Search results for: fluid pressure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5504

Search results for: fluid pressure

5294 Optimization of Bifurcation Performance on Pneumatic Branched Networks in next Generation Soft Robots

Authors: Van-Thanh Ho, Hyoungsoon Lee, Jaiyoung Ryu

Abstract:

Efficient pressure distribution within soft robotic systems, specifically to the pneumatic artificial muscle (PAM) regions, is essential to minimize energy consumption. This optimization involves adjusting reservoir pressure, pipe diameter, and branching network layout to reduce flow speed and pressure drop while enhancing flow efficiency. The outcome of this optimization is a lightweight power source and reduced mechanical impedance, enabling extended wear and movement. To achieve this, a branching network system was created by combining pipe components and intricate cross-sectional area variations, employing the principle of minimal work based on a complete virtual human exosuit. The results indicate that modifying the cross-sectional area of the branching network, gradually decreasing it, reduces velocity and enhances momentum compensation, preventing flow disturbances at separation regions. These optimized designs achieve uniform velocity distribution (uniformity index > 94%) prior to entering the connection pipe, with a pressure drop of less than 5%. The design must also consider the length-to-diameter ratio for fluid dynamic performance and production cost. This approach can be utilized to create a comprehensive PAM system, integrating well-designed tube networks and complex pneumatic models.

Keywords: pneumatic artificial muscles, pipe networks, pressure drop, compressible turbulent flow, uniformity flow, murray's law

Procedia PDF Downloads 39
5293 Laminar Periodic Vortex Shedding over a Square Cylinder in Pseudoplastic Fluid Flow

Authors: Shubham Kumar, Chaitanya Goswami, Sudipto Sarkar

Abstract:

Pseudoplastic (n < 1, n being the power index) fluid flow can be found in food, pharmaceutical and process industries and has very complex flow nature. To our knowledge, inadequate research work has been done in this kind of flow even at very low Reynolds numbers. Here, in the present computation, we have considered unsteady laminar flow over a square cylinder in pseudoplastic flow environment. For Newtonian fluid flow, this laminar vortex shedding range lies between Re = 47-180. In this problem, we consider Re = 100 (Re = U∞ a/ ν, U∞ is the free stream velocity of the flow, a is the side of the cylinder and ν is the kinematic viscosity of the fluid). The pseudoplastic fluid range has been chosen from close to the Newtonian fluid (n = 0.8) to very high pseudoplasticity (n = 0.1). The flow domain is constituted using Gambit 2.2.30 and this software is also used to generate mesh and to impose the boundary conditions. For all places, the domain size is considered as 36a × 16a with 280 ×192 grid point in the streamwise and flow normal directions respectively. The domain and the grid points are selected after a thorough grid independent study at n = 1.0. Fine and equal grid spacing is used close to the square cylinder to capture the upper and lower shear layers shed from the cylinder. Away from the cylinder the grid is unequal in size and stretched out in all direction. Velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition du/dy = 0, v = 0) at upper and lower domain boundary conditions are used for this simulation. Wall boundary (u = v = 0) is considered on the square cylinder surface. Fully conservative 2-D unsteady Navier-Stokes equations are discretized and then solved by Ansys Fluent 14.5 to understand the flow nature. SIMPLE algorithm written in finite volume method is selected for this purpose which is the default solver in scripted in Fluent. The result obtained for Newtonian fluid flow agrees well with previous work supporting Fluent’s usefulness in academic research. A minute analysis of instantaneous and time averaged flow field is obtained both for Newtonian and pseudoplastic fluid flow. It has been observed that drag coefficient increases continuously with the reduced value of n. Also, the vortex shedding phenomenon changes at n = 0.4 due to flow instability. These are some of the remarkable findings for laminar periodic vortex shedding regime in pseudoplastic flow environment.

Keywords: Ansys Fluent, CFD, periodic vortex shedding, pseudoplastic fluid flow

Procedia PDF Downloads 150
5292 Entropy Generation of Unsteady Reactive Hydromagnetic Generalized Couette Fluid Flow of a Two-Step Exothermic Chemical Reaction Through a Channel

Authors: Rasaq Kareem, Jacob Gbadeyan

Abstract:

In this study, analysis of the entropy generation of an unsteady reactive hydromagnetic generalized couette fluid flow of a two-step exothermic chemical reaction through a channel with isothermal wall temperature under the influence of different chemical kinetics namely: Sensitized, Arrhenius and Bimolecular kinetics was investigated. The modelled nonlinear dimensionless equations governing the fluid flow were simplified and solved using the combined Laplace Differential Transform Method (LDTM). The effects of fluid parameters associated with the problem on the fluid temperature, entropy generation rate and Bejan number were discussed and presented through graphs.

