Search results for: flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4631

Search results for: flow

431 Formulation and Evaluation of Glimepiride (GMP)-Solid Nanodispersion and Nanodispersed Tablets

Authors: Ahmed. Abdel Bary, Omneya. Khowessah, Mojahed. al-jamrah

Abstract:

Introduction: The major challenge with the design of oral dosage forms lies with their poor bioavailability. The most frequent causes of low oral bioavailability are attributed to poor solubility and low permeability. The aim of this study was to develop solid nanodispersed tablet formulation of Glimepiride for the enhancement of the solubility and bioavailability. Methodology: Solid nanodispersions of Glimepiride (GMP) were prepared using two different ratios of 2 different carriers, namely; PEG6000, pluronic F127, and by adopting two different techniques, namely; solvent evaporation technique and fusion technique. A full factorial design of 2 3 was adopted to investigate the influence of formulation variables on the prepared nanodispersion properties. The best chosen formula of nanodispersed powder was formulated into tablets by direct compression. The Differential Scanning Calorimetry (DSC) analysis and Fourier Transform Infra-Red (FTIR) analysis were conducted for the thermal behavior and surface structure characterization, respectively. The zeta potential and particle size analysis of the prepared glimepiride nanodispersions was determined. The prepared solid nanodispersions and solid nanodispersed tablets of GMP were evaluated in terms of pre-compression and post-compression parameters, respectively. Results: The DSC and FTIR studies revealed that there was no interaction between GMP and all the excipients used. Based on the resulted values of different pre-compression parameters, the prepared solid nanodispersions powder blends showed poor to excellent flow properties. The resulted values of the other evaluated pre-compression parameters of the prepared solid nanodispersion were within the limits of pharmacopoeia. The drug content of the prepared nanodispersions ranged from 89.6 ± 0.3 % to 99.9± 0.5% with particle size ranged from 111.5 nm to 492.3 nm and the resulted zeta potential (ζ ) values of the prepared GMP-solid nanodispersion formulae (F1-F8) ranged from -8.28±3.62 mV to -78±11.4 mV. The in-vitro dissolution studies of the prepared solid nanodispersed tablets of GMP concluded that GMP- pluronic F127 combinations (F8), exhibited the best extent of drug release, compared to other formulations, and to the marketed product. One way ANOVA for the percent of drug released from the prepared GMP-nanodispersion formulae (F1- F8) after 20 and 60 minutes showed significant differences between the percent of drug released from different GMP-nanodispersed tablet formulae (F1- F8), (P<0.05). Conclusion: Preparation of glimepiride as nanodispersed particles proven to be a promising tool for enhancing the poor solubility of glimepiride.

Keywords: glimepiride, solid Nanodispersion, nanodispersed tablets, poorly water soluble drugs

Procedia PDF Downloads 461
430 The Effect of Filter Design and Face Velocity on Air Filter Performance

Authors: Iyad Al-Attar

Abstract:

Air filters installed in HVAC equipment and gas turbine for power generation confront several atmospheric contaminants with various concentrations while operating in different environments (tropical, coastal, hot). This leads to engine performance degradation, as contaminants are capable of deteriorating components and fouling compressor assembly. Compressor fouling is responsible for 70 to 85% of gas turbine performance degradation leading to reduction in power output and availability and an increase in the heat rate and fuel consumption. Therefore, filter design must take into account face velocities, pleat count and its corresponding surface area; to verify filter performance characteristics (Efficiency and Pressure Drop). The experimental work undertaken in the current study examined two groups of four filters with different pleating densities were investigated for the initial pressure drop response and fractional efficiencies. The pleating densities used for this study is 28, 30, 32 and 34 pleats per 100mm for each pleated panel and measured for ten different flow rates ranging from 500 to 5000 m3/h with increment of 500m3/h. This experimental work of the current work has highlighted the underlying reasons behind the reduction in filter permeability due to the increase in face velocity and pleat density. The reasons that led to surface area losses of filtration media are due to one or combination of the following effects: pleat-crowding, deflection of the entire pleated panel, pleat distortion at the corner of the pleat and/or filtration medium compression. It is evident from entire array of experiments that as the particle size increases, the efficiency decreases until the MPPS is reached. Beyond the MPPS, the efficiency increases with increase in particle size. The MPPS shifts to a smaller particle size as the face velocity increases, while the pleating density and orientation did not have a pronounced effect on the MPPS. Throughout the study, an optimal pleat count which satisfies initial pressure drop and efficiency requirements may not have necessarily existed. The work has also suggested that a valid comparison of the pleat densities should be based on the effective surface area that participates in the filtration action and not the total surface area the pleat density provides.

Keywords: air filters, fractional efficiency, gas cleaning, glass fibre, HEPA filter, permeability, pressure drop

Procedia PDF Downloads 112
429 Investigation of the EEG Signal Parameters during Epileptic Seizure Phases in Consequence to the Application of External Healing Therapy on Subjects

Authors: Karan Sharma, Ajay Kumar

Abstract:

Epileptic seizure is a type of disease due to which electrical charge in the brain flows abruptly resulting in abnormal activity by the subject. One percent of total world population gets epileptic seizure attacks.Due to abrupt flow of charge, EEG (Electroencephalogram) waveforms change. On the display appear a lot of spikes and sharp waves in the EEG signals. Detection of epileptic seizure by using conventional methods is time-consuming. Many methods have been evolved that detect it automatically. The initial part of this paper provides the review of techniques used to detect epileptic seizure automatically. The automatic detection is based on the feature extraction and classification patterns. For better accuracy decomposition of the signal is required before feature extraction. A number of parameters are calculated by the researchers using different techniques e.g. approximate entropy, sample entropy, Fuzzy approximate entropy, intrinsic mode function, cross-correlation etc. to discriminate between a normal signal & an epileptic seizure signal.The main objective of this review paper is to present the variations in the EEG signals at both stages (i) Interictal (recording between the epileptic seizure attacks). (ii) Ictal (recording during the epileptic seizure), using most appropriate methods of analysis to provide better healthcare diagnosis. This research paper then investigates the effects of a noninvasive healing therapy on the subjects by studying the EEG signals using latest signal processing techniques. The study has been conducted with Reiki as a healing technique, beneficial for restoring balance in cases of body mind alterations associated with an epileptic seizure. Reiki is practiced around the world and is recommended for different health services as a treatment approach. Reiki is an energy medicine, specifically a biofield therapy developed in Japan in the early 20th century. It is a system involving the laying on of hands, to stimulate the body’s natural energetic system. Earlier studies have shown an apparent connection between Reiki and the autonomous nervous system. The Reiki sessions are applied by an experienced therapist. EEG signals are measured at baseline, during session and post intervention to bring about effective epileptic seizure control or its elimination altogether.

Keywords: EEG signal, Reiki, time consuming, epileptic seizure

Procedia PDF Downloads 376
428 Gilgel Gibe III: Dam-Induced Displacement in Ethiopia and Kenya

Authors: Jonny Beirne

Abstract:

Hydropower developments have come to assume an important role within the Ethiopian government's overall development strategy for the country during the last ten years. The Gilgel Gibe III on the Omo river, due to become operational in September 2014, represents the most ambitious, and controversial, of these projects to date. Further aspects of the government's national development strategy include leasing vast areas of designated 'unused' land for large-scale commercial agricultural projects and 'voluntarily' villagizing scattered, semi-nomadic agro-pastoralist groups to centralized settlements so as to use land and water more efficiently and to better provide essential social services such as education and healthcare. The Lower Omo valley, along the Omo River, is one of the sites of this villagization programme as well as of these large-scale commercial agricultural projects which are made possible owing to the regulation of the river's flow by Gibe III. Though the Ethiopian government cite many positive aspects of these agricultural and hydropower developments there are still expected to be serious regional and transnational effects, including on migration flows, in an area already characterized by increasing climatic vulnerability with attendant population movements and conflicts over scarce resources. The following paper is an attempt to track actual and anticipated migration flows resulting from the construction of Gibe III in the immediate vicinity of the dam, downstream in the Lower Omo Valley and across the border in Kenya around Lake Turkana. In the case of those displaced in the Lower Omo Valley, this will be considered in view of the distinction between voluntary villagization and forced resettlement. The research presented is not primary-source material. Instead, it is drawn from the reports and assessments of the Ethiopian government, rights-based groups, and academic researchers as well as media articles. It is hoped that this will serve to draw greater attention to the issue and encourage further methodological research on the dynamics of dam constructions (and associated large-scale irrigation schemes) on migration flows and on the ultimate experience of displacement and resettlement for environmental migrants in the region.

