Search results for: fluid catalytic cracking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2966

Search results for: fluid catalytic cracking

2756 Numerical Study of Fluid Flow and Heat Transfer in the Spongy-Porous Media

Authors: Zeinab Sayed Abdel Rehim, M. A. Ziada, H. Salwa El-Deeb

Abstract:

Numerical study of fluid flow, heat transfer and thermal energy storing or released in/from spongy-porous media to predict the thermal performance and characteristics of the porous media as packed bed system is presented in this work. This system is cylindrical channel filled with porous media (carbon foam). The system consists of working fluid (air) and spongy-porous medium; they act as the heat exchanger (heating or cooling modes) where thermal interaction occurs between the working fluid and the porous medium. The spongy-porous media are defined by the different type of porous medium employed in the storing or cooling modes. Two different porous media are considered in this study: Carbon foam, and Silicon rubber. The flow of the working fluid (air) is one dimensional in the axial direction from the top to downward and steady state conditions. The numerical results of transient temperature distribution for both working fluid and the spongy-porous medium phases and the amount of stored/realized heat inside/from the porous medium for each case with respect to the operating parameters and the spongy-porous media characteristics are illustrated.

Keywords: fluid flow, heat transfer, numerical analysis, spongy-porous media, thermal performance, transient conditions

Procedia PDF Downloads 512
2755 Removal of Metals from Heavy Oil

Authors: Ali Noorian

Abstract:

Crude oil contains various compounds of hydrocarbons but low concentrations of inorganic compounds or metals. Vanadium and Nickel are the most common metals in crude oil. These metals usually exist in solution in the oil and residual fuel oil in the refining process is condensed. Deleterious effects of metals in petroleum have been known for some time. These metals do not only contaminate the product but also cause intoxication and loss of catalyst and corrosion to equipment. In this study, removal of heavy metals and petroleum residues were investigated. These methods include physical, chemical and biological treatment processes. For example, processes such as solvent extraction and hydro-catalytic and catalytic methods are effective and practical methods, but typically often have high costs and cause environmental pollution. Furthermore, biological methods that do not cause environmental pollution have been discussed in recent years, but these methods have not yet been industrialized.

Keywords: removal, metal, heavy oil, nickel, vanadium

Procedia PDF Downloads 338
2754 Magnetohydrodynamic 3D Maxwell Fluid Flow Towards a Horizontal Stretched Surface with Convective Boundary Conditions

Authors: M. Y. Malika, Farzana, Abdul Rehman

Abstract:

The study deals with the steady, 3D MHD boundary layer flow of a non-Newtonian Maxwell fluid flow due to a horizontal surface stretched exponentially in two lateral directions. The temperature at the boundary is assumed to be distributed exponentially and possesses convective boundary conditions. The governing nonlinear system of partial differential equations along with associated boundary conditions is simplified using a suitable transformation and the obtained set of ordinary differential equations is solved through numerical techniques. The effects of important involved parameters associated with fluid flow and heat flux are shown through graphs.

Keywords: boundary layer flow, exponentially stretched surface, Maxwell fluid, numerical solution

Procedia PDF Downloads 559
2753 Design of Low-Emission Catalytically Stabilized Combustion Chamber Concept

Authors: Annapurna Basavaraju, Andreas Marn, Franz Heitmeir

Abstract:

The Advisory Council for Aeronautics Research in Europe (ACARE) is cognizant for the overall reduction of NOx emissions by 80% in its vision 2020. Moreover small turbo engines have higher fuel specific emissions compared to large engines due to their limited combustion chamber size. In order to fulfill these requirements, novel combustion concepts are essential. This motivates to carry out the research on the current state of art, catalytic stabilized combustion chamber using hydrogen in small jet engines which are designed and investigated both numerically and experimentally during this project. Catalytic combustion concepts can also be adopted for low caloric fuels and are therefore not constrained to only hydrogen. However, hydrogen has high heating value and has the major advantage of producing only the nitrogen oxides as pollutants during the combustion, thus eliminating the interest on other emissions such as Carbon monoxides etc. In the present work, the combustion chamber is designed based on the ‘Rich catalytic Lean burn’ concept. The experiments are conducted for the characteristic operating range of an existing engine. This engine has been tested successfully at Institute of Thermal Turbomachinery and Machine Dynamics (ITTM), Technical University Graz. One of the facts that the efficient combustion is a result of proper mixing of fuel-air mixture, considerable significance is given to the selection of appropriate mixer. This led to the design of three diverse configurations of mixers and is investigated experimentally and numerically. Subsequently the best mixer would be equipped in the main combustion chamber and used throughout the experimentation. Furthermore, temperatures and pressures would be recorded at various locations inside the combustion chamber and the exhaust emissions will also be analyzed. The instrumented combustion chamber would be inspected at the engine relevant inlet conditions for nine different sets of catalysts at the Hot Flow Test Facility (HFTF) of the institute.

Keywords: catalytic combustion, gas turbine, hydrogen, mixer, NOx emissions

Procedia PDF Downloads 271
2752 Interlayer-Mechanical Working: Effective Strategy to Mitigate Solidification Cracking in Wire-Arc Additive Manufacturing (WAAM) of Fe-based Shape Memory Alloy

Authors: Soumyajit Koley, Kuladeep Rajamudili, Supriyo Ganguly

Abstract:

In recent years, iron-based shape-memory alloys have been emerging as an inexpensive alternative to costly Ni-Ti alloy and thus considered suitable for many different applications in civil structures. Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy contains 37 wt.% of total solute elements. Such complex multi-component metallurgical system often leads to severe solute segregation and solidification cracking. Wire-arc additive manufacturing (WAAM) of Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy was attempted using a cold-wire fed plasma arc torch attached to a 6-axis robot. Self-standing walls were manufactured. However, multiple vertical cracks were observed after deposition of around 15 layers. Microstructural characterization revealed open surfaces of dendrites inside the crack, confirming these cracks as solidification cracks. Machine hammer peening (MHP) process was adopted on each layer to cold work the newly deposited alloy. Effect of MHP traverse speed were varied systematically to attain a window of operation where cracking was completely stopped. Microstructural and textural analysis were carried out further to correlate the peening process to microstructure.MHP helped in many ways. Firstly, a compressive residual stress was induced on each layer which countered the tensile residual stress evolved from solidification process; thus, reducing net tensile stress on the wall along its length. Secondly, significant local plastic deformation from MHP followed by the thermal cycle induced by deposition of next layer resulted into a recovered and recrystallized equiaxed microstructure instead of long columnar grains along the vertical direction. This microstructural change increased the total crack propagation length and thus, the overall toughness. Thirdly, the inter-layer peening significantly reduced the strong cubic {001} crystallographic texture formed along the build direction. Cubic {001} texture promotes easy separation of planes and easy crack propagation. Thus reduction of cubic texture alleviates the chance of cracking.

Keywords: Iron-based shape-memory alloy, wire-arc additive manufacturing, solidification cracking, inter-layer cold working, machine hammer peening

Procedia PDF Downloads 43
2751 Experimental Characterization of the Shear Behavior of Fiber Reinforced Concrete Beam Elements in Chips

Authors: Djamal Atlaoui, Youcef Bouafia

Abstract:

This work deals with the experimental study of the mechanical behavior, by shear tests (fracture shear), elements of concrete beams reinforced with fibers in chips. These fibers come from the machining waste of the steel parts. The shear tests are carried out on prismatic specimens of dimensions 10 x 20 x 120 cm3. The fibers are characterized by mechanical resistance and tearing. The optimal composition of the concrete was determined by the workability test. Two fiber contents are selected for this study (W = 0.6% and W = 0.8%) and a BT control concrete (W = 0%) of the same composition as the matrix is developed to serve as a reference with a sand-to-gravel ratio (S/G) of concrete matrix equal to 1. The comparison of the different results obtained shows that the chips fibers confer a significant ductility to the material after cracking of the concrete. Also, the fibers used limit diagonal cracks in shear and improve strength and rigidity.

Keywords: characterization, chips fibers, cracking mode, ductility, undulation, shear

Procedia PDF Downloads 95
2750 Improvement of Compressive and Tensile Strengths of Concrete Using Polypropylene Fibers

Authors: Omar Asad Ahmad, Mohammed Awwad

Abstract:

Concrete is one of the essential elements that used in different types of construction these days, but it has many problems when interacts with environmental elements such as water, air, temperature, dust, and humidity. Also concrete made with Portland cement has certain characteristics: it is relatively strong in compression but weak in tension and tends to be brittle. These disadvantages make concrete limited to use in certain conditions. The most common problems appears on concrete are manifested by tearing, cracking, corrosion and spalling, which will lead to do some defect in concrete then in the whole construction, The fundamental objective of this research was to provide information about the hardened properties of concrete achieved by using easily available local raw materials in Jordan to support the practical work with partners in assessing the practicability of the mixes with polypropylene, and to facilitate the introduction of polypropylene fiber concrete (PFC) technology into general construction practice. Investigate the effect of the polypropylene fibers in PCC mixtures and on materials properties such as compressive strength, and tensile strength. Also to investigate the use of polypropylene fibers in plain cubes and cylindrical concrete to improve its compressive and tensile strengths to reduce early cracking and inhibit later crack growth. Increasing the hardness of concrete in this research is the main purpose to measure the deference of compressive strength and tensile strength between plain concrete and concrete mixture with polypropylene fibers different additions and to investigate its effect on reducing the early and later cracking problem. To achieve the goals of research 225 concrete test sample were prepared to measure it’s compressive strength and tensile strength, the concrete test sample were three classes (A,B,C), sub-classified to standard , and polypropylene fibers added by the volume of concrete (5%, 10%, 15%, and 20%). The investigation of polypropylene fibers mixture with concrete shows that the strengths of the cement are increased and the cracking decreased. The results show that for class A the recommended addition were 5% of polypropylene fibers additions for compressive strength and 10 % for tensile strength revels the best compressive strength that reach 26.67 Mpa and tensile strength that reach 2.548 Mpa records. Achieved results show that for classes B and C the recommend additions were 10 % polypropylene fibers revels the best compressive strength records where they reach 21.11 and 33.78 Mpa, records reach for tensile strength 2.707 and 2.65 Mpa respectively.

Keywords: polypropylene, effects, compressive, tensile, strengths, concrete, construction

Procedia PDF Downloads 504
2749 On the Free-Surface Generated by the Flow over an Obstacle in a Hydraulic Channel

Authors: M. Bouhadef, K. Bouzelha-Hammoum, T. Guendouzen-Dabouz, A. Younsi, T. Zitoun

Abstract:

The aim of this paper is to report the different experimental studies, conducted in the laboratory, dealing with the flow in the presence of an obstacle lying in a rectangular hydraulic channel. Both subcritical and supercritical regimes are considered. Generally, when considering the theoretical problem of the free-surface flow, in a fluid domain of finite depth, due to the presence of an obstacle, we suppose that the water is an inviscid fluid, which means that there is no sheared velocity profile, but constant upstream. In a hydraulic channel, it is impossible to satisfy this condition. Indeed, water is a viscous fluid and its velocity is null at the bottom. The two configurations are presented, i.e. a flow over an obstacle and a towed obstacle in a resting fluid.

Keywords: experiments, free-surface flow, hydraulic channel, subcritical regime, supercritical flow

Procedia PDF Downloads 280
2748 Effects of Magnetic Field Strength on Fluid Flow Behavior in a Constricted Channel

Authors: Ashkan Javadzadegan, Aitak Javadzadegan, Babak Fakhim

Abstract:

One of possible ways to retard movement of fluid is through applying an external magnetic field. In this regard, this study is focused on the effect of a uniform transverse magnetic field on fluid flow behavior inside a channel with a local symmetric constriction. Also, Ellis Non-Newtonian model is implemented to address the effects of shear-dependent viscosity. According to the results, the flow separation downstream of the constriction can be controlled by applying an external magnetic field and/or manipulating the shear-thinning degree of fluid. It is also demonstrated that pressure drop increases by an increase in the strength of the magnetic field.

