and final fire scar. The preliminary simulations were obtained using high-resolution vegetation and topography data for the fire area, additionally interpolated to fire grid spacing at 33.3 m. The results demonstrated that the WRF SFIRE model has the ability to work with real data from Croatia and produce adequate results for forecasting fire spread. As the model in its setup has the ability to include and exclude the energy fluxes between the fire and the atmosphere, this was used to investigate possible fire-atmosphere interactions during the Split wildfire. Finally, successfully coupled simulations provided the first numerical evidence that a wildfire from the Adriatic coast region can modify the dynamical structure of the surrounding atmosphere, which agrees with observations from fire grounds. This study has demonstrated that the WRF SFIRE model has the potential for operational application in Croatia with more accurate fire predictions in the future, which could be accomplished by inserting the higher-resolution input data into the model without interpolation. Possible uses for fire management in Croatia include prediction of fire spread and intensity that may vary under changing weather conditions, available fuels and topography, planning effective and safe deployment of ground and aerial firefighting forces, preventing wildland-urban interface fires, effective planning of evacuation routes etc. In addition, the WRF SFIRE model results from this research demonstrated that the model is important for fire weather research and education purposes in order to better understand this hazardous phenomenon that occurs in Croatia.

Keywords: meteorology, agrometeorology, fire weather, wildfires, couple fire-atmosphere model

Procedia PDF Downloads 53
865 Influence of Partially-Replaced Coarse Aggregates with Date Palm Seeds on the Concrete Properties

Authors: Fahed Alrshoudi

Abstract:

Saudi Arabia is ranked the third of the largest suppliers of Dates worldwide (about 28.5 million palm trees), producing more than 2 million tons of dates yearly. These trees produce large quantity of dates palm seeds (DPS) which can be considered literally as a waste. The date seeds are stiff, therefore, it is possible to utilize DPS as coarse aggregates in lightweight concrete for certain structural applications and to participate at reusing the waste. The use of DPS as coarse aggregate in concrete can be an alternative choice as a partial replacement of the stone aggregates (SA). This paper reports the influence of partially replaced stone aggregates with DPS on the hardened properties of concrete performance. Based on the experimental results, the DPS has the potential use as an acceptable alternative aggregates in producing structural lightweight concrete members, instead of stone aggregates.

Keywords: compressive strength, tensile Strength, date palm seeds, aggregate

Procedia PDF Downloads 99
864 Toward an Integrated Safe and Sustainable Food System: A General Overview

Authors: Erkan Rehber, Hasan Vural, Sule Turhan

Abstract:

It is a fact that food is a vital need of human beings. As a consumer, everyone has the right to access adequate and safe food. There are considerable development to establish quality standards and schemes to have safe foods and sustainable agriculture alternatives to protect natural resources and environment to reach this target. Recently, there is also a remarkable development in integration and combination of these efforts. Food Safety and Sustainable Agriculture Forum organized in 2014, Beijing shows that it is a global awareness more than being an individual view. Eventually, quality standards, assurance systems applied to conventional agriculture has to be applied to sustainable agriculture alternatives to have a holistic sustainable food chain from seed to fork. All actors of the whole food system from farmer to ultimate consumers, along with the state, have to work together meeting this big challenge.

Keywords: integrated safe, food safety, sustainable food system, consumer

Procedia PDF Downloads 526
863 Technical Assessment of Utilizing Electrical Variable Transmission Systems in Hybrid Electric Vehicles

Authors: Majid Vafaeipour, Mohamed El Baghdadi, Florian Verbelen, Peter Sergeant, Joeri Van Mierlo, Kurt Stockman, Omar Hegazy

Abstract:

The Electrical Variable Transmission (EVT), an electromechanical device, can be considered as an alternative solution to the conventional transmission system utilized in Hybrid Electric Vehicles (HEVs). This study present comparisons in terms of fuel consumption, power split, and state of charge (SoC) of an HEV containing an EVT to a conventional parallel topology and a series topology. To this end, corresponding simulations of these topologies are all performed in presence of control strategies enabling battery charge-sustaining and efficient power split. The power flow through the components of the vehicle are attained, and fuel consumption results of the considered cases are compared. The investigation of the results indicates utilizing EVT can provide significant added values in HEV configurations. The outcome of the current research paves its path for implementation of design optimization approaches on such systems in further research directions.