Keywords: couette, entropy, exothermic, unsteady

Procedia PDF Downloads 483
5291 Numerical Analysis of Fluid Mixing in Three Split and Recombine Micromixers at Different Inlets Volume Ratio

Authors: Vladimir Viktorov, M. Readul Mahmud, Carmen Visconte

Abstract:

Numerical simulation were carried out to study the mixing of miscible liquid at different inlets volume ratio (1 to 3) within two existing mixers namely Chain, Tear-drop and one new “C-H” mixer. The new passive C-H micromixer is developed based on split and recombine principles, combining the operation concepts of known Chain mixer and H mixer. The mixing performances of the three micromixers were predicted by a preliminary numerical analysis of the flow patterns inside the channel in terms of the segregation or distribution of path lines. Afterward, the efficiency and the pressure drop were investigated numerically, taking into account species transport. All numerical calculations were computed at a wide range of Reynolds number from 1 to 100. Among the presented three micromixers, tear-drop provides fairly good efficiency except in the middle range of Re numbers but has high-pressure drop. In addition, inlets flow ratio has a significant influence on efficiency, especially at the Re number range of 10 to 50, Moreover maximum increase of efficiency is almost 10% when inlets flow ratio is increased by 1. Chain mixer presents relatively low mixing efficiency at low and middle range of Re numbers (5≤Re≤50) but has reasonable pressure drop. Furthermore, Chain mixer shows almost no dependence on inlets flow ratio. Whereas, C-H mixer poses excellent mixing efficiency (more than 93%) for all range of Re numbers and causes the lowest pressure drop, On top of that efficiency has slight dependency on inlets flow ratio. In addition, C-H mixer shows respectively about three and two times lower pressure drop than Tear-drop and Chain mixers.

Keywords: CFD, micromixing, passive micromixer, SAR

Procedia PDF Downloads 451
5290 Magnetohydrodynamic (MHD) Effects on Micropolar-Newtonian Fluid Flow through a Composite Porous Channel

Authors: Satya Deo, Deepak Kumar Maurya

Abstract:

The present study investigates the ow of a Newtonian fluid sandwiched between two rectangular porous channels filled with micropolar fluid in the presence of a uniform magnetic field applied in a direction perpendicular to that of the fluid motion. The governing equations of micropolar fluid are modified by Nowacki's approach. For respective porous channels, expressions for velocity vectors, microrotations, stresses (shear and couple) are obtained analytically. Continuity of velocities, continuities of micro rotations and continuity of stresses are used at the porous interfaces; conditions of no-slip and no spin are applied at the impervious boundaries of the composite channel. Numerical values of flow rate, wall shear stresses and couple stresses at the porous interfaces are calculated for different values of various parameters. Graphs of the ow rate and fluid velocity are plotted and their behaviors are discussed.

Keywords: couple stress, flow rate, Hartmann number, micropolar fluids

Procedia PDF Downloads 217
5289 Numerical Study of Sloshing in a Flexible Tank

Authors: Wissem Tighidet, Faïçal Naït Bouda, Moussa Allouche

Abstract:

The numerical study of the Fluid-Structure Interaction (FSI) in a partially filled flexible tank submitted to a horizontal harmonic excitation motion. It is investigated by using two-way Fluid-Structure Interaction (FSI) in a flexible tank by Coupling between the Transient Structural (Mechanical) and Fluid Flow (Fluent) in ANSYS-Workbench Student version. The Arbitrary Lagrangian-Eulerian (ALE) formulation is adopted to solve with the finite volume method, the Navier-Stokes equations in two phases in a moving domain. The Volume of Fluid (VOF) method is applied to track the free surface. However, the equations of the dynamics of the structure are solved with the finite element method assuming a linear elastic behavior. To conclude, the Fluid-Structure Interaction (IFS) has a vital role in the analysis of the dynamic behavior of the rectangular tank. The results indicate that the flexibility of the tank walls has a significant impact on the amplitude of tank sloshing and the deformation of the free surface as well as the effect of liquid sloshing on wall deformation.

Keywords: arbitrary lagrangian-eulerian, fluid-structure interaction, sloshing, volume of fluid

Procedia PDF Downloads 72
5288 Effect of Hypertension Exercise and Slow Deep Breathing Combination to Blood Pressure: A Mini Research in Elderly Community

Authors: Prima Khairunisa, Febriana Tri Kusumawati, Endah Luthfiana

Abstract:

Background: Hypertension in elderly, caused by cardiovascular system cannot work normally, because the valves thickened and inelastic blood vessels. It causes vasoconstriction of the blood vessels. Hypertension exercise, increase cardiovascular function and the elasticity of the blood vessels. While slow deep breathing helps the body and mind feel relax. Combination both of them will decrease the blood pressure. Objective: To know the effect of hypertension exercise and slow deep breathing combination to blood pressure in elderly. Method: The study conducted with one group pre-post test experimental design. The samples were 10 elderly both male and female in a Village in Semarang, Central Java, Indonesia. The tool was manual sphygmomanometer to measure blood pressure. Result: Based on paired t-test between hypertension exercise and slow deep breathing with systole blood pressure showed sig (2-tailed) was 0.045, while paired t-test between hypertension exercise hypertension exercise and slow deep breathing with diastole blood pressure showed sig (2-tailed) was 0,343. The changes of systole blood pressure were 127.5 mmHg, and diastole blood pressure was 80 mmHg. Systole blood pressure decreases significantly because the average of systole blood pressure before implementation was 135-160 mmHg. While diastole blood pressure was not decreased significantly. It was influenced by the average of diastole blood pressure before implementation of hypertension exercise was not too high. It was between 80- 90 mmHg. Conclusion: There was an effect of hypertension exercise and slow deep breathing combination to the blood pressure in elderly after 6 times implementations.