Keywords: magnetic field, non-Newtonian, separation, shear thinning

Procedia PDF Downloads 401
2747 Reservoir Fluids: Occurrence, Classification, and Modeling

Authors: Ahmed El-Banbi

Abstract:

Several PVT models exist to represent how PVT properties are handled in sub-surface and surface engineering calculations for oil and gas production. The most commonly used models include black oil, modified black oil (MBO), and compositional models. These models are used in calculations that allow engineers to optimize and forecast well and reservoir performance (e.g., reservoir simulation calculations, material balance, nodal analysis, surface facilities, etc.). The choice of which model is dependent on fluid type and the production process (e.g., depletion, water injection, gas injection, etc.). Based on close to 2,000 reservoir fluid samples collected from different basins and locations, this paper presents some conclusions on the occurrence of reservoir fluids. It also reviews the common methods used to classify reservoir fluid types. Based on new criteria related to the production behavior of different fluids and economic considerations, an updated classification of reservoir fluid types is presented in the paper. Recommendations on the use of different PVT models to simulate the behavior of different reservoir fluid types are discussed. Each PVT model requirement is highlighted. Available methods for the calculation of PVT properties from each model are also discussed. Practical recommendations and tips on how to control the calculations to achieve the most accurate results are given.

Keywords: PVT models, fluid types, PVT properties, fluids classification

Procedia PDF Downloads 42
2746 Fluid Structure Interaction of Offshore Concrete Columns under Explosion Loads

Authors: Ganga K. V. Prakhya, V. Karthigeyan

Abstract:

The paper describes the influences of the fluid and structure interaction in concrete structures that support large oil platforms in the North Sea. The dynamic interaction of the fluid both in 2D and 3D are demonstrated through a Computational Fluid Dynamics analysis in the event of explosion following a gas leak inside of the concrete column. The structural response characteristics of the column in water under dynamic conditions are quite complex involving axial, radial and circumferential modes. Fluid structure interaction (FSI) modelling showed that there are some frequencies of the column in water which are not found for a column in air. For example, it was demonstrated that one of the axial breathing modes can never be simulated without the use of FSI models. The occurrence of a shift in magnitude and time of pressure from explosion following gas leak along the height of the shaft not only excited the modes of vibration involving breathing (axial), bending and squashing (radial) modes but also magnified the forces in the column. FSI models revealed that dynamic effects resulted in dynamic amplification of loads. The results are summarized from a detailed study that was carried out by the first author for the Offshore Safety Division of Health & Safety Executive United Kingdom.

Keywords: concrete, explosion, fluid structure interaction, offshore structures

Procedia PDF Downloads 162
2745 Unsteady MHD Thin Film Flow of a Third-Grade Fluid with Heat Transfer and Slip Boundary Condition Down an Inclined Plane

Authors: Y. M. Aiyesimi, G. T. Okedayo, O. W. Lawal

Abstract:

An investigation is made for unsteady MHD thin film flow of a third grade fluid down an inclined plane with slip boundary condition. The non-linear partial differential equation governing the flow and heat transfer are evaluated numerically using computer software called Maple to obtain velocity and temperature profile. The effect of slip and other various physical parameter on both velocity and temperature profile obtained are studied through several graphs.

Keywords: non-Newtonian fluid, MHD flow, third-grade fluid, Maple, slip boundary condition, heat transfer

Procedia PDF Downloads 422
2744 Structural Safety of Biocomposites under Cracking: A Fracture Analytical Approach using the Gғ-Concept

Authors: Brandtner-Hafner Martin

Abstract:

Biocomposites have established themselves as a sustainable material class in the industry. Their advantages include lower density, lower price, and easier recycling compared to conventional materials. Now there are a variety of ways to measure their technical performance. One possibility is mechanical tests, which are widely used and standardized. However, these provide only very limited insights into damage capacity, which is particularly problematic under cracking conditions. To overcome such shortcomings, experimental tests were performed applying the fracture energetically GF-concept to study the structural safety of the interface under crack opening (mode-I loading). Two different types of biocomposites based on extruded henequen-fibers (NFRP) and wood-particles (WPC) in an HDPE matrix were evaluated. The results show that the fracture energy values obtained are higher than those given in the literature. This suggests that alternatives to previous linear elastic testing methods are needed to perform authentic safety evaluations of green plastics.

Keywords: biocomposites, structural safety, Gғ-concept, fracture analysis

Procedia PDF Downloads 129
2743 Design and Control of a Knee Rehabilitation Device Using an MR-Fluid Brake

Authors: Mina Beheshti, Vida Shams, Mojtaba Esfandiari, Farzaneh Abdollahi, Abdolreza Ohadi

Abstract:

Most of the people who survive a stroke need rehabilitation tools to regain their mobility. The core function of these devices is a brake actuator. The goal of this study is to design and control a magnetorheological brake which can be used as a rehabilitation tool. In fact, the fluid used in this brake is called magnetorheological fluid or MR that properties can change by variation of the magnetic field. The braking properties can be set as control by using this feature of the fluid. In this research, different MR brake designs are first introduced in each design, and the dimensions of the brake have been determined based on the required torque for foot movement. To calculate the brake dimensions, it is assumed that the shear stress distribution in the fluid is uniform and the fluid is in its saturated state. After designing the rehabilitation brake, the mathematical model of the healthy movement of a healthy person is extracted. Due to the nonlinear nature of the system and its variability, various adaptive controllers, neural networks, and robust have been implemented to estimate the parameters and control the system. After calculating torque and control current, the best type of controller in terms of error and control current has been selected. Finally, this controller is implemented on the experimental data of the patient's movements, and the control current is calculated to achieve the desired torque and motion.