Keywords: forced displacement, voluntary resettlement, migration, human rights, human security, land grabs, dams, commercial agriculture, pastoralism, ecosystem modification, natural resource conflict, livelihoods, development

Procedia PDF Downloads 348
427 Overview of Environmental and Economic Theories of the Impact of Dams in Different Regions

Authors: Ariadne Katsouras, Andrea Chareunsy

Abstract:

The number of large hydroelectric dams in the world has increased from almost 6,000 in the 1950s to over 45,000 in 2000. Dams are often built to increase the economic development of a country. This can occur in several ways. Large dams take many years to build so the construction process employs many people for a long time and that increased production and income can flow on into other sectors of the economy. Additionally, the provision of electricity can help raise people’s living standards and if the electricity is sold to another country then the money can be used to provide other public goods for the residents of the country that own the dam. Dams are also built to control flooding and provide irrigation water. Most dams are of these types. This paper will give an overview of the environmental and economic theories of the impact of dams in different regions of the world. There is a difference in the degree of environmental and economic impacts due to the varying climates and varying social and political factors of the regions. Production of greenhouse gases from the dam’s reservoir, for instance, tends to be higher in tropical areas as opposed to Nordic environments. However, there are also common impacts due to construction of the dam itself, such as, flooding of land for the creation of the reservoir and displacement of local populations. Economically, the local population tends to benefit least from the construction of the dam. Additionally, if a foreign company owns the dam or the government subsidises the cost of electricity to businesses, then the funds from electricity production do not benefit the residents of the country the dam is built in. So, in the end, the dams can benefit a country economically, but the varying factors related to its construction and how these are dealt with, determine the level of benefit, if any, of the dam. Some of the theories or practices used to evaluate the potential value of a dam include cost-benefit analysis, environmental impacts assessments and regressions. Systems analysis is also a useful method. While these theories have value, there are also possible shortcomings. Cost-benefit analysis converts all the costs and benefits to dollar values, which can be problematic. Environmental impact assessments, likewise, can be incomplete, especially if the assessment does not include feedback effects, that is, they only consider the initial impact. Finally, regression analysis is dependent on the available data and again would not necessarily include feedbacks. Systems analysis is a method that can allow more complex modelling of the environment and the economic system. It would allow a clearer picture to emerge of the impacts and can include a long time frame.

Keywords: comparison, economics, environment, hydroelectric dams

Procedia PDF Downloads 166
426 Population Dynamics of Cyprinid Fish Species (Mahseer: Tor Species) and Its Conservation in Yamuna River of Garhwal Region, India

Authors: Davendra Singh Malik

Abstract:

India is one of the mega-biodiversity countries in the world and contributing about 11.72% of global fish diversity. The Yamuna river is the longest tributary of Ganga river ecosystem, providing a natural habitat for existing fish diversity of Himalayan region of Indian subcontinent. The several hydropower dams and barrages have been constructed on different locations of major rivers in Garhwal region. These dams have caused a major ecological threat to change existing fresh water ecosystems altering water flows, interrupting ecological connectivity, fragmenting habitats and native riverine fish species. Mahseer fishes (Indian carp) of the genus Tor, are large cyprinids endemic to continental Asia popularly known as ‘Game or sport fishes’ have continued to be decimated by fragmented natural habitats due to damming the water flow in riverine system and categorized as threatened fishes of India. The fresh water fish diversity as 24 fish species were recorded from Yamuna river. The present fish catch data has revealed that mahseer fishes (Tor tor and Tor putitora) were contributed about 32.5 %, 25.6 % and 18.2 % in upper, middle and lower riverine stretches of Yaumna river. The length range of mahseer (360-450mm) recorded as dominant size of catch composition. The CPUE (catch per unit effort) of mahseer fishes also indicated about a sharp decline of fish biomass, changing growth pattern, sex ratio and maturity stages of fishes. Only 12.5 – 14.8 % mahseer female brooders have showed only maturity phases in breeding months. The fecundity of mature mahseer female fish brooders ranged from 2500-4500 no. of ova during breeding months. The present status of mahseer fishery has attributed to the over exploitative nature in Yamuna river. The mahseer population is shrinking continuously in down streams of Yamuna river due to cumulative effects of various ecological stress. Mahseer conservation programme have implemented as 'in situ fish conservation' for enhancement of viable population size of mahseer species and restore the genetic loss of mahseer fish germplasm in Yamuna river of Garhwal Himalayan region.

Keywords: conservation practice, population dynamics, tor fish species, Yamuna River

Procedia PDF Downloads 232
425 Choice Analysis of Ground Access to São Paulo/Guarulhos International Airport Using Adaptive Choice-Based Conjoint Analysis (ACBC)

Authors: Carolina Silva Ansélmo

Abstract:

Airports are demand-generating poles that affect the flow of traffic around them. The airport access system must be fast, convenient, and adequately planned, considering its potential users. An airport with good ground access conditions can provide the user with a more satisfactory access experience. When several transport options are available, service providers must understand users' preferences and the expected quality of service. The present study focuses on airport access in a comparative scenario between bus, private vehicle, subway, taxi and urban mobility transport applications to São Paulo/Guarulhos International Airport. The objectives are (i) to identify the factors that influence the choice, (ii) to measure Willingness to Pay (WTP), and (iii) to estimate the market share for each modal. The applied method was Adaptive Choice-based Conjoint Analysis (ACBC) technique using Sawtooth Software. Conjoint analysis, rooted in Utility Theory, is a survey technique that quantifies the customer's perceived utility when choosing alternatives. Assessing user preferences provides insights into their priorities for product or service attributes. An additional advantage of conjoint analysis is its requirement for a smaller sample size compared to other methods. Furthermore, ACBC provides valuable insights into consumers' preferences, willingness to pay, and market dynamics, aiding strategic decision-making to provide a better customer experience, pricing, and market segmentation. In the present research, the ACBC questionnaire had the following variables: (i) access time to the boarding point, (ii) comfort in the vehicle, (iii) number of travelers together, (iv) price, (v) supply power, and (vi) type of vehicle. The case study questionnaire reached 213 valid responses considering the scenario of access from the São Paulo city center to São Paulo/Guarulhos International Airport. As a result, the price and the number of travelers are the most relevant attributes for the sample when choosing airport access. The market share of the selection is mainly urban mobility transport applications, followed by buses, private vehicles, taxis and subways.

Keywords: adaptive choice-based conjoint analysis, ground access to airport, market share, willingness to pay

Procedia PDF Downloads 41
424 Computational Simulations and Assessment of the Application of Non-Circular TAVI Devices

Authors: Jonathon Bailey, Neil Bressloff, Nick Curzen

Abstract:

Transcatheter Aortic Valve Implantation (TAVI) devices are stent-like frames with prosthetic leaflets on the inside, which are percutaneously implanted. The device in a crimped state is fed through the arteries to the aortic root, where the device frame is opened through either self-expansion or balloon expansion, which reveals the prosthetic valve within. The frequency at which TAVI is being used to treat aortic stenosis is rapidly increasing. In time, TAVI is likely to become the favoured treatment over Surgical Valve Replacement (SVR). Mortality after TAVI has been associated with severe Paravalvular Aortic Regurgitation (PAR). PAR occurs when the frame of the TAVI device does not make an effective seal against the internal surface of the aortic root, allowing blood to flow backwards about the valve. PAR is common in patients and has been reported to some degree in as much as 76% of cases. Severe PAR (grade 3 or 4) has been reported in approximately 17% of TAVI patients resulting in post-procedural mortality increases from 6.7% to 16.5%. TAVI devices, like SVR devices, are circular in cross-section as the aortic root is often considered to be approximately circular in shape. In reality, however, the aortic root is often non-circular. The ascending aorta, aortic sino tubular junction, aortic annulus and left ventricular outflow tract have an average ellipticity ratio of 1.07, 1.09, 1.29, and 1.49 respectively. An elliptical aortic root does not severely affect SVR, as the leaflets are completely removed during the surgical procedure. However, an elliptical aortic root can inhibit the ability of the circular Balloon-Expandable (BE) TAVI devices to conform to the interior of the aortic root wall, which increases the risk of PAR. Self-Expanding (SE) TAVI devices are considered better at conforming to elliptical aortic roots, however the valve leaflets were not designed for elliptical function, furthermore the incidence of PAR is greater in SE devices than BE devices (19.8% vs. 12.2% respectively). If a patient’s aortic root is too severely elliptical, they will not be suitable for TAVI, narrowing the treatment options to SVR. It therefore follows that in order to increase the population who can undergo TAVI, and reduce the risk associated with TAVI, non-circular devices should be developed. Computational simulations were employed to further advance our understanding of non-circular TAVI devices. Radial stiffness of the TAVI devices in multiple directions, frame bending stiffness and resistance to balloon induced expansion are all computationally simulated. Finally, a simulation has been developed that demonstrates the expansion of TAVI devices into a non-circular patient specific aortic root model in order to assess the alterations in deployment dynamics, PAR and the stresses induced in the aortic root.