Keywords: Electrical Variable Transmission (EVT), Hybrid Electric Vehicle (HEV), parallel, series, modeling

Procedia PDF Downloads 215
862 Advancing Phenological Understanding of Plants/Trees Through Phenocam Digital Time-lapse Images

Authors: Siddhartha Khare, Suyash Khare

Abstract:

Phenology, a crucial discipline in ecology, offers insights into the seasonal dynamics of organisms within natural ecosystems and the underlying environmental triggers. Leveraging the potent capabilities of digital repeat photography, PhenoCams capture invaluable data on the phenology of crops, plants, and trees. These cameras yield digital imagery in Red Green Blue (RGB) color channels, and some advanced systems even incorporate Near Infrared (NIR) bands. This study presents compelling case studies employing PhenoCam technology to unravel the phenology of black spruce trees. Through the analysis of RGB color channels, a range of essential color metrics including red chromatic coordinate (RCC), green chromatic coordinate (GCC), blue chromatic coordinate (BCC), vegetation contrast index (VCI), and excess green index (ExGI) are derived. These metrics illuminate variations in canopy color across seasons, shedding light on bud and leaf development. This, in turn, facilitates a deeper understanding of phenological events and aids in delineating the growth periods of trees and plants. The initial phase of this study addresses critical questions surrounding the fidelity of continuous canopy greenness records in representing bud developmental phases. Additionally, it discerns which color-based index most accurately tracks the seasonal variations in tree phenology within evergreen forest ecosystems. The subsequent section of this study delves into the transition dates of black spruce (Picea mariana (Mill.) B.S.P.) phenology. This is achieved through a fortnightly comparative analysis of the MODIS normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI). By employing PhenoCam technology and leveraging advanced color metrics, this study significantly advances our comprehension of black spruce tree phenology, offering valuable insights for ecological research and management.

Keywords: phenology, remote sensing, phenocam, color metrics, NDVI, GCC

Procedia PDF Downloads 27
861 Geographic Information System-Based Map for Best Suitable Place for Cultivating Permanent Trees in South-Lebanon

Authors: Allaw Kamel, Al-Chami Leila

Abstract:

It is important to reduce the human influence on natural resources by identifying an appropriate land use. Moreover, it is essential to carry out the scientific land evaluation. Such kind of analysis allows identifying the main factors of agricultural production and enables decision makers to develop crop management in order to increase the land capability. The key is to match the type and intensity of land use with its natural capability. Therefore; in order to benefit from these areas and invest them to obtain good agricultural production, they must be organized and managed in full. Lebanon suffers from the unorganized agricultural use. We take south Lebanon as a study area, it is the most fertile ground and has a variety of crops. The study aims to identify and locate the most suitable area to cultivate thirteen type of permanent trees which are: apples, avocados, stone fruits in coastal regions and stone fruits in mountain regions, bananas, citrus, loquats, figs, pistachios, mangoes, olives, pomegranates, and grapes. Several geographical factors are taken as criterion for selection of the best location to cultivate. Soil, rainfall, PH, temperature, and elevation are main inputs to create the final map. Input data of each factor is managed, visualized and analyzed using Geographic Information System (GIS). Management GIS tools are implemented to produce input maps capable of identifying suitable areas related to each index. The combination of the different indices map generates the final output map of the suitable place to get the best permanent tree productivity. The output map is reclassified into three suitability classes: low, moderate, and high suitability. Results show different locations suitable for different kinds of trees. Results also reflect the importance of GIS in helping decision makers finding a most suitable location for every tree to get more productivity and a variety in crops.

Keywords: agricultural production, crop management, geographical factors, Geographic Information System, GIS, land capability, permanent trees, suitable location

Procedia PDF Downloads 117
860 The Incidence of Inferior Alveolar Nerve Dysfunction Following Bilateral Sagittal Split Osteotomies: A Single Centre Retrospective Audit in the United Kingdom

Authors: Krupali Mukeshkumar, Jinesh Shah

Abstract:

Background: Bilateral Sagittal Split Osteotomy (BSSO), used for the correction of mandibular deformities, is a common oral and maxillofacial surgical procedure. Inferior alveolar nerve dysfunction is commonly reported post-operatively by patients as paresthesia or anesthesia. The current literature lacks a consensus on the incidence of inferior alveolar nerve dysfunction as patients are not routinely assessed pre and post-operatively with an objective assessment. The range of incidence varies from 9% to 85% of patients, with some authors arguing that 100% of patients experience nerve dysfunction immediately post-surgery. Systematic reviews have shown a difference between incidence rates at different follow-up periods using objective and subjective methods. Aim: To identify the incidence of inferior alveolar nerve dysfunction following BSSO. Gold standard: Nerve dysfunction incidence rates similar or lower than current literature of 83% day one post-operatively and 18.4% at one year follow up. Setting: A retrospective cross-sectional audit of patients treated between 2017-2019 at the Royal Stoke University Hospital, Maxillofacial and Orthodontic departments. Sample: All patients who underwent a BSSO (with or without le fort one osteotomy) between 2017–2019 were identified from the database. Patients with pre-existing neurosensory disturbance, those who had a genioplasty at the same time and those with no follow-up were excluded. The sample consisted of 121 patients, 37 males and 84 females between the ages of 17-50 years at the time of surgery. Methods: Clinical records of 121 cases were reviewed to assess the age, sex, type of mandibular osteotomy, status of the nerve during the surgical procedure, type of bony split and incidence of nerve dysfunction at follow-up appointments. The surgical procedure was carried out by three Maxillo-facial surgeons and follow-up appointments were carried out in the Orthodontic and Oral and Maxillo-facial departments. Results: 120 patients were treated to correct the mandibular facial deformity and 1 patient was treated for sleep apnoea. Seventeen patients had a mandibular setback and 104 patients had mandibular advancement. 68 patients reported inferior alveolar nerve dysfunction at one week following their surgery. Seventy-six patients had temporary paresthesia present between 2 weeks and 12 months post-surgery. 13 patients had persistent nerve dysfunction at 12 months, of which 1 had a bad bony split during the BSSO. The incidence of nerve dysfunction postoperatively was 6.6% after 1 day, 56.1% at 1 week, 62.8% at 2 weeks, 59.5% between 3-6 weeks, 43.0% between 8-16 weeks and 10.7% at 1 year. Conclusions: The results of this audit show a similar incidence rate to the research gold standard at the one-year follow-up. Future Recommendations: No changes to surgical procedure or technique are indicated, but a need for improved documentation and a standardized approach for assessment of post-operative nerve dysfunction would be beneficial.

Keywords: bilateral sagittal split osteotomy, inferior alveolar nerve, mandible, nerve dysfunction

Procedia PDF Downloads 196
859 Impact of Land-Use and Climate Change on the Population Structure and Distribution Range of the Rare and Endangered Dracaena ombet and Dobera glabra in Northern Ethiopia

Authors: Emiru Birhane, Tesfay Gidey, Haftu Abrha, Abrha Brhan, Amanuel Zenebe, Girmay Gebresamuel, Florent Noulèkoun

Abstract:

Dracaena ombet and Dobera glabra are two of the most rare and endangered tree species in dryland areas. Unfortunately, their sustainability is being compromised by different anthropogenic and natural factors. However, the impacts of ongoing land use and climate change on the population structure and distribution of the species are less explored. This study was carried out in the grazing lands and hillside areas of the Desa'a dry Afromontane forest, northern Ethiopia, to characterize the population structure of the species and predict the impact of climate change on their potential distributions. In each land-use type, abundance, diameter at breast height, and height of the trees were collected using 70 sampling plots distributed over seven transects spaced one km apart. The geographic coordinates of each individual tree were also recorded. The results showed that the species populations were characterized by low abundance and unstable population structure. The latter was evinced by a lack of seedlings and mature trees. The study also revealed that the total abundance and dendrometric traits of the trees were significantly different between the two land uses. The hillside areas had a denser abundance of bigger and taller trees than the grazing lands. Climate change predictions using the MaxEnt model highlighted that future temperature increases coupled with reduced precipitation would lead to significant reductions in the suitable habitats of the species in northern Ethiopia. The species' suitable habitats were predicted to decline by 48–83% for D. ombet and 35–87% for D. glabra. Hence, to sustain the species populations, different strategies should be adopted, namely the introduction of alternative livelihoods (e.g., gathering NTFP) to reduce the overexploitation of the species for subsistence income and the protection of the current habitats that will remain suitable in the future using community-based exclosures. Additionally, the preservation of the species' seeds in gene banks is crucial to ensure their long-term conservation.