Keywords: rehabilitation, magnetorheological fluid, knee, brake, adaptive control, robust control, neural network control, torque control

Procedia PDF Downloads 121
2742 Falling and Rising of Solid Particles in Thermally Stratified Fluid

Authors: Govind Sharma, Bahni Ray

Abstract:

Ubiquitous nature of particle settling is governed by the presence of the surrounding fluid medium. Thermally stratified fluid alters the settling phenomenon of particles as well as their interactions. Direct numerical simulation (DNS) is carried out with an open-source library Immersed Boundary Adaptive Mesh Refinement (IBAMR) to quantify the fundamental mechanism based on Distributed Lagrangian Multiplier (DLM). The presence of background density gradient due to thermal stratification replaces the drafting-kissing-tumbling in a homogeneous fluid to drafting-kissing-separation behavior. Simulations are performed with a varying range of particle-fluid density ratios, and it is shown that the stratification effect on particle interactions varies with density ratio. It is observed that the combined role of buoyancy and inertia govern the physical mechanism of particle-particle interaction.

Keywords: direct numerical simulation, distributed lagrangian multiplier, rigidity constraint, sedimentation, stratification

Procedia PDF Downloads 102
2741 Evaluation of Osteoprotegrin (OPG) and Tumor Necrosis Factor A (TNF-A) Changes in Synovial Fluid and Serum in Dogs with Osteoarthritis; An Experimental Study

Authors: Behrooz Nikahval, Mohammad Saeed Ahrari-Khafi, Sakineh Behroozpoor, Saeed Nazifi

Abstract:

Osteoarthritis (OA) is a progressive and degenerative condition of the articular cartilage and other joints’ structures. It is essential to diagnose this condition as early as possible. The present research was performed to measure the Osteoprotegrin (OPG) and Tumor Necrosis Factor α (TNF-α) in synovial fluid and blood serum of dogs with surgically transected cruciate ligament as a model of OA, to evaluate if measuring of these parameters can be used as a way of early diagnosis of OA. In the present study, four mature, clinically healthy dogs were selected to investigate the effect of experimental OA, on OPG and TNF-α as a way of early detection of OA. OPG and TNF-α were measured in synovial fluid and blood serum on days 0, 14, 28, 90 and 180 after surgical transaction of cranial cruciate ligament in one stifle joint. Statistical analysis of the results showed that there was a significant increase in TNF-α in both synovial fluid and blood serum. OPG showed a decrease two weeks after OA induction. However, it fluctuated afterward. In conclusion, TNF-α could be used in both synovial fluid and blood serum as a way of early detection of OA; however, further research still needs to be conducted on OPG values in OA detection.

Keywords: osteoarthritis, osteoprotegrin, tumor necrosis factor α, synovial fluid, serum, dog

Procedia PDF Downloads 292
2740 A Parallel Computation Based on GPU Programming for a 3D Compressible Fluid Flow Simulation

Authors: Sugeng Rianto, P.W. Arinto Yudi, Soemarno Muhammad Nurhuda

Abstract:

A computation of a 3D compressible fluid flow for virtual environment with haptic interaction can be a non-trivial issue. This is especially how to reach good performances and balancing between visualization, tactile feedback interaction, and computations. In this paper, we describe our approach of computation methods based on parallel programming on a GPU. The 3D fluid flow solvers have been developed for smoke dispersion simulation by using combinations of the cubic interpolated propagation (CIP) based fluid flow solvers and the advantages of the parallelism and programmability of the GPU. The fluid flow solver is generated in the GPU-CPU message passing scheme to get rapid development of haptic feedback modes for fluid dynamic data. A rapid solution in fluid flow solvers is developed by applying cubic interpolated propagation (CIP) fluid flow solvers. From this scheme, multiphase fluid flow equations can be solved simultaneously. To get more acceleration in the computation, the Navier-Stoke Equations (NSEs) is packed into channels of texel, where computation models are performed on pixels that can be considered to be a grid of cells. Therefore, despite of the complexity of the obstacle geometry, processing on multiple vertices and pixels can be done simultaneously in parallel. The data are also shared in global memory for CPU to control the haptic in providing kinaesthetic interaction and felling. The results show that GPU based parallel computation approaches provide effective simulation of compressible fluid flow model for real-time interaction in 3D computer graphic for PC platform. This report has shown the feasibility of a new approach of solving the compressible fluid flow equations on the GPU. The experimental tests proved that the compressible fluid flowing on various obstacles with haptic interactions on the few model obstacles can be effectively and efficiently simulated on the reasonable frame rate with a realistic visualization. These results confirm that good performances and balancing between visualization, tactile feedback interaction, and computations can be applied successfully.

Keywords: CIP, compressible fluid, GPU programming, parallel computation, real-time visualisation

Procedia PDF Downloads 403
2739 Magnitude of Meconium Stained Amniotic Fluid and Associated Factors among Women Who Gave Birth in North Shoa Zone Hospital’s Amhara Region Ethiopia 2022

Authors: Mitiku Tefera

Abstract:

Background: Meconium-stained amniotic fluid is one of the primary causes of birth asphyxia. Each year, over five million neonatal deaths occur worldwide due to meconium-stained amniotic fluid, with 90% of these deaths due to birth asphyxia. In Ethiopia meconium-stained amniotic fluid is under investigated, specifically in North Shoa Zone Amhara region Ethiopia. Objective: The aim of this study was to assess the magnitude of meconium-stained amniotic fluid and associated factors among women who gave birth in the North Shoa Zone Hospital’s Amhara Region, Ethiopia, in 2022. Methods: An institutional-based, cross-sectional study was conducted among 628 women who gave birth at North Shoa Zone Hospitals, Amhara, Ethiopia. The study was conducted from 08/June-08/August 2022. Two-stage cluster sampling was used to recruit study participants. The data was collected by using a structured interview-administered questionnaire and chart review. The collected data was entered into Epi-Data Version 4.6 and exported to SPSS Version 25. Logistics regression was employed, and a p-value <0.05 was considered significant. Result: The magnitude of meconium-stained amniotic fluid was 30.3%. Women presented with normal hematocrit level 83% less likely develop meconium-stained amniotic fluid. Women had mid-upper arm circumference value was less than 22.9cm(AOR=1.9; 95% CI;1.18-3.20), obstructed labor(AOR=3.6; 95% CI;1.48-8.83), prolonged labor ≥ 15hr (AOR=7.5; 95% CI ;7.68-13.3), the premature rapture of the membrane (AOR=1.7; 95% CI; 3.22-7.40), fetal tachycardia(AOR=6.2; 95% CI; 2.41-16.3) and Bradycardia (AOR=3.1; 95% CI;1.93-5.28) were significant association with meconium stained amniotic fluid. Conclusion: The magnitude of meconium-stained amniotic fluid, which was high. In this study, MUAC value <22.9 cm, obstructed and prolonged labor, PROM, bradycardia, and tachycardia were factors associated with meconium-stained amniotic fluid. A follow-up study and pooled similar articles will be mentioned for better evidence, enhancing intrapartum services and strengthening early detection of meconium-stained amniotic fluid for the health of the mother and baby.

Keywords: women, meconium-staned amniotic fluid, magnitude, Ethiopia

Procedia PDF Downloads 89
2738 Alumina Supported Copper-Manganese-Cobalt Catalysts for CO and VOCs Oxidation

Authors: Elitsa Kolentsova, Dimitar Dimitrov, Vasko Idakiev, Tatyana Tabakova, Krasimir Ivanov

Abstract:

Formaldehyde production by selective oxidation of methanol is an important industrial process. The main by-products in the waste gas are CO and dimethyl ether (DME). The idea of this study is to combine the advantages of both Cu-Mn and Cu-Co catalytic systems by obtaining a new mixed Cu-Mn-Co catalyst with high activity and selectivity at the simultaneous oxidation of CO, methanol, and DME. Two basic Cu-Mn samples with high activity were selected for further investigation: (i) manganese-rich Cu-Mn/γ–Al2O3 catalyst with Cu/Mn molar ratio 1:5 and (ii) copper-rich Cu-Mn/γ-Al2O3 catalyst with Cu/Mn molar ratio 2:1. Manganese in these samples was replaced by cobalt in the whole concentration region, and catalytic properties were determined. The results show a general trend of decreasing the activity toward DME oxidation and increasing the activity toward CO and methanol oxidation with the increase of cobalt up to 60% for both groups of catalyst. This general trend, however, contains specific features, depending on the composition of the catalyst and the nature of the oxidized gas. The catalytic activity of the sample with Cu/(Mn+Co) molar ratio of 2:1 is gradually changed with increasing the cobalt content. The activity of the sample with Cu/(Mn+Co) molar ratio of 1: 5 passes through a maximum at 60% manganese replacement by cobalt, probably due to the formation of highly dispersed Co-based spinel structures (Co3O4 and/or MnCo2O4). In conclusion, the present study demonstrates that the Cu-Mn-Co/γ–alumina supported catalysts have enhanced activity toward CO, methanol and DME oxidation. Cu/(Mn+Co) molar ratio 1:5 and Co/Mn molar ratio 1.5 in the active component can ensure successful oxidation of CO, CH3OH and DME. The active component of the mixed Cu-Mn-Co/γ–alumina catalysts consists of at least six compounds - CuO, Co3O4, MnO2, Cu1.5Mn1.5O4, MnCo2O4 and CuCo2O4, depending on the Cu/Mn/Co molar ratio. Chemical composition strongly influences catalytic properties, this effect being quite variable with regards to the different processes.

Keywords: Cu-Mn-Co catalysts, oxidation, carbon oxide, VOCs

Procedia PDF Downloads 196
2737 Contemplation of Thermal Characteristics by Filling Ratio of Aluminium Oxide Nano Fluid in Wire Mesh Heat Pipe

Authors: D. Mala, S. Sendhilnathan, D. Ratchagaraja

Abstract:

In this paper, the performance of heat pipe in terms of overall heat transfer coefficient and thermal resistance is quantified by varying the volume of working fluid and the performance parameters are contemplated. For this purpose Al2O3 nano particles with a density of 9.8 gm/cm3 and a volume concentration of 1% is used as the working fluid in experimental heat pipe. The performance of heat pipe was evaluated by conducting experiments with different thermal loads and different angle of inclinations. Thermocouples are used to record the temperature distribution across the experiment. The results provide evidence that the suspension of Al2O3 nano particles in the base fluid increases the thermal efficiency of heat pipe and can be used in practical heat exchange applications.

Keywords: heat pipe, angle of inclination, thermal resistance, thermal efficiency

Procedia PDF Downloads 537
2736 Cavitating Flow through a Venturi Using Computational Fluid Dynamics

Authors: Imane Benghalia, Mohammed Zamoum, Rachid Boucetta

Abstract:

Hydrodynamic cavitation is a complex physical phenomenon that appears in hydraulic systems (pumps, turbines, valves, Venturi tubes, etc.) when the fluid pressure decreases below the saturated vapor pressure. The works carried out in this study aimed to get a better understanding of the cavitating flow phenomena. For this, we have numerically studied a cavitating bubbly flow through a Venturi nozzle. The cavitation model is selected and solved using a commercial computational fluid dynamics (CFD) code. The obtained results show the effect of the inlet pressure (10, 7, 5, and 2 bars) of the Venturi on pressure, the velocity of the fluid flow, and the vapor fraction. We found that the inlet pressure of the Venturi strongly affects the evolution of the pressure, velocity, and vapor fraction formation in the cavitating flow.