Keywords: tavi, tavr, fea, par, fem

Procedia PDF Downloads 416
423 Reasons and Complexities around Using Alcohol and Other Drugs among Aboriginal People Experiencing Homelessness

Authors: Mandy Wilson, Emma Vieira, Jocelyn Jones, Alice V. Brown, Lindey Andrews, Louise Southalan, Jackie Oakley, Dorothy Bagshaw, Patrick Egan, Laura Dent, Duc Dau, Lucy Spanswick

Abstract:

Alcohol and drug dependency are pertinent issues for those experiencing homelessness. This includes Aboriginal and Torres Strait Islander people, Australia’s traditional owners, living in Perth, Western Australia (WA). Societal narratives around the drivers behind drug and alcohol dependency in Aboriginal communities, particularly those experiencing homelessness, have been biased and unchanging, with little regard for complexity. This can include the idea that Aboriginal people have ‘chosen’ to use alcohol or other drugs without consideration for intergenerational trauma and the trauma of homelessness that may influence their choices. These narratives have flow-on impacts on policies and services that directly impact Aboriginal people experiencing homelessness. In 2021, we commenced a project which aimed to listen to and elevate the voices of 70-90 Aboriginal people experiencing homelessness in Perth. The project is community-driven, led by an Aboriginal Community Controlled Organisation in partnership with a university research institute. A community-ownership group of Aboriginal Elders endorsed the project’s methods, chosen to ensure their suitability for the Aboriginal community. In this paper, we detail these methods, including semi-structured interviews influenced by an Aboriginal yarning approach – an important style of conversation for Aboriginal people which follows cultural protocols; and photovoice – supporting people to share their stories through photography. Through these engagements, we detail the reasons Aboriginal people in Perth shared for using alcohol or other drugs while experiencing homelessness. These included supporting their survival on the streets, managing their mental health, and coping while on the journey to finding support. We also detail why they sought to discontinue alcohol and other drug use, including wanting to reconnect with family and changing priorities. Finally, we share how Aboriginal people experiencing homelessness have said they are impacted by their family’s alcohol and other drug use, including feeling uncomfortable living with a family who is drug and alcohol-dependent and having to care for grandchildren despite their own homelessness. These findings provide a richer understanding of alcohol and drug use for Aboriginal people experiencing homelessness in Perth, shedding light on potential changes to targeted policy and service approaches.

Keywords: Aboriginal and Torres Strait Islander peoples, alcohol and other drugs, homelessness, community-led research

Procedia PDF Downloads 87
422 Engineering Topology of Construction Ecology in Urban Environments: Suez Canal Economic Zone

Authors: Moustafa Osman Mohammed

Abstract:

Integration sustainability outcomes give attention to construction ecology in the design review of urban environments to comply with Earth’s System that is composed of integral parts of the (i.e., physical, chemical and biological components). Naturally, exchange patterns of industrial ecology have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. When engineering topology is affecting internal and external processes in system networks, it postulated the valence of the first-level spatial outcome (i.e., project compatibility success). These instrumentalities are dependent on relating the second-level outcome (i.e., participant security satisfaction). Construction ecology approach feedback energy from resources flows between biotic and abiotic in the entire Earth’s ecosystems. These spatial outcomes are providing an innovation, as entails a wide range of interactions to state, regulate and feedback “topology” to flow as “interdisciplinary equilibrium” of ecosystems. The interrelation dynamics of ecosystems are performing a process in a certain location within an appropriate time for characterizing their unique structure in “equilibrium patterns”, such as biosphere and collecting a composite structure of many distributed feedback flows. These interdisciplinary systems regulate their dynamics within complex structures. These dynamic mechanisms of the ecosystem regulate physical and chemical properties to enable a gradual and prolonged incremental pattern to develop a stable structure. The engineering topology of construction ecology for integration sustainability outcomes offers an interesting tool for ecologists and engineers in the simulation paradigm as an initial form of development structure within compatible computer software. This approach argues from ecology, resource savings, static load design, financial other pragmatic reasons, while an artistic/architectural perspective, these are not decisive. The paper described an attempt to unify analytic and analogical spatial modeling in developing urban environments as a relational setting, using optimization software and applied as an example of integrated industrial ecology where the construction process is based on a topology optimization approach.

Keywords: construction ecology, industrial ecology, urban topology, environmental planning

Procedia PDF Downloads 81
421 The Effect of Combined Fluid Shear Stress and Cyclic Stretch on Endothelial Cells

Authors: Daphne Meza, Louie Abejar, David A. Rubenstein, Wei Yin

Abstract:

Endothelial cell (ECs) morphology and function is highly impacted by the mechanical stresses these cells experience in vivo. Any change in the mechanical environment can trigger pathological EC responses. A detailed understanding of EC morphological response and function upon subjection to individual and simultaneous mechanical stimuli is needed for advancement in mechanobiology and preventive medicine. To investigate this, a programmable device capable of simultaneously applying physiological fluid shear stress (FSS) and cyclic strain (CS) has been developed, characterized and validated. Its validation was performed both experimentally, through tracer tracking, and theoretically, through the use of a computational fluid dynamics model. The effectiveness of the device was evaluated through EC morphology changes under mechanical loading conditions. Changes in cell morphology were evaluated through: cell and nucleus elongation, cell alignment and junctional actin production. The results demonstrated that the combined FSS-CS stimulation induced visible changes in EC morphology. Upon simultaneous fluid shear stress and biaxial tensile strain stimulation, cells were elongated and generally aligned with the flow direction, with stress fibers highlighted along the cell junctions. The concurrent stimulation from shear stress and biaxial cyclic stretch led to a significant increase in cell elongation compared to untreated cells. This, however, was significantly lower than that induced by shear stress alone, indicating that the biaxial tensile strain may counteract the elongating effect of shear stress to maintain the shape of ECs. A similar trend was seen in alignment, where the alignment induced by the concurrent application of shear stress and cyclic stretch fell in between that induced by shear stress and tensile stretch alone, indicating the opposite role shear stress and tensile strain may play in cell alignment. Junctional actin accumulation was increased upon shear stress alone or simultaneously with tensile stretch. Tensile stretch alone did not change junctional actin accumulation, indicating the dominant role of shear stress in damaging EC junctions. These results demonstrate that the shearing-stretching device is capable of applying well characterized dynamic shear stress and tensile strain to cultured ECs. Using this device, EC response to altered mechanical environment in vivo can be characterized in vitro.

Keywords: cyclic stretch, endothelial cells, fluid shear stress, vascular biology

Procedia PDF Downloads 341
420 Preparation and CO2 Permeation Properties of Carbonate-Ceramic Dual-Phase Membranes

Authors: H. Ishii, S. Araki, H. Yamamoto

Abstract:

In recent years, the carbon dioxide (CO2) separation technology is required in terms of the reduction of emission of global warming gases and the efficient use of fossil fuels. Since the emission amount of CO2 gas occupies the large part of greenhouse effect gases, it is considered that CO2 have the most influence on global warming. Therefore, we need to establish the CO2 separation technologies with high efficiency at low cost. In this study, we focused on the membrane separation compared with conventional separation technique such as distillation or cryogenic separation. In this study, we prepared carbonate-ceramic dual-phase membranes to separate CO2 at high temperature. As porous ceramic substrate, the (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+σ, La0.6Sr0.4Ti0.3 Fe0.7O3 and Ca0.8Sr0.2Ti0.7Fe0.3O3-α (PLNCG, LSTF and CSTF) were examined. PLNCG, LSTF and CSTF have the perovskite structure. The perovskite structure has high stability and shows ion-conducting doped by another metal ion. PLNCG, LSTF and CSTF have perovskite structure and has high stability and high oxygen ion diffusivity. PLNCG, LSTF and CSTF powders were prepared by a solid-phase process using the appropriate carbonates or oxides. To prepare porous substrates, these powders mixed with carbon black (20 wt%) and a few drops of polyvinyl alcohol (5 wt%) aqueous solution. The powder mixture were packed into stainless steel mold (13 mm) and uniaxially pressed into disk shape under a pressure of 20 MPa for 1 minute. PLNCG, LSTF and CSTF disks were calcined in air for 6 h at 1473, 1573 and 1473 K, respectively. The carbonate mixture (Li2CO3/Na2CO3/K2CO3: 42.5/32.5/25 in mole percent ratio) was placed inside a crucible and heated to 793 K. Porous substrates were infiltrated with the molten carbonate mixture at 793 K. Crystalline structures of the fresh membranes and after the infiltration with the molten carbonate mixtures were determined by X-ray diffraction (XRD) measurement. We confirmed the crystal structure of PLNCG and CSTF slightly changed after infiltration with the molten carbonate mixture. CO2 permeation experiments with PLNCG-carbonate, LSTF-carbonate and CSTF-carbonate membranes were carried out at 773-1173 K. The gas mixture of CO2 (20 mol%) and He was introduced at the flow rate of 50 ml/min to one side of membrane. The permeated CO2 was swept by N2 (50 ml/min). We confirmed the effect of ceramic materials and temperature on the CO2 permeation at high temperature.