Keywords: grazing lands, hillside areas, land-use change, MaxEnt, range limitation, rare and endangered tree species

Procedia PDF Downloads 50
858 On the System of Split Equilibrium and Fixed Point Problems in Real Hilbert Spaces

Authors: Francis O. Nwawuru, Jeremiah N. Ezeora

Abstract:

In this paper, a new algorithm for solving the system of split equilibrium and fixed point problems in real Hilbert spaces is considered. The equilibrium bifunction involves a nite family of pseudo-monotone mappings, which is an improvement over monotone operators. More so, it turns out that the solution of the finite family of nonexpansive mappings. The regularized parameters do not depend on Lipschitz constants. Also, the computations of the stepsize, which plays a crucial role in the convergence analysis of the proposed method, do require prior knowledge of the norm of the involved bounded linear map. Furthermore, to speed up the rate of convergence, an inertial term technique is introduced in the proposed method. Under standard assumptions on the operators and the control sequences, using a modified Halpern iteration method, we establish strong convergence, a desired result in applications. Finally, the proposed scheme is applied to solve some optimization problems. The result obtained improves numerous results announced earlier in this direction.

Keywords: equilibrium, Hilbert spaces, fixed point, nonexpansive mapping, extragradient method, regularized equilibrium

Procedia PDF Downloads 17
857 Agile Software Effort Estimation Using Regression Techniques

Authors: Mikiyas Adugna

Abstract:

Effort estimation is among the activities carried out in software development processes. An accurate model of estimation leads to project success. The method of agile effort estimation is a complex task because of the dynamic nature of software development. Researchers are still conducting studies on agile effort estimation to enhance prediction accuracy. Due to these reasons, we investigated and proposed a model on LASSO and Elastic Net regression to enhance estimation accuracy. The proposed model has major components: preprocessing, train-test split, training with default parameters, and cross-validation. During the preprocessing phase, the entire dataset is normalized. After normalization, a train-test split is performed on the dataset, setting training at 80% and testing set to 20%. We chose two different phases for training the two algorithms (Elastic Net and LASSO) regression following the train-test-split. In the first phase, the two algorithms are trained using their default parameters and evaluated on the testing data. In the second phase, the grid search technique (the grid is used to search for tuning and select optimum parameters) and 5-fold cross-validation to get the final trained model. Finally, the final trained model is evaluated using the testing set. The experimental work is applied to the agile story point dataset of 21 software projects collected from six firms. The results show that both Elastic Net and LASSO regression outperformed the compared ones. Compared to the proposed algorithms, LASSO regression achieved better predictive performance and has acquired PRED (8%) and PRED (25%) results of 100.0, MMRE of 0.0491, MMER of 0.0551, MdMRE of 0.0593, MdMER of 0.063, and MSE of 0.0007. The result implies LASSO regression algorithm trained model is the most acceptable, and higher estimation performance exists in the literature.

Keywords: agile software development, effort estimation, elastic net regression, LASSO

Procedia PDF Downloads 26
856 Determination of Water Pollution and Water Quality with Decision Trees

Authors: Çiğdem Bakır, Mecit Yüzkat

Abstract:

With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower, and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software we used in our study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: preprocessing of the data used, feature detection, and classification. We tried to determine the success of our study with different accuracy metrics and the results. We presented it comparatively. In addition, we achieved approximately 98% success with the decision tree.

Keywords: decision tree, water quality, water pollution, machine learning

Procedia PDF Downloads 60
855 Using Machine Learning to Classify Different Body Parts and Determine Healthiness

Authors: Zachary Pan

Abstract:

Our general mission is to solve the problem of classifying images into different body part types and deciding if each of them is healthy or not. However, for now, we will determine healthiness for only one-sixth of the body parts, specifically the chest. We will detect pneumonia in X-ray scans of those chest images. With this type of AI, doctors can use it as a second opinion when they are taking CT or X-ray scans of their patients. Another ad-vantage of using this machine learning classifier is that it has no human weaknesses like fatigue. The overall ap-proach to this problem is to split the problem into two parts: first, classify the image, then determine if it is healthy. In order to classify the image into a specific body part class, the body parts dataset must be split into test and training sets. We can then use many models, like neural networks or logistic regression models, and fit them using the training set. Now, using the test set, we can obtain a realistic accuracy the models will have on images in the real world since these testing images have never been seen by the models before. In order to increase this testing accuracy, we can also apply many complex algorithms to the models, like multiplicative weight update. For the second part of the problem, to determine if the body part is healthy, we can have another dataset consisting of healthy and non-healthy images of the specific body part and once again split that into the test and training sets. We then use another neural network to train on those training set images and use the testing set to figure out its accuracy. We will do this process only for the chest images. A major conclusion reached is that convolutional neural networks are the most reliable and accurate at image classification. In classifying the images, the logistic regression model, the neural network, neural networks with multiplicative weight update, neural networks with the black box algorithm, and the convolutional neural network achieved 96.83 percent accuracy, 97.33 percent accuracy, 97.83 percent accuracy, 96.67 percent accuracy, and 98.83 percent accuracy, respectively. On the other hand, the overall accuracy of the model that de-termines if the images are healthy or not is around 78.37 percent accuracy.