Keywords: cavitating flow, CFD, phase change, venturi

Procedia PDF Downloads 50
2735 Prescription of Maintenance Fluids in the Emergency Department

Authors: Adrian Craig, Jonathan Easaw, Rose Jordan, Ben Hall

Abstract:

The prescription of intravenous fluids is a fundamental component of inpatient management, but it is one which usually lacks thought. Fluids are a drug, which like any other can cause harm when prescribed inappropriately or wrongly. However, it is well recognised that it is poorly done, especially in the acute portals. The National Institute for Health and Care Excellence (NICE) recommends 1mmol/kg of potassium, sodium, and chloride per day. With various options of fluids, clinicians tend to face difficulty in choosing the most appropriate maintenance fluid, and there is a reluctance to prescribe potassium as part of an intravenous maintenance fluid regime. The aim was to prospectively audit the prescription of the first bag of intravenous maintenance fluids, the use of urea and electrolytes results to guide the choice of fluid and the use of fluid prescription charts, in a busy emergency department of a major trauma centre in Stoke-on-Trent, United Kingdom. This was undertaken over a week in early November 2016. Of those prescribed maintenance fluid only 8.9% were prescribed a fluid which was most appropriate for their daily electrolyte requirements. This audit has helped to highlight further the issues that are faced in busy Emergency Departments within hospitals that are stretched and lack capacity for prompt transfer to a ward. It has supported the findings of NICE, that emergency admission portals such as Emergency Departments poorly prescribed intravenous fluid therapy. The findings have enabled simple steps to be taken to educate clinicians about their fluid of choice. This has included: posters to remind clinicians to consider the urea and electrolyte values before prescription, suggesting the inclusion of a suggested intravenous fluid of choice in the prescription chart of the trust and the inclusion of a session within the introduction programme revising intravenous fluid therapy and daily electrolyte requirements. Moving forward, once the interventions have been implemented then, the data will be reaudited in six months to note any improvement in maintenance fluid choice. Alongside this, an audit of the rate of intravenous maintenance fluid therapy would be proposed to further increase patient safety by avoiding unintentional fluid overload which may cause unnecessary harm to patients within the hospital. In conclusion, prescription of maintenance fluid therapy was poor within the Emergency Department, and there is a great deal of opportunity for improvement. Therefore, the measures listed above will be implemented and the data reaudited.

Keywords: chloride, electrolyte, emergency department, emergency medicine, fluid, fluid therapy, intravenous, maintenance, major trauma, potassium, sodium, trauma

Procedia PDF Downloads 294
2734 Electrokinetic Transport of Power Law Fluid through Hydrophobic Micro-Slits

Authors: Ainul Haque, Ameeye Kumar Nayak

Abstract:

Flow enhancement and species transport in a slit hydrophobic microchannel is studied for non-Newtonian fluids with the externally imposed electric field and pressure gradient. The incompressible Poisson-Nernst-Plank equations and the Navier-Stokes equations are approximated by lubrication theory to quantify the flow structure due to hydrophobic and hydrophilic surfaces. The analytical quantification of velocity and pressure of electroosmotic flow (EOF) is made with the numerical results due to the staggered grid based finite volume method for flow governing equations. The resistance force due to fluid friction and shear force along the surface are decreased by the hydrophobicity, enables the faster movement of fluid particles. The resulting flow enhancement factor Ef is increased with the low viscous fluid and provides maximum species transport. Also, the analytical comparison of EOF with pressure driven EOF justifies the flow enhancement due to hydrophobicity and shear impact on flow variation.

Keywords: electroosmotic flow, hydrophobic surface, power-law fluid, shear effect

Procedia PDF Downloads 338
2733 Thermal Effects on Wellbore Stability and Fluid Loss in High-Temperature Geothermal Drilling

Authors: Mubarek Alpkiray, Tan Nguyen, Arild Saasen

Abstract:

Geothermal drilling operations contain numerous challenges that are encountered to increase the well cost and nonproductive time. Fluid loss is one of the most undesirable troublesome that can cause well abandonment in geothermal drilling. Lost circulation can be seen due to natural fractures, high mud weight, and extremely high formation temperatures. This challenge may cause wellbore stability problems and lead to expensive drilling operations. Wellbore stability is the main domain that should be considered to mitigate or prevent fluid loss into the formation. This paper describes the causes of fluid loss in the Pamukoren geothermal field in Turkey. A geomechanics approach integration and assessment is applied to help the understanding of fluid loss problems. In geothermal drillings, geomechanics is primarily based on rock properties, in-situ stress characterization, the temperature of the rock, determination of stresses around the wellbore, and rock failure criteria. Since a high-temperature difference between the wellbore wall and drilling fluid is presented, temperature distribution through the wellbore is estimated and implemented to the wellbore stability approach. This study reviewed geothermal drilling data to analyze temperature estimation along the wellbore, the cause of fluid loss and stored electric capacity of the reservoir. Our observation demonstrates the geomechanical approach's significant role in understanding safe drilling operations on high-temperature wells. Fluid loss is encountered due to thermal stress effects around the borehole. This paper provides a wellbore stability analysis for a geothermal drilling operation to discuss the causes of lost circulation resulting in nonproductive time and cost.

Keywords: geothermal wells, drilling, wellbore stresses, drilling fluid loss, thermal stress

Procedia PDF Downloads 157
2732 Effect of Slip Condition and Magnetic Field on Unsteady MHD Thin Film Flow of a Third Grade Fluid with Heat Transfer down an Inclined Plane

Authors: Y. M. Aiyesimi, G. T. Okedayo, O. W. Lawal

Abstract:

The analysis has been carried out to study unsteady MHD thin film flow of a third grade fluid down an inclined plane with heat transfer when the slippage between the surface of plane and the lower surface of the fluid is valid. The governing nonlinear partial differential equations involved are reduced to linear partial differential equations using regular perturbation method. The resulting equations were solved analytically using method of separation of variable and eigenfunctions expansion. The solutions obtained were examined and discussed graphically. It is interesting to find that the variation of the velocity and temperature profile with the slip and magnetic field parameter depends on time.