Keywords: membrane, perovskite structure, dual-phase, carbonate

Procedia PDF Downloads 342
419 Delimitation of the Perimeters of PR Otection of the Wellfield in the City of Adrar, Sahara of Algeria through the Used Wyssling’s Method

Authors: Ferhati Ahmed, Fillali Ahmed, Oulhadj Younsi

Abstract:

delimitation of the perimeters of protection in the catchment area of the city of Adrar, which are established around the sites for the collection of water intended for human consumption of drinking water, with the objective of ensuring the preservation and reducing the risks of point and accidental pollution of the resource (Continental Intercalar groundwater of the Northern Sahara of Algeria). This wellfield is located in the northeast of the city of Adrar, it covers an area of 132.56 km2 with 21 Drinking Water Supply wells (DWS), pumping a total flow of approximately 13 Hm3/year. The choice of this wellfield is based on the favorable hydrodynamic characteristics and their location in relation to the agglomeration. The vulnerability to pollution of this slick is very high because the slick is free and suffers from the absence of a protective layer. In recent years, several factors have been introduced around the field that can affect the quality of this precious resource, including the presence of a strong centre for domestic waste and agricultural and industrial activities. Thus, its sustainability requires the implementation of protection perimeters. The objective of this study is to set up three protection perimeters: immediate, close and remote. The application of the Wyssling method makes it possible to calculate the transfer time (t) of a drop of groundwater located at any point in the aquifer up to the abstraction and thus to define isochrones which in turn delimit each type of perimeter, 40 days for the nearer and 100 days for the farther away. Special restrictions are imposed for all activities depending on the distance of the catchment. The application of this method to the Adrar city catchment field showed that the close and remote protection perimeters successively occupy areas of 51.14 km2 and 92.9 km2. Perimeters are delimited by geolocated markers, 40 and 46 markers successively. These results show that the areas defined as "near protection perimeter" are free from activities likely to present a risk to the quality of the water used. On the other hand, on the areas defined as "remote protection perimeter," there is some agricultural and industrial activities that may present an imminent risk. A rigorous control of these activities and the restriction of the type of products applied in industrial and agricultural is imperative.

Keywords: continental intercalaire, drinking water supply, groundwater, perimeter of protection, wyssling method

Procedia PDF Downloads 68
418 Co-Gasification of Petroleum Waste and Waste Tires: A Numerical and CFD Study

Authors: Thomas Arink, Isam Janajreh

Abstract:

The petroleum industry generates significant amounts of waste in the form of drill cuttings, contaminated soil and oily sludge. Drill cuttings are a product of the off-shore drilling rigs, containing wet soil and total petroleum hydrocarbons (TPH). Contaminated soil comes from different on-shore sites and also contains TPH. The oily sludge is mainly residue or tank bottom sludge from storage tanks. The two main treatment methods currently used are incineration and thermal desorption (TD). Thermal desorption is a method where the waste material is heated to 450ºC in an anaerobic environment to release volatiles, the condensed volatiles can be used as a liquid fuel. For the thermal desorption unit dry contaminated soil is mixed with moist drill cuttings to generate a suitable mixture. By thermo gravimetric analysis (TGA) of the TD feedstock it was found that less than 50% of the TPH are released, the discharged material is stored in landfill. This study proposes co-gasification of petroleum waste with waste tires as an alternative to thermal desorption. Co-gasification with a high-calorific material is necessary since the petroleum waste consists of more than 60 wt% ash (soil/sand), causing its calorific value to be too low for gasification. Since the gasification process occurs at 900ºC and higher, close to 100% of the TPH can be released, according to the TGA. This work consists of three parts: 1. a mathematical gasification model, 2. a reactive flow CFD model and 3. experimental work on a drop tube reactor. Extensive material characterization was done by means of proximate analysis (TGA), ultimate analysis (CHNOS flash analysis) and calorific value measurements (Bomb calorimeter) for the input parameters of the mathematical and CFD model. The mathematical model is a zero dimensional model based on Gibbs energy minimization together with Lagrange multiplier; it is used to find the product species composition (molar fractions of CO, H2, CH4 etc.) for different tire/petroleum feedstock mixtures and equivalence ratios. The results of the mathematical model act as a reference for the CFD model of the drop-tube reactor. With the CFD model the efficiency and product species composition can be predicted for different mixtures and particle sizes. Finally both models are verified by experiments on a drop tube reactor (1540 mm long, 66 mm inner diameter, 1400 K maximum temperature).

Keywords: computational fluid dynamics (CFD), drop tube reactor, gasification, Gibbs energy minimization, petroleum waste, waste tires

Procedia PDF Downloads 491
417 Ecophysiological Features of Acanthosicyos horridus (!Nara) to Survive the Namib Desert

Authors: Jacques M. Berner, Monja Gerber, Gillian L. Maggs-Kolling, Stuart J. Piketh

Abstract:

The enigmatic melon species, Acanthosicyos horridus Welw. ex Hook. f., locally known as !nara, is endemic to the hyper-arid Namib Desert, where it thrives in sandy dune areas and dry river banks. The Namib Desert is characterized by extreme weather conditions which include high temperatures, very low rainfall, and extremely dry air. Plant and animals that have made the Namib Dessert their home are dependent on non-rainfall water inputs, like fog, dew and water vapor, for survival. Fog is believed to be the most important non-rainfall water input for most of the coastal Namib Desert and is a life line to many Namib plants and animals. It is commonly assumed that the !nara plant is adapted and dependent upon coastal fog events. The !nara plant shares many comparable adaptive features with other organisms that are known to exploit fog as a source of moisture. These include groove-like structures on the stems and the cone-like structures of thorns. These structures are believed to be the driving forces behind directional water flow that allow plants to take advantage of fog events. The !nara-fog interaction was investigated in this study to determine the dependence of !nara on these fog events, as it would illustrate strategies to benefit from non-rainfall water inputs. The direct water uptake capacity of !nara shoots was investigated through absorption tests. Furthermore, the movement and behavior of fluorescent water droplets on a !nara stem were investigated through time-lapse macrophotography. The shoot water potential was measured to investigate the effect of fog on the water status of !nara stems. These tests were used to determine whether the morphology of !nara has evolved to exploit fog as a non-rainfall water input and whether the !nara plant has adapted physiologically in response to fog. Chlorophyll a fluorescence was used to compare the photochemical efficiency of !nara plants on days with fog events to that on non-foggy days. The results indicate that !nara plants do have the ability to take advantage of fog events as commonly believed. However, the !nara plant did not exhibit visible signs of drought stress and this, together with the strong shoot water potential, indicates that these plants are reliant on permanent underground water sources. Chlorophyll a fluorescence data indicated that temperature stress and wind were some of the main abiotic factors influencing the plants’ overall vitality.

Keywords: Acanthosicyos horridus, chlorophyll a fluorescence, fog, foliar absorption, !nara

Procedia PDF Downloads 122
416 Design of Agricultural Machinery Factory Facility Layout

Authors: Nilda Tri Putri, Muhammad Taufik

Abstract:

Tools and agricultural machinery (Alsintan) is a tool used in agribusiness activities. Alsintan used to change the traditional farming systems generally use manual equipment into modern agriculture with mechanization. CV Nugraha Chakti Consultant make an action plan for industrial development Alsintan West Sumatra in 2012 to develop medium industries of Alsintan become a major industry of Alsintan, one of efforts made is increase the production capacity of the industry Alsintan. Production capacity for superior products as hydrotiller and threshers set each for 2.000 units per year. CV Citra Dragon as one of the medium industry alsintan in West Sumatra has a plan to relocate the existing plant to meet growing consumer demand each year. Increased production capacity and plant relocation plan has led to a change in the layout; therefore need to design the layout of the plant facility CV Citra Dragon. First step the to design of plant layout is design the layout of the production floor. The design of the production floor layout is done by applying group technology layout. The initial step is to do a machine grouping and part family using the Average Linkage Clustering (ALC) and Rank Order Clustering (ROC). Furthermore done independent work station design and layout design using the Modified Spanning Tree (MST). Alternative selection layout is done to select the best production floor layout between ALC and ROC cell grouping. Furthermore, to design the layout of warehouses, offices and other production support facilities. Activity Relationship Chart methods used to organize the placement of factory facilities has been designed. After structuring plan facilities, calculated cost manufacturing facility plant establishment. Type of layout is used on the production floor layout technology group. The production floor is composed of four cell machinery, assembly area and painting area. The total distance of the displacement of material in a single production amounted to 1120.16 m which means need 18,7minutes of transportation time for one time production. Alsintan Factory has designed a circular flow pattern with 11 facilities. The facilities were designed consisting of 10 rooms and 1 parking space. The measure of factory building is 84 m x 52 m.