Keywords: body part, healthcare, machine learning, neural networks

Procedia PDF Downloads 71
854 Developing Allometric Equations for More Accurate Aboveground Biomass and Carbon Estimation in Secondary Evergreen Forests, Thailand

Authors: Titinan Pothong, Prasit Wangpakapattanawong, Stephen Elliott

Abstract:

Shifting cultivation is an indigenous agricultural practice among upland people and has long been one of the major land-use systems in Southeast Asia. As a result, fallows and secondary forests have come to cover a large part of the region. However, they are increasingly being replaced by monocultures, such as corn cultivation. This is believed to be a main driver of deforestation and forest degradation, and one of the reasons behind the recurring winter smog crisis in Thailand and around Southeast Asia. Accurate biomass estimation of trees is important to quantify valuable carbon stocks and changes to these stocks in case of land use change. However, presently, Thailand lacks proper tools and optimal equations to quantify its carbon stocks, especially for secondary evergreen forests, including fallow areas after shifting cultivation and smaller trees with a diameter at breast height (DBH) of less than 5 cm. Developing new allometric equations to estimate biomass is urgently needed to accurately estimate and manage carbon storage in tropical secondary forests. This study established new equations using a destructive method at three study sites: approximately 50-year-old secondary forest, 4-year-old fallow, and 7-year-old fallow. Tree biomass was collected by harvesting 136 individual trees (including coppiced trees) from 23 species, with a DBH ranging from 1 to 31 cm. Oven-dried samples were sent for carbon analysis. Wood density was calculated from disk samples and samples collected with an increment borer from 79 species, including 35 species currently missing from the Global Wood Densities database. Several models were developed, showing that aboveground biomass (AGB) was strongly related to DBH, height (H), and wood density (WD). Including WD in the model was found to improve the accuracy of the AGB estimation. This study provides insights for reforestation management, and can be used to prepare baseline data for Thailand’s carbon stocks for the REDD+ and other carbon trading schemes. These may provide monetary incentives to stop illegal logging and deforestation for monoculture.

Keywords: aboveground biomass, allometric equation, carbon stock, secondary forest

Procedia PDF Downloads 258
853 A Novel Dual Band-pass filter Based On Coupling of Composite Right/Left Hand CPW and (CSRRs) Uses Ferrite Components

Authors: Mohammed Berka, Khaled Merit

Abstract:

Recent works on microwave filters show that the constituent materials such filters are very important in the design and realization. Several solutions have been proposed to improve the qualities of filtering. In this paper, we propose a new dual band-pass filter based on the coupling of a composite (CRLH) coplanar waveguide with complementary split ring resonators (CSRRs). The (CRLH) CPW is composed of two resonators, each one has an interdigital capacitor (CID) and two short-circuited stubs parallel to top ground plane. On the lower ground plane, we use defected ground structure technology (DGS) to engrave two (CSRRs) offered with different shapes and dimensions. Between the top ground plane and the substrate, we place a ferrite layer to control the electromagnetic coupling between (CRLH) CPW and (CSRRs). The global filter that has coplanar access will have a dual band-pass behavior around the magnetic resonances of (CSRRs). Since there’s no scientific or experimental result in the literature for this kind of complicated structure, it was necessary to perform simulation using HFSS Ansoft designer.

Keywords: complementary split ring resonators, coplanar waveguide, ferrite, filter, stub.

Procedia PDF Downloads 378
852 Performance Study of Geopolymer Concrete by Partial Replacement of Fly Ash with Cement and Full Replacement of River Sand by Crushed Sand

Authors: Asis Kumar Khan, Rajeev Kumar Goel

Abstract:

Recent infrastructure growth all around the world lead to increase in demand for concrete day by day. Cement being binding material for concrete the usage of cement also gone up significantly. Cement manufacturing utilizes abundant natural resources and causes environment pollution by releasing a huge quantity of CO₂ into the atmosphere. So, it is high time to look for alternates to reduce the cement consumption in concrete. Geopolymer concrete is one such material which utilizes the industrial waste such as fly ash, ground granulated blast furnace slag and low-cost alkaline liquids such as sodium hydroxide and sodium silicate to produce the concrete. On the other side, river sand is becoming very expensive due to its large-scale depletion at source and the high cost of transportation. In this view, river sand is replaced by crushed sand in this study. In this work, an attempt has been made to understand the durability parameters of geopolymer concrete by partially replacing fly ash with cement. Fly ash is replaced by cement at various levels e.g., from 0 to 50%. Concrete cubes of 100x100x100mm were used for investigating different durability parameters. The various parameters studied includes compressive strength, split tensile strength, drying shrinkage, sodium sulphate attack resistance, sulphuric acid attack resistance and chloride permeability. Highest compressive strength & highest split tensile strength is observed in 30% replacement level. Least drying is observed with 30% replacement level. Very good resistance for sulphuric acid & sodium sulphate is found with 30% replacement. However, it was not possible to find out the chloride permeability due to the high conductivity of geopolymer samples of all replacement levels.