Keywords: non-Newtonian fluid, MHD flow, thin film flow, third grade fluid, slip boundary condition, heat transfer, separation of variable, eigenfunction expansion

Procedia PDF Downloads 353
2731 CO2 Methanation over Ru-Ni/CeO2 Catalysts

Authors: Nathalie Elia, Samer Aouad, Jane Estephane, Christophe Poupin, Bilal Nsouli, Edmond Abi Aad

Abstract:

Carbon dioxide is one of the main contributors to greenhouse effect and hence to climate change. As a result, the methanation reaction CO2(g) + 4H2(g) →CH4(g) + 2H2O (ΔH°298 = -165 kJ/mol), also known as Sabatier reaction, has received great interest as a process for the valorization of the greenhouse gas CO2 into methane which is a hydrogen-carrier gas. The methanation of CO2 is an exothermic reaction favored at low temperature and high pressure. However, this reaction requires a high energy input to activate the very stable CO2 molecule, and exhibits serious kinetic limitations. Consequently, the development of active and stable catalysts is essential to overcome these difficulties. Catalytic methanation of CO2 has been studied using catalysts containing Rh, Pd, Ru, Co and Ni on various supports. Among them, the Ni-based catalysts have been extensively investigated under various conditions for their comparable methanation activity with highly improved cost-efficiency. The addition of promoters are common strategies to increase the performance and stability of Ni catalysts. In this work, a small amount of Ru was used as a promoter for Ni catalysts supported on ceria and tested in the CO2 methanation reaction. The nickel loading was 5 wt. % and ruthenium loading is 0.5wt. %. The catalysts were prepared by successive impregnation method using Ni(NO3)2.6H2O and Ru(NO)(NO3)3 as precursors. The calcined support was impregnated with Ni(NO3)2.6H2O, dried, calcined at 600°C for 4h, and afterward, was impregnated with Ru(NO)(NO3)3. The resulting solid was dried and calcined at 600°C for 4 h. Supported monometallic catalysts were prepared likewise. The prepared solids Ru(0.5%)/CeO2, Ni(5%)/CeO2 and Ru(0.5%)-Ni(5%)/CeO2 were then reduced prior to the catalytic test under a flow of 50% H2/Ar (50 ml/min) for 4h at 500°C. Finally, their catalytic performances were evaluated in the CO2 methanation reaction, in the temperature range of 100–350°C by using a gaseous mixture of CO2 (10%) and H2 (40%) in Ar balanced at a total flow rate of 100 mL/min. The effect of pressure on the CO2 methanation was studied by varying the pressure between 1 and 10 bar. The various catalysts showed negligible CO2 conversion at temperatures lower than 250°C. The conversion of CO2 increases with increasing reaction temperature. The addition of Ru as promoter to Ni/CeO2 improved the CO2 methanation. It was shown that the CO2 conversion increases from 15 to 70% at 350°C and 1 bar. The effect of pressure on CO2 conversion was also studied. Increasing the pressure from 1 to 5 bar increases the CO2 conversion from 70% to 87%, while increasing the pressure from 5 to 10 bar increases the CO2 conversion from 87% to 91%. Ru–Ni catalysts showed excellent catalytic performance in the methanation of carbon dioxide with respect to Ni catalysts. Therefore the addition of Ru onto Ni catalysts improved remarkably the catalytic activity of Ni catalysts. It was also found that the pressure plays an important role in improving the CO2 methanation.

Keywords: CO2, methanation, nickel, ruthenium

Procedia PDF Downloads 171
2730 Acoustic Emission for Investigation of Processes Occurring at Hydrogenation of Metallic Titanium

Authors: Anatoly A. Kuznetsov, Pavel G. Berezhko, Sergey M. Kunavin, Eugeny V. Zhilkin, Maxim V. Tsarev, Vyacheslav V. Yaroshenko, Valery V. Mokrushin, Olga Y. Yunchina, Sergey A. Mityashin

Abstract:

The acoustic emission is caused by short-time propagation of elastic waves that are generated as a result of quick energy release from sources localized inside some material. In particular, the acoustic emission phenomenon lies in the generation of acoustic waves resulted from the reconstruction of material internal structures. This phenomenon is observed at various physicochemical transformations, in particular, at those accompanying hydrogenation processes of metals or intermetallic compounds that make it possible to study parameters of these transformations through recording and analyzing the acoustic signals. It has been known that at the interaction between metals or inter metallides with hydrogen the most intensive acoustic signals are generated as a result of cracking or crumbling of an initial compact powder sample as a result of the change of material crystal structure under hydrogenation. This work is dedicated to the study into changes occurring in metallic titanium samples at their interaction with hydrogen and followed by acoustic emission signals. In this work the subjects for investigation were specimens of metallic titanium in two various initial forms: titanium sponge and fine titanium powder made of this sponge. The kinetic of the interaction of these materials with hydrogen, the acoustic emission signals accompanying hydrogenation processes and the structure of the materials before and after hydrogenation were investigated. It was determined that in both cases interaction of metallic titanium and hydrogen is followed by acoustic emission signals of high amplitude generated on reaching some certain value of the atomic ratio [H]/[Ti] in a solid phase because of metal cracking at a macrolevel. The typical sizes of the cracks are comparable with particle sizes of hydrogenated specimens. The reasons for cracking are internal stresses initiated in a sample due to the increasing volume of a solid phase as a result of changes in a material crystal lattice under hydrogenation. When the titanium powder is used, the atomic ratio [H]/[Ti] in a solid phase corresponding to the maximum amplitude of an acoustic emission signal are, as a rule, higher than when titanium sponge is used.