Keywords: Average Linkage Clustering (ALC), Rank Order Clustering (ROC), Modified Spanning Tree (MST), Activity Relationship Chart (ARC)

Procedia PDF Downloads 463
415 An Advanced Numerical Tool for the Design of Through-Thickness Reinforced Composites for Electrical Applications

Authors: Bing Zhang, Jingyi Zhang, Mudan Chen

Abstract:

Fibre-reinforced polymer (FRP) composites have been extensively utilised in various industries due to their high specific strength, e.g., aerospace, renewable energy, automotive, and marine. However, they have relatively low electrical conductivity than metals, especially in the out-of-plane direction. Conductive metal strips or meshes are typically employed to protect composites when designing lightweight structures that may be subjected to lightning strikes, such as composite wings. Unfortunately, this approach downplays the lightweight advantages of FRP composites, thereby limiting their potential applications. Extensive studies have been undertaken to improve the electrical conductivity of FRP composites. The authors are amongst the pioneers who use through-thickness reinforcement (TTR) to tailor the electrical conductivity of composites. Compared to the conventional approaches using conductive fillers, the through-thickness reinforcement approach has been proven to be able to offer a much larger improvement to the through-thickness conductivity of composites. In this study, an advanced high-fidelity numerical modelling strategy is presented to investigate the effects of through-thickness reinforcement on both the in-plane and out-of-plane electrical conductivities of FRP composites. The critical micro-structural features of through-thickness reinforced composites incorporated in the modelling framework are 1) the fibre waviness formed due to TTR insertion; 2) the resin-rich pockets formed due to resin flow in the curing process following TTR insertion; 3) the fibre crimp, i.e., fibre distortion in the thickness direction of composites caused by TTR insertion forces. In addition, each interlaminar interface is described separately. An IMA/M21 composite laminate with a quasi-isotropic stacking sequence is employed to calibrate and verify the modelling framework. The modelling results agree well with experimental measurements for bothering in-plane and out-plane conductivities. It has been found that the presence of conductive TTR can increase the out-of-plane conductivity by around one order, but there is less improvement in the in-plane conductivity, even at the TTR areal density of 0.1%. This numerical tool provides valuable references as a design tool for through-thickness reinforced composites when exploring their electrical applications. Parametric studies are undertaken using the numerical tool to investigate critical parameters that affect the electrical conductivities of composites, including TTR material, TTR areal density, stacking sequence, and interlaminar conductivity. Suggestions regarding the design of electrical through-thickness reinforced composites are derived from the numerical modelling campaign.

Keywords: composite structures, design, electrical conductivity, numerical modelling, through-thickness reinforcement

Procedia PDF Downloads 42
414 Fast Track to the Physical Internet: A Cross-Industry Project from Upper Austria

Authors: Laura Simmer, Maria Kalt, Oliver Schauer

Abstract:

Freight transport is growing fast, but many vehicles are empty or just partially loaded. The vision and concepts of the Physical Internet (PI) proposes to eliminate these inefficiencies. Aiming for a radical sustainability improvement, the PI – inspired by the Digital Internet – is a hyperconnected global logistic system, enabling seamless asset sharing and flow consolidation. The implementation of a PI in its full expression will be a huge challenge: the industry needs innovation and implementation support including change management approaches, awareness creation and good practices diffusion, legislative actions to remove antitrust and international commerce barriers, standardization and public incentives policies. In order to take a step closer to this future the project ‘Atropine - Fast Track to the Physical Internet’ funded under the Strategic Economic and Research Program ‘Innovative Upper Austria 2020’ was set up. The two-year research project unites several research partners in this field, but also industrial partners and logistics service providers. With Atropine, the consortium wants to actively shape the mobility landscape in Upper Austria and make an innovative contribution to an energy-efficient, environmentally sound and sustainable development in the transport area. This paper should, on the one hand, clarify the questions what the project Atropine is about and, on the other hand, how a proof of concept will be reached. Awareness building plays an important role in the project as the PI requires a reorganization of the supply chain and the design of completely new forms of inter-company co-operation. New business models have to be developed and should be verified by simulation. After the simulation process one of these business models will be chosen and tested in real life with the partner companies. The developed results - simulation model and demonstrator - are used to determine how the concept of the PI can be applied in Upper Austria. Atropine shall pave the way for a full-scale development of the PI vision in the next few decades and provide the basis for pushing the industry toward a new level of co-operation with more shared resources and increased standardization.

Keywords: Atropine, inter-company co-operation, Physical Internet, shared resources, sustainable logistics

Procedia PDF Downloads 185
413 The Effect of Nanotechnology Structured Water on Lower Urinary Tract Symptoms in Men with Benign Prostatic Hyperplasia: A Double-Blinded Randomized Study

Authors: Ali Kamal M. Sami, Safa Almukhtar, Alaa Al-Krush, Ismael Hama-Amin Akha Weas, Ruqaya Ahmed Alqais

Abstract:

Introduction and Objectives Lower urinary tract symptoms (LUTS) are common among men with benign prostatic hyperplasia (BPH). The combination of 5 alpha-reductase inhibitors and alpha-blockers has been used as a conservative treatment of male LUTS secondary to BPH. Nanotechnology structured water magnalife is a type of water that is produced by modulators and specific frequency and energy fields that transform ordinary water into this Nanowater. In this study, we evaluated the use of Nano-water with the conservative treatment and to see if it improves the outcome and gives better results in those patients with LUTS/BPH. Material and methods For a period of 3 months, 200 men with International Prostate Symptom Score (IPSS)≥13, maximum flow rate (Qmax)≤ 15ml/s, and prostate volume > 30 and <80 ccs were randomly divided into two groups. Group A 100 men were given Nano-water with the (tamsulosindutasteride) and group B 100 men were given ordinary bottled water with the (tamsulosindutasteride). The water bottles were unlabeled and were given in a daily dose of 20ml/kg body weight. Dutasteride 0.5mg and tamsulosin 0.4 mg daily doses. Both groups were evaluated for the IPSS, Qmax, Residual Urine (RU), International Index of Erectile Function–Erectile Function (IIEF-EF) domain at the beginning (baseline data), and at the end of the 3 months. Results Of the 200 men with LUTS who were included in this study, 193 men were followed, and 7 men dropped out of the study for different reasons. In group A which included 97 men with LUTS, IPSS decreased by 16.82 (from 20.47 to 6.65) (P<0.00001) and Qmax increased by 5.73 ml/s (from 11.71 to 17.44) (P<0.00001) and RU <50 ml in 88% of patients (P<0.00001) and IIEF-EF increased to 26.65 (from 16.85) (P<0.00001). While in group B, 96 men with LUTS, IPSS decreased by 8.74(from 19.59 to 10.85)(P<0.00001) and Qmax increased by 4.67 ml/s(from 10.74 to 15.41)(P<0.00001), RU<50 ml in 75% of patients (P<0.00001), and IIEF-EF increased to 21(from 15.87)(P<0.00001). Group A had better results than group B. IPSS in group A decreased to 6.65 vs 10.85 in group B(P<0.00001), also Qmax increased to 17.44 in group A vs 15.41 in group B(P<0.00001), group A had RU <50 ml in 88% of patients vs 75% of patients in group B(P<0.00001).Group A had better IIEF-EF which increased to 26.65 vs 21 in group B(P<0.00001). While the differences between the baseline data of both groups were statistically not significant. Conclusion The use of nanotechnology structured water magnalife gives a better result in terms of LUTS and scores in patients with BPH. This combination is showing improvements in IPSS and even in erectile function in those men after 3 months.