Keywords: crushed sand, compressive strength, drying shrinkage, geopolymer concrete, split tensile strength, sodium sulphate attack resistance, sulphuric acid attack resistance

Procedia PDF Downloads 269
851 Susceptibility of Different Clones of Eucalyptus Species against Gall Wasp, Leptocybe invasa Fisher and La Salle in Punjab, India

Authors: Ashwinder K. Dhaliwal, G. P. S. Dhillon

Abstract:

Eucalyptus is one of the most important forest tree species that can tolerate and grow well on degraded and unfertile soils which are not suitable for other tree species. Besides this, these trees have a short rotation and good economic value. However, the gall inducing wasp Leptocybe invasa Fisher and La Salle has been reported from many countries throughout the world. The spread of L. invasa is of huge economic concern as more than 20,000 ha of young Eucalyptus trees have already been affected in southern states of India. The host plant resistance being the first line of defense against insect pests demands the screening of different germplasm source against L. invasa. Keeping this in view, fourteen different clones of Eucalyptus spp. were evaluated for their susceptibility to L. invasa from a replicated clonal trial planted at Punjab Agricultural University, Ludhiana. The degree of gall infestation was recorded from three plants of each clone in each replication. Three branches selected from the lower, middle and upper canopy of the trees were selected for recording the total number of galls induced by L. invasa. The statistical analysis was done as per the procedure laid down for completely randomised block design (CRBD), analysis of variance (ANOVA), critical difference (CD) and variance components using Proc GLM (SAS software 9.3, SAS Institute Ltd. U.S.A). All possible treatment means were compared with Duncan’s multiple range test (DMRT) at 1 % probability level. The results showed that the clones C-9, C-45 and C-42 were completely free from the infestation of L. invasa. However, there was minor infestation of L. invasa on C-2135, C-413, C-407, C-35, C-72 and C-37 clones. The clone C-6 was severely infested by L. invasa followed by C-11, C-12, F-316 and C-25 clones. The information generated by this study will be helpful for future breeding and use in afforestation programmes.

Keywords: eucalyptus clones, gall wasp, Leptocybe invasa, screening, susceptibility

Procedia PDF Downloads 192
850 Chemical Composition and Nutritional Value of Leaves and Pods of Leucaena Leucocephala, Prosopis Laevigata and Acacia Farnesiana in a Xerophyllous Shrubland

Authors: Miguel Mellado, Cecilia Zapata

Abstract:

Goats can be exploited in harsh environments due to their capacity to adjust to limited quantity and quality forage sources. In these environments, leguminous trees can be used as supplementary feeds as foliage and fruits of these trees can contribute to maintain or improve production efficiency in ruminants. The objective of this study was to determine the nutritional value of three leguminous trees heavily selected by goats in a xerophyllous shrubland. Chemical composition and in vitro dry matter disappearance (IVDMD) of leaves and pods from leucaena (Leucaena leucocephala), mesquite (Prosopis laevigata) and huisache (Acacia farnesiana) is presented. Crude protein (CP) ranged from 17.3% for leaves of huisache to 21.9% for leucaena. The neutral detergent fiber (NDF) content ranged from 39.0 to 40.3 with no difference among fodder threes. Across tree species, mean IVDMD was 61.6% for pods and 52.2% for leaves. IVDMD for leaves was highest (P < 0.01) for leucaena (54.9%) and lowest for huisache (47.3%). Condensed tannins in an acetonic extract were highest for leaves of huisache (45.3 mg CE/g DM) and lowest for mesquite (25.9 mg CE/g DM). Pods and leaves of huisache presented the highest number of secondary metabolites, mainly related to hydrobenzoic acid and flavonols; leucaena and mesquite presented mainly flavonols and anthocyanins. It was concluded that leaves and pods of leucaena, mesquite and huisache constitute valuable forages for ruminant livestock due to its low fiber, high CP levels, moderate in vitro fermentation characteristics and high mineral content. Keywords: Fodder tree; ruminants; secondary metabolites; minerals; tannins