Keywords: hypertension exercise, slow deep breathing, elderly, blood pressure

Procedia PDF Downloads 315
5287 Finite Element Model to Investigate the Dynamic Behavior of Ring-Stiffened Conical Shell Fully and Partially Filled with Fluid

Authors: Mohammadamin Esmaeilzadehazimi, Morteza Shayan Arani, Mohammad Toorani, Aouni Lakis

Abstract:

This study uses a hybrid finite element method to predict the dynamic behavior of both fully and partially-filled truncated conical shells stiffened with ring stiffeners. The method combines classical shell theory and the finite element method, and employs displacement functions derived from exact solutions of Sanders' shell equilibrium equations for conical shells. The shell-fluid interface is analyzed by utilizing the velocity potential, Bernoulli's equation, and impermeability conditions to determine an explicit expression for fluid pressure. The equations of motion presented in this study apply to both conical and cylindrical shells. This study presents the first comparison of the method applied to ring-stiffened shells with other numerical and experimental findings. Vibration frequencies for conical shells with various boundary conditions and geometries in a vacuum and filled with water are compared with experimental and numerical investigations, achieving good agreement. The study thoroughly investigates the influence of geometric parameters, stiffener quantity, semi-vertex cone angle, level of water filled in the cone, and applied boundary conditions on the natural frequency of fluid-loaded ring-stiffened conical shells, and draws some useful conclusions. The primary advantage of the current method is its use of a minimal number of finite elements while achieving highly accurate results.

Keywords: finite element method, fluid–structure interaction, conical shell, natural frequency, ring-stiffener

Procedia PDF Downloads 40
5286 Exploring Unexplored Horizons: Innovative Applications of Applied Fluid Mechanics in Sustainable Energy

Authors: Elvira S. Castillo, Surupa Shaw

Abstract:

This paper delves into the uncharted territories of innovative applications of applied fluid mechanics in sustainable energy. By exploring the intersection of fluid mechanics principles with renewable energy technologies, the study uncovers untapped potential and novel solutions. Through theoretical analyses, the research investigates how fluid dynamics can be strategically leveraged to enhance the efficiency and sustainability of renewable energy systems. The findings contribute to expanding the discourse on sustainable energy by presenting innovative perspectives and practical insights. This paper serves as a guide for future research endeavors and offers valuable insights for implementing advanced methodologies and technologies to address global energy challenges.

Keywords: fluid mechanics, sustainable energy, sustainble practices, renewable energy

Procedia PDF Downloads 12
5285 Internal and External Overpressure Calculation for Vented Gas Explosion by Using a Combined Computational Fluid Dynamics Approach

Authors: Jingde Li, Hong Hao

Abstract:

Recent oil and gas accidents have reminded us the severe consequences of gas explosion on structure damage and financial loss. In order to protect the structures and personnel, engineers and researchers have been working on numerous different explosion mitigation methods. Amongst, venting is the most economical approach to mitigate gas explosion overpressure. In this paper, venting is used as the overpressure alleviation method. A theoretical method and a numerical technique are presented to predict the internal and external pressure from vented gas explosion in a large enclosure. Under idealized conditions, a number of experiments are used to calibrate the accuracy of the theoretically calculated data. A good agreement between the theoretical results and experimental data is seen. However, for realistic scenarios, the theoretical method over-estimates internal pressures and is incapable of predicting external pressures. Therefore, a CFD simulation procedure is proposed in this study to estimate both the internal and external overpressure from a large-scale vented explosion. Satisfactory agreement between CFD simulation results and experimental data is achieved.

Keywords: vented gas explosion, internal pressure, external pressure, CFD simulation, FLACS, ANSYS Fluent

Procedia PDF Downloads 134
5284 Umm Arrazam, Libyan Driling Fluid Resistivity Evaluation

Authors: Omar Hussein El Ayadi, Ali Mustafa Alkekly, Nader Ahmad Musa

Abstract:

Search and evaluate locale source of raw material which can be used as drilling fluid is one of most important economical target. Hopefully, to use Libyan clay that cost less than importing it from outside. Resistivity measurement and control is of primary concern in connection with electrical logging. The influences of resistivity utilizing Umm Arrazam clay were laboratory investigated at ambient condition (room temperature, atmospheric pressure) to fulfill the aim of the study. Several tests were carried-out on three sets of mud mixture with different densities (8.7, 9.0, and 9.3 ppg) as base mud. The resistivity of mud, mud filtrate, and mud cake were measured using resistivity- meter. Mud water losses were also measured. Several results obtained to describe the relationship between the resistivity ratios of mud filtrate to the mud, and the mud cake to mud. The summary of conclusion is that there are no great differences were obtained during comparison of resistivity and water loss of Umm Arrazam and Wyoming Clay.