Keywords: nano water, lower urinary tract symptoms, benign prostatic hypertrophy, erectile dysfunction

Procedia PDF Downloads 42
412 Production Optimization under Geological Uncertainty Using Distance-Based Clustering

Authors: Byeongcheol Kang, Junyi Kim, Hyungsik Jung, Hyungjun Yang, Jaewoo An, Jonggeun Choe

Abstract:

It is important to figure out reservoir properties for better production management. Due to the limited information, there are geological uncertainties on very heterogeneous or channel reservoir. One of the solutions is to generate multiple equi-probable realizations using geostatistical methods. However, some models have wrong properties, which need to be excluded for simulation efficiency and reliability. We propose a novel method of model selection scheme, based on distance-based clustering for reliable application of production optimization algorithm. Distance is defined as a degree of dissimilarity between the data. We calculate Hausdorff distance to classify the models based on their similarity. Hausdorff distance is useful for shape matching of the reservoir models. We use multi-dimensional scaling (MDS) to describe the models on two dimensional space and group them by K-means clustering. Rather than simulating all models, we choose one representative model from each cluster and find out the best model, which has the similar production rates with the true values. From the process, we can select good reservoir models near the best model with high confidence. We make 100 channel reservoir models using single normal equation simulation (SNESIM). Since oil and gas prefer to flow through the sand facies, it is critical to characterize pattern and connectivity of the channels in the reservoir. After calculating Hausdorff distances and projecting the models by MDS, we can see that the models assemble depending on their channel patterns. These channel distributions affect operation controls of each production well so that the model selection scheme improves management optimization process. We use one of useful global search algorithms, particle swarm optimization (PSO), for our production optimization. PSO is good to find global optimum of objective function, but it takes too much time due to its usage of many particles and iterations. In addition, if we use multiple reservoir models, the simulation time for PSO will be soared. By using the proposed method, we can select good and reliable models that already matches production data. Considering geological uncertainty of the reservoir, we can get well-optimized production controls for maximum net present value. The proposed method shows one of novel solutions to select good cases among the various probabilities. The model selection schemes can be applied to not only production optimization but also history matching or other ensemble-based methods for efficient simulations.

Keywords: distance-based clustering, geological uncertainty, particle swarm optimization (PSO), production optimization

Procedia PDF Downloads 110
411 Biochemical and Cellular Correlates of Essential Oil of Pistacia Integerrima against in vitro and Murine Models of Bronchial Asthma

Authors: R. L. Shirole, N. L. Shirole, R. B. Patil, M. N. Saraf

Abstract:

The present investigation aimed to elucidate the probable mechanism of antiasthmatic action of essential oil of Pistacia integerrima J.L. Stewart ex Brandis galls (EOPI). EOPI was investigated for its potential antiasthmatic action using in vitro antiallergic assays mast cell degranulation and soyabean lipoxidase enzyme activit, and spasmolytic action using isolated guinea pig ileum preparation. In vivo studies included lipopolysaccharide-induced bronchial inflammation in rats and airway hyperresponsiveness in ovalbumin in sensitized guinea pigs using spirometry. Data was analysed by GraphPad Prism 5.01 and results were expressed as means ± SEM. P < 0.05 was considered to be significant. EOPI inhibits 5-lipoxidase enzyme activity, DPPH scavenging activity and erythropoietin- induced angiogenesis. It showed dose dependent anti-allergic activity by inhibiting compound 48/80 induced mast cell degranulation. The finding that essential oil induced inhibition of transient contraction of acetylcholine in calcium free medium, and relaxation of S-(-)-Bay 8644-precontracted isolated guinea pig ileum jointly suggest that suggesting that the L-subtype Cav channel is involved in spasmolytic action of EOPI. Treatment with EOPI dose dependently (7.5, 15 and 30 mg/kg i.p.) inhibited lipopolysaccharide- induced increased in total cell count, neutrophil count, nitrate-nitrite, total protein, albumin levels in bronchoalveolar fluid and myeloperoxidase levels in lung homogenates. Mild diffused lesions involving focal interalveolar septal, intraluminal infiltration of neutrophils were observed in EOPI (7.5 &15 mg/kg) pretreated while no abnormality was detected in EOPI (30 mg/kg) and roflumilast (1mg/kg) pretreated rats. Roflumilast was used as standard. EOPI reduced the respiratory flow due to gasping in ovalbumin sensitized guinea pigs. The study demonstrates the effectiveness of EOPI in bronchial asthma possibly related to its ability to inhibit L-subtype Cav channel, mast cell stabilization, antioxidant, angiostatic and through inhibition of 5-lipoxygenase enzyme.

Keywords: asthma, lipopolysaccharide, spirometry, Pistacia integerrima J.L. Stewart ex Brandis, essential oil

Procedia PDF Downloads 259
410 Monitoring Memories by Using Brain Imaging

Authors: Deniz Erçelen, Özlem Selcuk Bozkurt

Abstract:

The course of daily human life calls for the need for memories and remembering the time and place for certain events. Recalling memories takes up a substantial amount of time for an individual. Unfortunately, scientists lack the proper technology to fully understand and observe different brain regions that interact to form or retrieve memories. The hippocampus, a complex brain structure located in the temporal lobe, plays a crucial role in memory. The hippocampus forms memories as well as allows the brain to retrieve them by ensuring that neurons fire together. This process is called “neural synchronization.” Sadly, the hippocampus is known to deteriorate often with age. Proteins and hormones, which repair and protect cells in the brain, typically decline as the age of an individual increase. With the deterioration of the hippocampus, an individual becomes more prone to memory loss. Many memory loss starts off as mild but may evolve into serious medical conditions such as dementia and Alzheimer’s disease. In their quest to fully comprehend how memories work, scientists have created many different kinds of technology that are used to examine the brain and neural pathways. For instance, Magnetic Resonance Imaging - or MRI- is used to collect detailed images of an individual's brain anatomy. In order to monitor and analyze brain functions, a different version of this machine called Functional Magnetic Resonance Imaging - or fMRI- is used. The fMRI is a neuroimaging procedure that is conducted when the target brain regions are active. It measures brain activity by detecting changes in blood flow associated with neural activity. Neurons need more oxygen when they are active. The fMRI measures the change in magnetization between blood which is oxygen-rich and oxygen-poor. This way, there is a detectable difference across brain regions, and scientists can monitor them. Electroencephalography - or EEG - is also a significant way to monitor the human brain. The EEG is more versatile and cost-efficient than an fMRI. An EEG measures electrical activity which has been generated by the numerous cortical layers of the brain. EEG allows scientists to be able to record brain processes that occur after external stimuli. EEGs have a very high temporal resolution. This quality makes it possible to measure synchronized neural activity and almost precisely track the contents of short-term memory. Science has come a long way in monitoring memories using these kinds of devices, which have resulted in the inspections of neurons and neural pathways becoming more intense and detailed.

Keywords: brain, EEG, fMRI, hippocampus, memories, neural pathways, neurons

Procedia PDF Downloads 47
409 The Optimum Biodiesel Blend in Low Sulfur Diesel and Its Physico-Chemical Properties and Economic Aspect

Authors: Ketsada Sutthiumporn, Sittichot Thongkaw, Malee Santikunaporn

Abstract:

In Thailand, biodiesel has been utilized as an attractive substitute of petroleum diesel and the government imposes a mandatory biodiesel blending requirement in transport sector to improve energy security, support agricultural sector and reduce emissions. Though biodiesel blend has many advantages over diesel fuel such as improved lubricity, low sulfur content and higher flash point, there are still some technical problems such as oxidative stability, poor cold- flow properties and impurity. Such problems were related to the fatty acid composition in feedstock. Moreover, Thailand has announced the use of low sulfur diesel as a base diesel and will be continually upgrading to EURO 5 in 2023. With ultra low sulfur content, it may affect the diesel fuel properties especially lubricity as well. Therefore, in this study, the physical and chemical properties of palm oil-based biodiesel in low sulfur diesel blends from different producers will be investigated by standard methods per ASTM and EN. Also, its economic benefits based on diesel price structure in Thailand will be highlighted. The appropriate biodiesel blend ratio can affect the physico-chemical properties and reasonable price in the country. Properties of biodiesel, including specific gravity, kinematic viscosity, FAME composition, flash point, sulfur, water, oxidation stability and lubricity were measured by standard methods of ASTM and EN. The results show that the FAME composition of biodiesel has the fatty acid of C12:0 to C20:1, mostly in C16:0, C18:0, C18:1, and C18:2, which were main characteristic compositions of palm biodiesel. The physical and chemical properties of biodiesel blended diesel was found to be increases with an increasing amount of biodiesel such as specific gravity, flash point and kinematic viscosity while sulfur value was decreased. Moreover, in this study, the various properties of each biodiesel blends were plotted to determine the appropriate proportional range of biodiesel-blended diesel with an optimum fuel price.It can be seen that the amount of B100 can be filled from 1% up to 7% in which the quality was in accordance with Notification of the department of Energy business.The understanding of relation between physico-chemical properties of palm oil-based biodiesel and pricing is beneficial to guide the better development of desired feedstock in Thailand and to implement biodiesel blends with comparative price and diesel engine performance.