Keywords: fodder tree, ruminants, secondary metabolites, minerals, tannins

Procedia PDF Downloads 113
849 Potato Production under Brakish Water and Compost Use

Authors: Samih Abubaker, Amjad Abuserhan, Ghandi Anfoka

Abstract:

Potato yield reduction and soil salt accumulation are the main obstacles of using brackish water in irrigation. This study was carried out at Al- Balqa` Applied University research station, to investigate the impact of compost use on potato production and salt accumulation in the soil under brackish water, during 2014 growing season. Whole tubers of three imported potato cultivars (Spunta, Faluka and Ammbetion) were planted in pots with different soil and compost percentages (0, 20, 40, 60, 80, and 100%) and were irrigated with three water salinity levels (1.25, 5 and 10 ds/cm). A split-split plot design was used, where potato cultivars were arranged in the main plots, the brackish water treatments were in the sub-main and the soil amended treatments were in the sub-sub plots. Potato yield was generally decreased only when pots were irrigated by water of 10 ds/cm salinity compared with 1.25 and 5 ds/cm. Drainage water salinity, however, was increased as compost percentage increased. Nevertheless, salt accumulation in the growing media was decreased as the compost percentage level increased. Therefore, it can be concluded that brackish water, up to 5 ds/cm can be used to irrigate potato especially, when organic amendments were added to the soil to promote plant growth, yield and reduce salt accumulation.

Keywords: brackish water, compost, potato, salt accumulation

Procedia PDF Downloads 286
848 Length-Weight and Length-Length Relationships for 14 Sparidae Species, from the Northeastern Mediterranean Sea Coast of Turkey

Authors: Hacer Yeldan, Erhan Akamca, Sedat Gündogdu

Abstract:

Length-Weight and Length-length relationship were estimated of 14 species Sparidae (Boops boops, Diplodus annularis, Diplodus cervinus, Dipladus puntazzo, Diplodus sargus, Diplodus vulgaris, Lithognathus mormyrus, Oblada melanura, Pagellus acarne, Pagellus erythrinus, Pagrus auriga, Pagrus caeruleostictus, Sarpa salpa, Sparus aurata) sampled from in the Northeastern Mediterranean Sea coast of Turkey, Iskenderun Bay. Samples were collected from July 2014 to June 2015, using bottom trawl and trammel net into three different depth; 0-10 m, 10-20 m, 20-50m. Length-length relationships were determined size measurements: standard length (SL) and fork length (FL) to total length (TL) for fish species. The relationships between TL, FL and TL, SL were all linear. The values of the exponent b of the length-weight relationships ranged between 2.685 and 3.473. The type of growth for fish species was algometric growth.

Keywords: Sparidae, Iskenderun bay, length-length, length-weight relationships

Procedia PDF Downloads 259
847 Immature Palm Tree Detection Using Morphological Filter for Palm Counting with High Resolution Satellite Image

Authors: Nur Nadhirah Rusyda Rosnan, Nursuhaili Najwa Masrol, Nurul Fatiha MD Nor, Mohammad Zafrullah Mohammad Salim, Sim Choon Cheak

Abstract:

Accurate inventories of oil palm planted areas are crucial for plantation management as this would impact the overall economy and production of oil. One of the technological advancements in the oil palm industry is semi-automated palm counting, which is replacing conventional manual palm counting via digitizing aerial imagery. Most of the semi-automated palm counting method that has been developed was limited to mature palms due to their ideal canopy size represented by satellite image. Therefore, immature palms were often left out since the size of the canopy is barely visible from satellite images. In this paper, an approach using a morphological filter and high-resolution satellite image is proposed to detect immature palm trees. This approach makes it possible to count the number of immature oil palm trees. The method begins with an erosion filter with an appropriate window size of 3m onto the high-resolution satellite image. The eroded image was further segmented using watershed segmentation to delineate immature palm tree regions. Then, local minimum detection was used because it is hypothesized that immature oil palm trees are located at the local minimum within an oil palm field setting in a grayscale image. The detection points generated from the local minimum are displaced to the center of the immature oil palm region and thinned. Only one detection point is left that represents a tree. The performance of the proposed method was evaluated on three subsets with slopes ranging from 0 to 20° and different planting designs, i.e., straight and terrace. The proposed method was able to achieve up to more than 90% accuracy when compared with the ground truth, with an overall F-measure score of up to 0.91.