Keywords: petroleum, drilling, mug, geological engineering

Procedia PDF Downloads 434
5283 Estimation of Pressure Profile and Boundary Layer Characteristics over NACA 4412 Airfoil

Authors: Anwar Ul Haque, Waqar Asrar, Erwin Sulaeman, Jaffar S. M. Ali

Abstract:

Pressure distribution data of the standard airfoils is usually used for the calibration purposes in subsonic wind tunnels. Results of such experiments are quite old and obtained by using the model in the spanwise direction. In this manuscript, pressure distribution over NACA 4412 airfoil model was presented by placing the 3D model in the lateral direction. The model is made of metal with pressure ports distributed longitudinally as well as in the lateral direction. The pressure model was attached to the floor of the tunnel with the help of the base plate to give the specified angle of attack to the model. Before the start of the experiments, the pressure tubes of the respective ports of the 128 ports pressure scanner are checked for leakage, and the losses due to the length of the pipes were also incorporated in the results for the specified pressure range. Growth rate maps of the boundary layer thickness were also plotted. It was found that with the increase in the velocity, the dynamic pressure distribution was also increased for the alpha seep. Plots of pressure distribution so obtained were overlapped with those obtained by using XFLR software, a low fidelity tool. It was found that at moderate and high angles of attack, the distribution of the pressure coefficients obtained from the experiments is high when compared with the XFLR ® results obtained along with the span of the wing. This under-prediction by XFLR ® is more obvious on the windward than on the leeward side.

Keywords: subsonic flow, boundary layer, wind tunnel, pressure testing

Procedia PDF Downloads 296
5282 Multi-Fidelity Fluid-Structure Interaction Analysis of a Membrane Wing

Authors: M. Saeedi, R. Wuchner, K.-U. Bletzinger

Abstract:

In order to study the aerodynamic performance of a semi-flexible membrane wing, Fluid-Structure Interaction simulations have been performed. The fluid problem has been modeled using two different approaches which are the numerical solution of the Navier-Stokes equations and the vortex panel method. Nonlinear analysis of the structural problem is performed using the Finite Element Method. Comparison between the two fluid solvers has been made. Aerodynamic performance of the wing is discussed regarding its lift and drag coefficients and they are compared with those of the equivalent rigid wing.

Keywords: CFD, FSI, Membrane wing, Vortex panel method

Procedia PDF Downloads 457
5281 Influence of Pressure from Compression Textile Bands: Their Using in the Treatment of Venous Human Leg Ulcers

Authors: Bachir Chemani, Rachid Halfaoui

Abstract:

The aim of study was to evaluate pressure distribution characteristics of the elastic textile bandages using two instrumental techniques: a prototype Instrument and a load Transference. The prototype instrument which simulates shape of real leg has pressure sensors which measure bandage pressure. Using this instrument, the results show that elastic textile bandages presents different pressure distribution characteristics and none produces a uniform distribution around lower limb. The load transference test procedure is used to determine whether a relationship exists between elastic textile bandage structure and pressure distribution characteristics. The test procedure assesses degree of load, directly transferred through a textile when loads series are applied to bandaging surface. A range of weave fabrics was produced using needle weaving machine and a sewing technique. A textile bandage was developed with optimal characteristics far superior pressure distribution than other bandages. From results, we find that theoretical pressure is not consistent exactly with practical pressure. It is important in this study to make a practical application for specialized nurses in order to verify the results and draw useful conclusions for predicting the use of this type of elastic band.

Keywords: textile, cotton, pressure, venous ulcers, elastic

Procedia PDF Downloads 335
5280 CFD Modeling of Air Stream Pressure Drop inside Combustion Air Duct of Coal-Fired Power Plant with and without Airfoil

Authors: Pakawhat Khumkhreung, Yottana Khunatorn

Abstract:

The flow pattern inside rectangular intake air duct of 300 MW lignite coal-fired power plant is investigated in order to analyze and reduce overall inlet system pressure drop. The system consists of the 45-degree inlet elbow, the flow instrument, the 90-degree mitered elbow and fans, respectively. The energy loss in each section can be determined by Bernoulli’s equation and ASHRAE standard table. Hence, computational fluid dynamics (CFD) is used in this study based on Navier-Stroke equation and the standard k-epsilon turbulence modeling. Input boundary condition is 175 kg/s mass flow rate inside the 11-m2 cross sectional duct. According to the inlet air flow rate, the Reynolds number of airstream is 2.7x106 (based on the hydraulic duct diameter), thus the flow behavior is turbulence. The numerical results are validated with the real operation data. It is found that the numerical result agrees well with the operating data, and dominant loss occurs at the flow rate measurement device. Normally, the air flow rate is measured by the airfoil and it gets high pressure drop inside the duct. To overcome this problem, the airfoil is planned to be replaced with the other type measuring instrument, such as the average pitot tube which generates low pressure drop of airstream. The numerical result in case of average pitot tube shows that the pressure drop inside the inlet airstream duct is decreased significantly. It should be noted that the energy consumption of inlet air system is reduced too.