Keywords: acoustic emission signal, cracking, hydrogenation, titanium specimen

Procedia PDF Downloads 351
2729 3D Non-Linear Analyses by Using Finite Element Method about the Prediction of the Cracking in Post-Tensioned Dapped-End Beams

Authors: Jatziri Y. Moreno-Martínez, Arturo Galván, Israel Enrique Herrera Díaz, José Ramón Gasca Tirado

Abstract:

In recent years, for the elevated viaducts in Mexico City, a construction system based on precast/pre-stressed concrete elements has been used, in which the bridge girders are divided in two parts by imposing a hinged support in sections where the bending moments that are originated by the gravity loads in a continuous beam are minimal. Precast concrete girders with dapped ends are a representative sample of a behavior that has complex configurations of stresses that make them more vulnerable to cracking due to flexure–shear interaction. The design procedures for ends of the dapped girders are well established and are based primarily on experimental tests performed for different configurations of reinforcement. The critical failure modes that can govern the design have been identified, and for each of them, the methods for computing the reinforcing steel that is needed to achieve adequate safety against failure have been proposed. Nevertheless, the design recommendations do not include procedures for controlling diagonal cracking at the entrant corner under service loading. These cracks could cause water penetration and degradation because of the corrosion of the steel reinforcement. The lack of visual access to the area makes it difficult to detect this damage and take timely corrective actions. Three-dimensional non-linear numerical models based on Finite Element Method to study the cracking at the entrant corner of dapped-end beams were performed using the software package ANSYS v. 11.0. The cracking was numerically simulated by using the smeared crack approach. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The longitudinal post-tension was modeled using LINK8 elements with multilinear isotropic hardening behavior using von Misses plasticity. The reinforcement was introduced with smeared approach. The numerical models were calibrated using experimental tests carried out in “Instituto de Ingeniería, Universidad Nacional Autónoma de México”. In these numerical models the characteristics of the specimens were considered: typical solution based on vertical stirrups (hangers) and on vertical and horizontal hoops with a post-tensioned steel which contributed to a 74% of the flexural resistance. The post-tension is given by four steel wires with a 5/8’’ (16 mm) diameter. Each wire was tensioned to 147 kN and induced an average compressive stress of 4.90 MPa on the concrete section of the dapped end. The loading protocol consisted on applying symmetrical loading to reach the service load (180 kN). Due to the good correlation between experimental and numerical models some additional numerical models were proposed by considering different percentages of post-tension in order to find out how much it influences in the appearance of the cracking in the reentrant corner of the dapped-end beams. It was concluded that the increasing of percentage of post-tension decreases the displacements and the cracking in the reentrant corner takes longer to appear. The authors acknowledge at “Universidad de Guanajuato, Campus Celaya-Salvatierra” and the financial support of PRODEP-SEP (UGTO-PTC-460) of the Mexican government. The first author acknowledges at “Instituto de Ingeniería, Universidad Nacional Autónoma de México”.

Keywords: concrete dapped-end beams, cracking control, finite element analysis, postension

Procedia PDF Downloads 194
2728 Towards the Modeling of Lost Core Viability in High-Pressure Die Casting: A Fluid-Structure Interaction Model with 2-Phase Flow Fluid Model

Authors: Sebastian Kohlstädt, Michael Vynnycky, Stephan Goeke, Jan Jäckel, Andreas Gebauer-Teichmann

Abstract:

This paper summarizes the progress in the latest computational fluid dynamics research towards the modeling in of lost core viability in high-pressure die casting. High-pressure die casting is a process that is widely employed in the automotive and neighboring industries due to its advantages in casting quality and cost efficiency. The degrees of freedom are however somewhat limited as it has been so far difficult to use lost cores in the process. This is right now changing and the deployment of lost cores is considered a future growth potential for high-pressure die casting companies. The use of this technology itself is difficult though. The strength of the core material, as chiefly salt is used, is limited and experiments have shown that the cores will not hold under all circumstances and process designs. For this purpose, the publicly available CFD library foam-extend (OpenFOAM) is used, and two additional fluid models for incompressible and compressible two-phase flow are implemented as fluid solver models into the FSI library. For this purpose, the volume-of-fluid (VOF) methodology is used. The necessity for the fluid-structure interaction (FSI) approach is shown by a simple CFD model geometry. The model is benchmarked against analytical models and experimental data. Sufficient agreement is found with the analytical models and good agreement with the experimental data. An outlook on future developments concludes the paper.

Keywords: CFD, fluid-structure interaction, high-pressure die casting, multiphase flow

Procedia PDF Downloads 304
2727 Fluid-Structure Interaction Study of Fluid Flow past Marine Turbine Blade Designed by Using Blade Element Theory and Momentum Theory

Authors: Abu Afree Andalib, M. Mezbah Uddin, M. Rafiur Rahman, M. Abir Hossain, Rajia Sultana Kamol

Abstract:

This paper deals with the analysis of flow past the marine turbine blade which is designed by using the blade element theory and momentum theory for the purpose of using in the field of renewable energy. The designed blade is analyzed for various parameters using FSI module of Ansys. Computational Fluid Dynamics is used for the study of fluid flow past the blade and other fluidic phenomena such as lift, drag, pressure differentials, energy dissipation in water. Finite Element Analysis (FEA) module of Ansys was used to analyze the structural parameter such as stress and stress density, localization point, deflection, force propagation. Fine mesh is considered in every case for more accuracy in the result according to computational machine power. The relevance of design, search and optimization with respect to complex fluid flow and structural modeling is considered and analyzed. The relevancy of design and optimization with respect to complex fluid for minimum drag force using Ansys Adjoint Solver module is analyzed as well. The graphical comparison of the above-mentioned parameter using CFD and FEA and subsequently FSI technique is illustrated and found the significant conformity between both the results.

Keywords: blade element theory, computational fluid dynamics, finite element analysis, fluid-structure interaction, momentum theory

Procedia PDF Downloads 268