Keywords: fatty acid methyl ester, biodiesel, fuel price structure, palm oil in Thailand

Procedia PDF Downloads 78
408 The Structure and Development of a Wing Tip Vortex under the Effect of Synthetic Jet Actuation

Authors: Marouen Dghim, Mohsen Ferchichi

Abstract:

The effect of synthetic jet actuation on the roll-up and the development of a wing tip vortex downstream a square-tipped rectangular wing was investigated experimentally using hotwire anemometry. The wing is equipped with a hallow cavity designed to generate a high aspect ratio synthetic jets blowing at an angles with respect to the spanwise direction. The structure of the wing tip vortex under the effect of fluidic actuation was examined at a chord Reynolds number Re_c=8×10^4. An extensive qualitative study on the effect of actuation on the spanwise pressure distribution at c⁄4 was achieved using pressure scanner measurements in order to determine the optimal actuation parameters namely, the blowing momentum coefficient, Cμ, and the non-dimensionalized actuation frequency, F^+. A qualitative study on the effect of actuation parameters on the spanwise pressure distribution showed that optimal actuation frequencies of the synthetic jet were found within the range amplified by both long and short wave instabilities where spanwise pressure coefficients exhibited a considerable decrease by up to 60%. The vortex appeared larger and more diffuse than that of the natural vortex case. Operating the synthetic jet seemed to introduce unsteadiness and turbulence into the vortex core. Based on the ‘a priori’ optimal selected parameters, results of the hotwire wake survey indicated that the actuation achieved a reduction and broadening of the axial velocity deficit. A decrease in the peak tangential velocity associated with an increase in the vortex core radius was reported as a result of the accelerated radial transport of angular momentum. Peak vorticity level near the core was also found to be largely diffused as a direct result of the increased turbulent mixing within the vortex. The wing tip vortex a exhibited a reduced strength and a diffused core as a direct result of increased turbulent mixing due to the presence of turbulent small scale vortices within its core. It is believed that the increased turbulence within the vortex due to the synthetic jet control was the main mechanism associated with the decreased strength and increased size of the wing tip vortex as it evolves downstream. A comparison with a ‘non-optimal’ case was included to demonstrate the effectiveness of selecting the appropriate control parameters. The Synthetic Jet will be operated at various actuation configurations and an extensive parametric study is projected to determine the optimal actuation parameters.

Keywords: flow control, hotwire anemometry, synthetic jet, wing tip vortex

Procedia PDF Downloads 410
407 Mobile and Hot Spot Measurement with Optical Particle Counting Based Dust Monitor EDM264

Authors: V. Ziegler, F. Schneider, M. Pesch

Abstract:

With the EDM264, GRIMM offers a solution for mobile short- and long-term measurements in outdoor areas and at production sites. For research as well as permanent areal observations on a near reference quality base. The model EDM264 features a powerful and robust measuring cell based on optical particle counting (OPC) principle with all the advantages that users of GRIMM's portable aerosol spectrometers are used to. The system is embedded in a compact weather-protection housing with all-weather sampling, heated inlet system, data logger, and meteorological sensor. With TSP, PM10, PM4, PM2.5, PM1, and PMcoarse, the EDM264 provides all fine dust fractions real-time, valid for outdoor applications and calculated with the proven GRIMM enviro-algorithm, as well as six additional dust mass fractions pm10, pm2.5, pm1, inhalable, thoracic and respirable for IAQ and workplace measurements. This highly versatile instrument performs real-time monitoring of particle number, particle size and provides information on particle surface distribution as well as dust mass distribution. GRIMM's EDM264 has 31 equidistant size channels, which are PSL traceable. A high-end data logger enables data acquisition and wireless communication via LTE, WLAN, or wired via Ethernet. Backup copies of the measurement data are stored in the device directly. The rinsing air function, which protects the laser and detector in the optical cell, further increases the reliability and long term stability of the EDM264 under different environmental and climatic conditions. The entire sample volume flow of 1.2 L/min is analyzed by 100% in the optical cell, which assures excellent counting efficiency at low and high concentrations and complies with the ISO 21501-1standard for OPCs. With all these features, the EDM264 is a world-leading dust monitor for precise monitoring of particulate matter and particle number concentration. This highly reliable instrument is an indispensable tool for many users who need to measure aerosol levels and air quality outdoors, on construction sites, or at production facilities.

Keywords: aerosol research, aerial observation, fence line monitoring, wild fire detection

Procedia PDF Downloads 115
406 Combustion Characteristics of Ionized Fuels for Battery System Safety

Authors: Hyeuk Ju Ko, Eui Ju Lee

Abstract:

Many electronic devices are powered by various rechargeable batteries such as lithium-ion today, but occasionally the batteries undergo thermal runaway and cause fire, explosion, and other hazards. If a battery fire should occur in an electronic device of vehicle and aircraft cabin, it is important to quickly extinguish the fire and cool the batteries to minimize safety risks. Attempts to minimize these risks have been carried out by many researchers but the number of study on the successful extinguishment is limited. Because most rechargeable batteries are operated on the ion state with electron during charge and discharge of electricity, and the reaction of this electrolyte has a big difference with normal combustion. Here, we focused on the effect of ions on reaction stability and pollutant emissions during combustion process. The other importance for understanding ionized fuel combustion could be found in high efficient and environment-friendly combustion technologies, which are used to be operated an extreme condition and hence results in unintended flame instability such as extinction and oscillation. The use of electromagnetic energy and non-equilibrium plasma is one of the way to solve the problems, but the application has been still limited because of lack of excited ion effects in the combustion process. Therefore, the understanding of ion role during combustion might be promised to the energy safety society including the battery safety. In this study, the effects of an ionized fuel on the flame stability and pollutant emissions were experimentally investigated in the hydrocarbon jet diffusion flames. The burner used in this experiment consisted of 7.5 mm diameter tube for fuel and the gaseous fuels were ionized with the ionizer (SUNJE, SPN-11). Methane (99.9% purity) and propane (commercial grade) were used as a fuel and open ambient air was used as an oxidizer. As the performance of ionizer used in the experiment was evaluated at first, ion densities of both propane and methane increased linearly with volume flow rate but the ion density of propane is slightly higher than that of methane. The results show that the overall flame stability and shape such as flame length has no significant difference even in the higher ion concentration. However, the fuel ionization affects to the pollutant emissions such as NOx and soot. NOx and CO emissions measured in post flame region decreased with increasing fuel ionization, especially at high fuel velocity, i.e. high ion density. TGA analysis and morphology of soot by TEM indicates that the fuel ionization makes soot to be matured.

Keywords: battery fires, ionization, jet flames, stability, NOx and soot

Procedia PDF Downloads 157
405 Comparison of Cardiomyogenic Potential of Amniotic Fluid Mesenchymal Stromal Cells Derived from Normal and Isolated Congenital Heart Defective Fetuses

Authors: Manali Jain, Neeta Singh, Raunaq Fatima, Soniya Nityanand, Mandakini Pradhan, Chandra Prakash Chaturvedi

Abstract:

Isolated Congenital Heart Defect (ICHD) is the major cause of neonatal death worldwide among all forms of CHDs. A significant proportion of fetuses with ICHD die in the neonatal period if no treatment is provided. Recently, stem cell therapies have emerged as a potential approach to ameliorate ICHD in children. ICHD is characterized by cardiac structural abnormalities during embryogenesis due to alterations in the cardiomyogenic properties of a pool of cardiac progenitors/ stem cells associated with fetal heart development. The stem cells present in the amniotic fluid (AF) are of fetal origin and may reflect the physiological and pathological changes in the fetus during embryogenesis. Therefore, in the present study, the cardiomyogenic potential of AF-MSCs derived from fetuses with ICHD (ICHD AF-MSCs) has been evaluated and compared with that of AF-MSCs of structurally normal fetuses (normal AF-MSCs). Normal and ICHD AF-MSC were analyzed for the expression of cardiac progenitor markers viz., stage-specific embryonic antigen-1 (SSEA-1), vascular endothelial growth factor 2 (VEGFR-2) and platelet-derived growth factor receptor-alpha (PDGFR-α) by flow cytometry. The immunophenotypic characterization revealed that ICHD AF-MSCs have significantly lower expression of cardiac progenitor markers VEGFR-2 (0.14% ± 0.6 vs.48.80% ± 0.9; p <0.01), SSEA-1 (70.86% ± 2.4 vs. 88.36% ±2.7; p <0.01), and PDGFR-α (3.92% ± 1.8 vs. 47.59% ± 3.09; p <0.01) in comparison to normal AF-MSCs. Upon induction with 5’-azacytidine for 21 days, ICHD AF-MSCs showed a significantly down-regulated expression of cardiac transcription factors such as GATA-4 (0.4 ± 0.1 vs. 6.8 ± 1.2; p<0.01), ISL-1 (2.3± 0.6 vs. 14.3 ± 1.12; p<0.01), NK-x 2-5 (1.1 ± 0.3 vs. 14.1 ±2.8; p<0.01), TBX-5 (0.4 ± 0.07 vs. 4.4 ± 0.3; p<0.001), and TBX-18 (1.3 ± 0.2 vs. 4.19 ± 0.3; p<0.01) when compared with the normal AF-MSCs. Furthermore, immunocytochemical staining revealed that both types of AF-MSCs could differentiate into cardiovascular lineages and express cardiomyogenic, endothelial, and smooth muscle actin markers, viz., cardiac troponin (cTNT), CD31, and alpha-smooth muscle actin (α-SMA). However, normal AF-MSCs showed an enhanced expression of cTNT (p<0.001), CD31 (p<0.01), and α-SMA (p<0.05), compared to ICHD AF-MSCs. Overall, these results suggest that the ICHD-AF-MSCs have a defective cardiomyogenic differentiation potential and that the defects in these stem cells may have a role in the pathogenesis of ICHD.