Keywords: airfoil, average pitot tube, combustion air, CFD, pressure drop, rectangular duct

Procedia PDF Downloads 136
5279 A Numerical Study of Force-Based Boundary Conditions in Multiparticle Collision Dynamics

Authors: Arturo Ayala-Hernandez, Humberto Hijar

Abstract:

We propose a new alternative method for imposing fluid-solid boundary conditions in simulations of Multiparticle Collision Dynamics. Our method is based on the introduction of an explicit potential force acting between the fluid particles and a surface representing a solid boundary. We show that our method can be used in simulations of plane Poiseuille flows. Important quantities characterizing the flow and the fluid-solid interaction like the slip coefficient at the solid boundary and the effective viscosity of the fluid, are measured in terms of the set of independent parameters defining the numerical implementation. We find that our method can be used to simulate the correct hydrodynamic flow within a wide range of values of these parameters.

Keywords: Multiparticle Collision Dynamics, fluid-solid, boundary conditions, molecular dynamics

Procedia PDF Downloads 498
5278 Experimental Investigation of Heat Transfer on Vertical Two-Phased Closed Thermosyphon

Authors: M. Hadi Kusuma, Nandy Putra, Anhar Riza Antariksawan, Ficky Augusta Imawan

Abstract:

Heat pipe is considered to be applied as a passive system to remove residual heat that generated from reactor core when incident occur or from spent fuel storage pool. The objectives are to characterized the heat transfer phenomena, performance of heat pipe, and as a model for large heat pipe will be applied as passive cooling system on nuclear spent fuel pool storage. In this experimental wickless heat pipe or two-phase closed thermosyphon (TPCT) is used. Variation of heat flux are 611.24 Watt/m2 - 3291.29 Watt/m2. Variation of filling ratio are 45 - 70%. Variation of initial pressure are -62 to -74 cm Hg. Demineralized water is used as working fluid in the TPCT. The results showed that increasing of heat load leads to an increase of evaporation of the working fluid. The optimum filling ratio obtained for 60% of TPCT evaporator volume, and initial pressure variation gave different TPCT wall temperature characteristic. TPCT showed best performance with 60% filling ratio and can be consider to be applied as passive residual heat removal system or passive cooling system on spent fuel storage pool.

Keywords: two-phase closed term syphon, heat pipe, passive cooling, spent fuel storage pool

Procedia PDF Downloads 305
5277 Blood Pressure and Anthropometric Measurements: A Correlational Study

Authors: Abdul-Monim Batiha, Manar AlAzzam, Mohammed ALBashtawy, Loai Tawalbeh, Ahmad Tubaishat, Fadwa N. Alhalaiqa

Abstract:

Background: Obesity is the major modifiable risk factor for many chronic illnesses especially high blood pressure. Objectives: To evaluate the relationship between anthropometric indices and high blood pressure, and which one was most strongly correlated with high blood pressure in Jordanian population. Methods: A cross-sectional study was conducted with a total 622 students and workers from three Jordanian universities. Results: Nearly half of the participant are overweight (34.7%) and obese (15.4%) and hypertension was detected among 138 (22.2%) of the participants. Linear correlation was significant (p<0.01) between both systolic blood pressure and diastolic blood pressure for all anthropometric indices, except for A body shape index and diastolic blood pressure was significant at p< 0.05. Stepwise multiple linear regression analysis was used to assess the influence of age and anthropometric measurements. Conclusions: The waist circumference was the only independent predictor of hypertension, showing that this simple measurement may be an importance marker of high blood pressure in Jordanian population.

Keywords: anthropometric indices, Jordan, blood pressure, cross-sectional study, obesity, hypertension, waist circumference

Procedia PDF Downloads 262
5276 Computational Fluid Dynamics Analysis of Convergent–Divergent Nozzle and Comparison against Theoretical and Experimental Results

Authors: Stewart A. Keir, Faik A. Hamad

Abstract:

This study aims to use both analytical and experimental methods of analysis to examine the accuracy of Computational Fluid Dynamics (CFD) models that can then be used for more complex analyses, accurately representing more elaborate flow phenomena such as internal shockwaves and boundary layers. The geometry used in the analytical study and CFD model is taken from the experimental rig. The analytical study is undertaken using isentropic and adiabatic relationships and the output of the analytical study, the 'shockwave location tool', is created. The results from the analytical study are then used to optimize the redesign an experimental rig for more favorable placement of pressure taps and gain a much better representation of the shockwaves occurring in the divergent section of the nozzle. The CFD model is then optimized through the selection of different parameters, e.g. turbulence models (Spalart-Almaras, Realizable k-epsilon & Standard k-omega) in order to develop an accurate, robust model. The results from the CFD model can then be directly compared to experimental and analytical results in order to gauge the accuracy of each method of analysis. The CFD model will be used to visualize the variation of various parameters such as velocity/Mach number, pressure and turbulence across the shock. The CFD results will be used to investigate the interaction between the shock wave and the boundary layer. The validated model can then be used to modify the nozzle designs which may offer better performance and ease of manufacture and may present feasible improvements to existing high-speed flow applications.