Keywords: immature palm count, oil palm, precision agriculture, remote sensing

Procedia PDF Downloads 37
846 Auditory Profile Function in Hypothyroidism

Authors: Mrunal Phatak, Suvarna Raut

Abstract:

Introduction: Thyroid hormone is important for the normal function of the auditory system. Hearing impairment can occur insidiously in subclinical hypothyroidism. The present study was undertaken with the aims of evaluating audiological tests like tuning fork tests, pure tone audiometry, brainstem evoked auditory potentials (BAEPs), and auditory reaction time (ART) in hypothyroid women and in age and sex matched controls so as to evaluate the effect of thyroid hormone on hearing. The objective of the study was to investigate hearing status by the audiological profile in hypothyroidism (group 1) and healthy controls ( group 2) to compare the audiological profile between these groups and find the correlation of levels of TSH, T3, and T4 with the above parameters. Material and methods: A total sample size of 124 women in the age group of 30 to 50 years was recruited and divided into the Cases group comprising of 62 newly diagnosed hypothyroid women and the Control group having 62 women with normal thyroid profile. Otoscopic examination, tuning fork tests, Pure tone audiometry tests (PTA). Brain Stem Auditory Evoked Potential (BAEP) and Auditory Reaction Time (ART) were done in both ears, i.e. total 248 ears of all subjects. Results: By BAEPs, hearing impairment was detected in total 64 ears (51.61%). A significant increase was seen in Wave V latency, IPL I-V, and IPL III-V, and the decrease was seen in the amplitude of Wave I and V in both the ears in cases. Positive correlation of Wave V latency of Right and Left ears is seen with TSH levels (p < 0.001) and a negative correlation with T3 (>0.05) and with T4 (p < 0.01). Negative correlation of wave V amplitude of Right and Left ears is seen with TSH levels (p < 0.001), and a significant positive correlation is seen with T3 and T4. Pure tone audiometry parameters showed hearing impairment of conductive (31.29%), sensorineural (36.29%), as well as the mixed type (15.32%). Hearing loss was mild in 65.32% of ears and moderate in 17.74% of ears. Pure tone averages (PTA) were significantly increased in cases than in controls in both the ears. Significant positive correlation of PTA of Right and Left ears is seen with TSH levels (p<0.05). Negative correlation with T3 and T4 is seen. A significant increase in HF ART and LF ART is seen in cases as compared to controls. Positive correlation of ART of high frequency and low frequency is seen with TSH levels and a negative correlation with T3 and T4 (p > 0.05). Conclusion: The abnormal BAEPs in hypothyroid women suggest an impaired central auditory pathway. BAEP abnormalities are indicative of a nonspecific injury in the bulbo-ponto-mesencephalic centres. The results of auditory investigations suggest a causal relationship between hypothyroidism and hearing loss. The site of lesion in the auditory pathway is probably at several levels, namely, in the middle ear and at cochlear and retrocochlear sites. Prolonged ART also suggests the impairment in central processing mechanisms. The results of the present study conclude that the probable reason for hearing impairment in hypothyroidism may be delayed impulse conduction in acoustic nerve up to the level of the midbrain (IPL I-V, III-V), particularly inferior colliculus (wave V). There is also impairment in central processing mechanisms, as shown by prolonged ART.

Keywords: deafness, pure tone audiometry, brain stem auditory evoked potential, hyopothyroidism

Procedia PDF Downloads 90
845 Morphometric Relationships of Unfarmed Puntius sophore, Collected from Chenab River, Punjab, Pakistan

Authors: Alina Zafar

Abstract:

In this particular research, various morphometric characters such as total length (TL), wet weight (WW), standard length (SL), fork length (FL), head length (HL), head width (HW), body depth (BD), body girth (BG), dorsal fin length (DFL), pelvic fin length (PelFL), pectoral fin length (PecFL), anal fin length (AFL), dorsal fin base (DFB), anal fin base (AFB), caudal fin length (CFL) and caudal fin width (CFW) of wild collected Puntius sophore were studied, to know the types of growth patterns and correlations in reference to length and weight, however, high significant relationships were recorded between total length and wet weight, as the correlation coefficient (r) possessed value of 0.989. The growth pattern was observed to be positively allometric as the value of ‘b’ was 3.22 (slightly higher than the ideal value, 3) with 95% confidence intervals ranging from 3.076 to 3.372. Wet weight and total length parameters showed high significant correlations (p < 0.001) with all other morphometric characters.

Keywords: Puntius sophore, length and weight relation, morphometrics, small indigenous species

Procedia PDF Downloads 72