Keywords: amniotic fluid, cardiomyogenic potential, isolated congenital heart defect, mesenchymal stem cells

Procedia PDF Downloads 72
404 Sedimentary, Diagenesis and Evaluation of High Quality Reservoir of Coarse Clastic Rocks in Nearshore Deep Waters in the Dongying Sag; Bohai Bay Basin

Authors: Kouassi Louis Kra

Abstract:

The nearshore deep-water gravity flow deposits in the Northern steep slope of Dongying depression, Bohai Bay basin, have been acknowledged as important reservoirs in the rift lacustrine basin. These deep strata term as coarse clastic sediment, deposit at the root of the slope have complex depositional processes and involve wide diagenetic events which made high-quality reservoir prediction to be complex. Based on the integrated study of seismic interpretation, sedimentary analysis, petrography, cores samples, wireline logging data, 3D seismic and lithological data, the reservoir formation mechanism deciphered. The Geoframe software was used to analyze 3-D seismic data to interpret the stratigraphy and build a sequence stratigraphic framework. Thin section identification, point counts were performed to assess the reservoir characteristics. The software PetroMod 1D of Schlumberger was utilized for the simulation of burial history. CL and SEM analysis were performed to reveal diagenesis sequences. Backscattered electron (BSE) images were recorded for definition of the textural relationships between diagenetic phases. The result showed that the nearshore steep slope deposits mainly consist of conglomerate, gravel sandstone, pebbly sandstone and fine sandstone interbedded with mudstone. The reservoir is characterized by low-porosity and ultra-low permeability. The diagenesis reactions include compaction, precipitation of calcite, dolomite, kaolinite, quartz cement and dissolution of feldspars and rock fragment. The main types of reservoir space are primary intergranular pores, residual intergranular pores, intergranular dissolved pores, intergranular dissolved pores, and fractures. There are three obvious anomalous high-porosity zones in the reservoir. Overpressure and early hydrocarbon filling are the main reason for abnormal secondary pores development. Sedimentary facies control the formation of high-quality reservoir, oil and gas filling preserves secondary pores from late carbonate cementation.

Keywords: Bohai Bay, Dongying Sag, deep strata, formation mechanism, high-quality reservoir

Procedia PDF Downloads 106
403 Synthesis of High-Antifouling Ultrafiltration Polysulfone Membranes Incorporating Low Concentrations of Graphene Oxide

Authors: Abdulqader Alkhouzaam, Hazim Qiblawey, Majeda Khraisheh

Abstract:

Membrane treatment for desalination and wastewater treatment is one of the promising solutions to affordable clean water. It is a developing technology throughout the world and considered as the most effective and economical method available. However, the limitations of membranes’ mechanical and chemical properties restrict their industrial applications. Hence, developing novel membranes was the focus of most studies in the water treatment and desalination sector to find new materials that can improve the separation efficiency while reducing membrane fouling, which is the most important challenge in this field. Graphene oxide (GO) is one of the materials that have been recently investigated in the membrane water treatment sector. In this work, ultrafiltration polysulfone (PSF) membranes with high antifouling properties were synthesized by incorporating different loadings of GO. High-oxidation degree GO had been synthesized using a modified Hummers' method. The synthesized GO was characterized using different analytical techniques including elemental analysis, Fourier transform infrared spectroscopy - universal attenuated total reflectance sensor (FTIR-UATR), Raman spectroscopy, and CHNSO elemental analysis. CHNSO analysis showed a high oxidation degree of GO represented by its oxygen content (50 wt.%). Then, ultrafiltration PSF membranes incorporating GO were fabricated using the phase inversion technique. The prepared membranes were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM) and showed a clear effect of GO on PSF physical structure and morphology. The water contact angle of the membranes was measured and showed better hydrophilicity of GO membranes compared to pure PSF caused by the hydrophilic nature of GO. Separation properties of the prepared membranes were investigated using a cross-flow membrane system. Antifouling properties were studied using bovine serum albumin (BSA) and humic acid (HA) as model foulants. It has been found that GO-based membranes exhibit higher antifouling properties compared to pure PSF. When using BSA, the flux recovery ratio (FRR %) increased from 65.4 ± 0.9 % for pure PSF to 84.0 ± 1.0 % with a loading of 0.05 wt.% GO in PSF. When using HA as model foulant, FRR increased from 87.8 ± 0.6 % to 93.1 ± 1.1 % with 0.02 wt.% of GO in PSF. The pure water permeability (PWP) decreased with loadings of GO from 181.7 L.m⁻².h⁻¹.bar⁻¹ of pure PSF to 181.1, and 157.6 L.m⁻².h⁻¹.bar⁻¹ with 0.02 and 0.05 wt.% GO respectively. It can be concluded from the obtained results that incorporating low loading of GO could enhance the antifouling properties of PSF hence improving its lifetime and reuse.

Keywords: antifouling properties, GO based membranes, hydrophilicity, polysulfone, ultrafiltration

Procedia PDF Downloads 113
402 Detection Kit of Type 1 Diabetes Mellitus with Autoimmune Marker GAD65 (Glutamic Acid Decarboxylase)

Authors: Aulanni’am Aulanni’am

Abstract:

Incidence of Diabetes Mellitus (DM) progressively increasing it became a serious problem in Indonesia and it is a disease that government is priority to be addressed. The longer a person is suffering from diabetes the more likely to develop complications particularly diabetic patients who are not well maintained. Therefore, Incidence of Diabetes Mellitus needs to be done in the early diagnosis of pre-phase of the disease. In this pre-phase disease, already happening destruction of pancreatic beta cells and declining in beta cell function and the sign autoimmunity reactions associated with beta cell destruction. Type 1 DM is a multifactorial disease triggered by genetic and environmental factors, which leads to the destruction of pancreatic beta cells. Early marker of "beta cell autoreactivity" is the synthesis of autoantibodies against 65-kDa protein, which can be a molecule that can be detected early in the disease pathomechanism. The importance of early diagnosis of diabetic patients held in the phase of pre-disease is to determine the progression towards the onset of pancreatic beta cell destruction and take precautions. However, the price for this examination is very expensive ($ 150/ test), the anti-GAD65 abs examination cannot be carried out routinely in most or even in all laboratories in Indonesia. Therefore, production-based Rapid Test Recombinant Human Protein GAD65 with "Reverse Flow Immunchromatography Technique" in Indonesia is believed to reduce costs and improve the quality of care of patients with diabetes in Indonesia. Rapid Test Product innovation is very simple and suitable for screening and routine inspection of GAD65 autoantibodies. In the blood serum of patients with diabetes caused by autoimmunity, autoantibody-GAD65 is a major serologic marker to detect autoimmune reaction because their concentration level of stability.GAD65 autoantibodies can be found 10 years before clinical symptoms of diabetes. Early diagnosis is more focused to detect the presence autontibodi-GAD65 given specification and high sensitivity. Autoantibodies- GAD65 that circulates in the blood is a major indicator of the destruction of the islet cells of the pancreas. Results of research in collaboration with Biofarma has produced GAD65 autoantibodies based Rapid Test had conducted the soft launch of products and has been tested with the results of a sensitivity of 100 percent and a specificity between 90 and 96% compared with the gold standard (import product) which worked based on ELISA method.

Keywords: diabetes mellitus, GAD65 autoantibodies, rapid test, sensitivity, specificity

Procedia PDF Downloads 235