Keywords: CFD, nozzle, fluent, gas dynamics, shock-wave

Procedia PDF Downloads 209
5275 The Fluid Limit of the Critical Processor Sharing Tandem Queue

Authors: Amal Ezzidani, Abdelghani Ben Tahar, Mohamed Hanini

Abstract:

A sequence of finite tandem queue is considered for this study. Each one has a single server, which operates under the egalitarian processor sharing discipline. External customers arrive at each queue according to a renewal input process and having a general service times distribution. Upon completing service, customers leave the current queue and enter to the next. Under mild assumptions, including critical data, we prove the existence and the uniqueness of the fluid solution. For asymptotic behavior, we provide necessary and sufficient conditions for the invariant state and the convergence to this invariant state. In the end, we establish the convergence of a correctly normalized state process to a fluid limit characterized by a system of algebraic and integral equations.

Keywords: fluid limit, fluid model, measure valued process, processor sharing, tandem queue

Procedia PDF Downloads 287
5274 Investigation of Flow Characteristics on Upstream and Downstream of Orifice Using Computational Fluid Dynamics

Authors: War War Min Swe, Aung Myat Thu, Khin Cho Thet, Zaw Moe Htet, Thuzar Mon

Abstract:

The main parameter of the orifice hole diameter was designed according to the range of throttle diameter ratio which gave the required discharge coefficient. The discharge coefficient is determined by difference diameter ratios. The value of discharge coefficient is 0.958 occurred at throttle diameter ratio 0.5. The throttle hole diameter is 80 mm. The flow analysis is done numerically using ANSYS 17.0, computational fluid dynamics. The flow velocity was analyzed in the upstream and downstream of the orifice meter. The downstream velocity of non-standard orifice meter is 2.5% greater than that of standard orifice meter. The differential pressure is 515.379 Pa in standard orifice.

Keywords: CFD-CFX, discharge coefficients, flow characteristics, inclined

Procedia PDF Downloads 114
5273 CFD modelling of Microdrops Manipulation by Microfluidic Oscillator

Authors: Tawfiq Chekifi, Brahim Dennai, Rachid Khelfaoui

Abstract:

Over the last few decades, modeling immiscible fluids such as oil and water have been a classical research topic. Droplet-based microfluidics presents a unique platform for mixing, reaction, separation, dispersion of drops, and numerous other functions. For this purpose, several devices were studied, as well as microfluidic oscillator. The latter was obtained from wall attachment microfluidic amplifiers using a feedback loop from the outputs to the control inputs, nevertheless this device have not well used for microdrops applications. In this paper, we suggest a numerical CFD study of a microfluidic oscillator with two different lengths of feedback loop. In order to produce simultaneous microdrops of gasoil on water, a typical geometry that includes double T-junction is connected to the fluidic oscillator. The generation of microdrops is computed by volume-of-fluid method (VOF). Flow oscillations of microdrops were triggered by the Coanda effect of jet flow. The aim of work is to obtain a high oscillation frequency in output of this passive device, the influence of hydrodynamics and physics parameters on the microdrops frequency in the output of our microsystem is also analyzed, The computational results show that, the length of feedback loop, applied pressure on T-junction and interfacial tension have a significant effect on the dispersion of microdrops and its oscillation frequency. Across the range of low Reynold number, the microdrops generation and its dynamics have been accurately controlled by adjusting applying pressure ratio of two phases.

Keywords: fluidic oscillator, microdrops manipulation, VOF (volume of fluid method), microfluidic oscillator

Procedia PDF Downloads 362
5272 Borate Crosslinked Fracturing Fluids: Laboratory Determination of Rheology

Authors: Lalnuntluanga Hmar, Hardik Vyas

Abstract:

Hydraulic fracturing has become an essential procedure to break apart the rock and release the oil or gas which are trapped tightly in the rock by pumping fracturing fluids at high pressure down into the well. To open the fracture and to transport propping agent along the fracture, proper selection of fracturing fluids is the most crucial components in fracturing operations. Rheology properties of the fluids are usually considered the most important. Among various fracturing fluids, Borate crosslinked fluids have proved to be highly effective. Borate in the form of Boric Acid, borate ion is the most commonly use to crosslink the hydrated polymers and to produce very viscous gels that can stable at high temperature. Guar and HPG (Hydroxypropyl Guar) polymers are the most often used in these fluids. Borate gel rheology is known to be a function of polymer concentration, borate ion concentration, pH, and temperature. The crosslinking using Borate is a function of pH which means it can be formed or reversed simply by altering the pH of the fluid system. The fluid system was prepared by mixing base polymer with water at pH ranging between 8 to 11 and the optimum borate crosslinker efficiency was found to be pH of about 10. The rheology of laboratory prepared Borate crosslinked fracturing fluid was determined using Anton Paar Rheometer and Fann Viscometer. The viscosity was measured at high temperature ranging from 200ᵒF to 250ᵒF and pressures in order to partially stimulate the downhole condition. Rheological measurements reported that the crosslinking increases the viscosity, elasticity and thus fluid capability to transport propping agent.

Keywords: borate, crosslinker, Guar, Hydroxypropyl Guar (HPG), rheology

Procedia PDF Downloads 179
5271 Impact of Pulsing and Trickle Flow on Catalytic Wet Air Oxidation of Phenolic Compounds in Waste Water at High Pressure

Authors: Safa'a M. Rasheed, Saba A. Gheni, Wadood T. Mohamed

Abstract:

Phenolic compounds are the most carcinogenic pollutants in waste water in effluents of refineries and pulp industry. Catalytic wet air oxidation is an efficient industrial treatment process to oxidize phenolic compounds into unharmful organic compounds. Mode of flow of the fluid to be treated is a dominant factor in determining effectiveness of the catalytic process. The present study aims to obtain a mathematical model describing the conversion of phenolic compounds as a function of the process variables; mode of flow (trickling and pulsing), temperature, pressure, along with a high concentration of phenols and a platinum supported alumina catalyst. The model was validated with the results of experiments obtained in a fixed bed reactor. High pressure and temperature were employed at 8 bar and 140 °C. It has been found that conversion of phenols is highly influenced by mode of flow and the change is caused by changes occurred in hydrodynamic regime at the time of pulsing flow mode, thereby a temporal variation in wetting efficiency of platinum prevails; which in turn increases and/or decreases contact time with phenols in wastewater. The model obtained was validated with experimental results, and it is found that the model is a good agreement with the experimental results.

Keywords: wastewater, phenol, pulsing flow, wet oxidation, high pressure

Procedia PDF Downloads 111
5270 Fluid Inclusions Analysis of Fluorite from the Hammam Jedidi District, North-Eastern Tunisia

Authors: Miladi Yasmine, Bouhlel Salah, Garnit Hechmi

Abstract:

Hydrothermal vein-type deposits of the Hammam Jedidi F-Ba(Pb-Zn-Cu) are hosted in Lower Jurassic, Cretaceous and Tertiary series, and located near a very important structural lineament (NE-SW) corresponding to the Hammam Jedidi Fault in the Tunisian Dorsale. The circulation of the ore forming fluid is triggered by a regional tectonic compressive phase which occurred during the miocène time. Mineralization occurs as stratabound and vein-type orebodies adjacent to the Triassic salt diapirs and within fault in Jurassic limestone. Fluid inclusions data show that two distinct fluids were involved in the mineralisation deposition: a warmer saline fluid (180°C, 20 wt % NaCl equivalent) and cooler less saline fluid (126°C, 5wt%NaCl equivalent). The contrasting salinities and halogen ratios suggest that this two fluid derived from one of the brine originated after the dissolution of halite as suggested by its high salinity. The other end member, as indicated by the low Cl/Br ratios, acquired its low salinity by dilution of Br enriched evaporated seawater. These results are compatible with Mississippi-Valley- type mineralization.

Keywords: Jebel Oust, fluid inclusions, North Eastern Tunisia, mineralization

Procedia PDF Downloads 315
5269 Dynamic Foot Pressure Measurement System Using Optical Sensors

Authors: Tanapon Keatsamarn, Chuchart Pintavirooj

Abstract:

Foot pressure measurement provides necessary information for diagnosis diseases, foot insole design, disorder prevention and other application. In this paper, dynamic foot pressure measurement is presented for pressure measuring with high resolution and accuracy. The dynamic foot pressure measurement system consists of hardware and software system. The hardware system uses a transparent acrylic plate and uses steel as the base. The glossy white paper is placed on the top of the transparent acrylic plate and covering with a black acrylic on the system to block external light. Lighting from LED strip entering around the transparent acrylic plate. The optical sensors, the digital cameras, are underneath the acrylic plate facing upwards. They have connected with software system to process and record foot pressure video in avi file. Visual Studio 2017 is used for software system using OpenCV library.

Keywords: foot, foot pressure, image processing, optical sensors

Procedia PDF Downloads 220
5268 Geochemical Characterization of the Fahdene Formation in the Kef-Tedjerouine Area (Northwestern Tunisia)

Authors: Tahani Hallek, Dhaou Akrout, Riadh Ahmadi, Mabrouk Montacer

Abstract:

The present work is an organo-geochemical study of the Fahdene Formation outcrops at the Mahjouba region belonging to the Eastern part of the Kalaat Senan structure in northwestern Tunisia (the Kef-Tedjerouine area). The analytical study of the organic content of the samples collected, allowed us to point out that the Formation in question is characterized by an average to good oil potential. This fossilized organic matter has a planktonic marine origin (type II), as indicated by the relatively high values of hydrogen index. Tmax values are in the range 440°C and attest a thermal stage of the oil window beginning. Mineralogical study found the existence of macro and micro fractures that are parallel to rock stratification or oblique with a high density. Fill standpoint, the major component of the mineralized veins is the fibrous calcite with bitumen traces. The composition of these fractures is mainly due to the availability of chemical elements scattered in the surrounding rock. As for the origin of these fractures, we assume that fluid pressure processes are heavily involved, together with the regional compressional tectonic stress regime. The Fahdene Formation has a great importance in conventional oil development as a potential source rock, and even in terms of unconventional oil exploitation through the intense fracturing allowing the percolation of gas shale and facilitating its exploitation.

Keywords: fluid pressure, fracturation, oil exploration, organic matter

Procedia PDF Downloads 228
5267 The Nature of Mineralizing Fluids in the Hammam Zriba Deposit (F-Ba-Sr-Pb-Zn) in North-eastern Tunisia

Authors: Miladi Yasmine, Bouhlel Salah, David Banks

Abstract:

The Hammam Zriba (F-Ba-Sr-Pb-Zn) ore deposits of the Zaghouan district are located in northeast Tunisia, 60 Km south of Tunis. The host rocks belong to the Ressas Formation (Tithonian age) and lower Cretaceous layers. Mineralization occurs as stratiform replacement heaps and lenses. The mineral assemblage is composed of fluorite, barite, sphalerite, and galena. Primary fluid inclusions in sphalerite have homogenization temperatures ranging from 83 to 140°C, final melting temperature range from −18 to −7.0, corresponding to salinities of 5 to 21 wt % NaCl equivalent. Fluid inclusions in fluorite homogenize to the liquid phase between 132 and 178°C. Final ice melting temperatures range from −25 to −6.8 °C, corresponding to salinities between 17 and 24 wt% NaCl Equivalent. The LA-ICP-MS analyses of the fluid inclusions in fluorite show that these fluids are dominated by Na>Ca>K>Mg, with the concentration of Fe being equivalent to that of Mg. Microthermometric analyses of the fluid inclusions observed in fluorite and sphalerite show that two distinct fluids were involved in the mineralization deposition: a warmer saline fluid (132-178°C, 17-24 wt % NaCl equivalent) and cooler saline fluid (83°C-140, 5-21 wt %NaCl equivalent). The ore fluid result from highly saline and Na-Ca dominated with lower Mg concentrations come from the leaching of the dolomitic host rocks by the fluids.

Keywords: Hammam Zriba , fluid inclusions, LA-ICP-MS, Zaghouan district

Procedia PDF Downloads 58
5266 Flame Spread along Fuel Cylinders in High Pressures

Authors: Yanli Zhao, Jian Chen, Shouxiang Lu

Abstract:

Flame spread over solid fuels in high pressure situations such as nuclear containment shells and hyperbaric oxygen chamber has potential to result in catastrophic disaster, thus requiring best knowledge. This paper reveals experimentally the flame spread behaviors over fuel cylinders in high pressures. The fuel used in this study is polyethylene and polymethyl methacrylate cylinders with 4mm diameter. Ambient gas is fixed as air and total pressures are varied from naturally normal pressure (100kPa) to elevated pressure (400kPa). Flame appearance, burning rate and flame spread were investigated experimentally and theoretically. Results show that high pressure significantly affects the flame appearance, which is as the pressure increases, flame color changes from luminous yellow to orange and the orange part extends down towards the base of flame. Besides, the average flame width and height, and the burning rate are proved to increase with increasing pressure. What is more, flame spread rates become higher as pressure increases due to the enhancement of heat transfer from flame to solid surface in elevated pressure by performing a simplified heat balance analysis.

Keywords: cylinder fuel, flame spread, heat transfer, high pressure

Procedia PDF Downloads 350
5265 An Improvement of Flow Forming Process for Pressure Vessels by Four Rollers Machine

Authors: P. Sawitri, S. Cdr. Sittha, T. Kritsana

Abstract:

Flow forming is widely used in many industries, especially in defence technology industries. Pressure vessels requirements are high precision, light weight, seamless and optimum strength. For large pressure vessels, flow forming by 3 rollers machine were used. In case of long range rocket motor case flow forming and welding of pressure vessels have been used for manufacturing. Due to complication of welding process, researchers had developed 4 meters length pressure vessels without weldment by 4 rollers flow forming machine. Design and preparation of preform work pieces are performed. The optimization of flow forming parameter such as feed rate, spindle speed and depth of cut will be discussed. The experimental result shown relation of flow forming parameters to quality of flow formed tube and prototype pressure vessels have been made.

Keywords: flow forming, pressure vessel, four rollers, feed rate, spindle speed, cold work

Procedia PDF Downloads 298