Search results for: flow separation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5624

Search results for: flow separation

5474 Pigging Operation in Two-Phase Flow Pipeline- Empirical and Simulation

Authors: Behnaz Jamshidi, Seyed Hassan Hashemabadi

Abstract:

The main objective of this study is to investigate on pigging operation of two phase flow pipeline and compare the empirical and simulation results for 108 km long , 0.7934 mm (32 inches) diameter sea line of "Phase 1 South Pars Gas Complex", located in south of Iran. The pigging time, pig velocity, the amount of slug and slug catcher pressure were calculated and monitored closely as the key parameters. Simulation was done by "OLGA" dynamic simulation software and obtained results were compared and validated with empirical data in real operation. The relative errors between empirical data and simulation of the process were 3 % and 9 % for pigging time and accumulated slug volume respectively. Simulated pig velocity and changes of slug catcher pressure were consistent with real values, too. It was also found the slug catcher and condensate stabilization units have been adequately sized for gas-liquid separation and handle the slug batch during transient conditions such as pigging and start up.

Keywords: sea line, pigging, slug catcher, two-phase flow, dynamic simulation

Procedia PDF Downloads 470
5473 Investigating the Influence of Roof Fairing on Aerodynamic Drag of a Bluff Body

Authors: Kushal Kumar Chode

Abstract:

Increase in demand for fuel saving and demand for faster vehicles with decent fuel economy, researchers around the world started investigating in various passive flow control devices to improve the fuel efficiency of vehicles. In this paper, A roof fairing was investigated for reducing the aerodynamic drag of a bluff body. The bluff body considered for this work is Ahmed model with a rake angle of 25deg was and subjected to flow with a velocity of 40m/s having Reynolds number of 2.68million was analysed using a commercial Computational Fluid Dynamic (CFD) code Star CCM+. It was evident that pressure drag is the main source of drag on an Ahmed body from the initial study. Adding a roof fairing has delayed the flow separation and resulted in delaying wake formation, thus improving the pressure in near weak and reducing the wake region. Adding a roof fairing of height and length equal to 1/7H and 1/3L respectively has shown a drag reduction by 9%. However, an optimised fairing, which was obtained by changing height, length and width by 5% increase, recorded a drag reduction close 12%.

Keywords: Ahmed model, aerodynamic drag, passive flow control, roof fairing, wake formation

Procedia PDF Downloads 390
5472 Experimental and Theoretical Mass Transfer Studies of Pure Carbondioxide Absorption in Sodium Hydroxide in Millichannels

Authors: A. Durgadevi, S. Pushpavanam

Abstract:

For the past several decades, CO2 levels have been dramatically increasing in the atmosphere due to the man-made emissions such as fossil fuel-fired power plants. With the increase in CO2 emissions, CO2 concentration in the atmosphere has increased resulting in global warming. This shows the need to study different ways to capture the emitted CO2 directly from the exhausts of power plants or atmosphere. There are several ways to remove CO2, such as absorption into a liquid solvent, adsorption into a solid, cryogenic separation, permeation through membranes and photochemical conversion. In most industries, the absorption of CO2 in chemical solvents (in absorption towers) is used for CO2 capture. In these towers, the mass transfer along with chemical reactions take place between the gas and liquid phase. This helps in the separation of CO2 from other gases. It is important to understand these processes in detail. These flow patterns are difficult to maintain in large scale industrial absorbers. So to get accurate information controlled gas-liquid absorption experiments are carried out in milli-channels in this work under controlled atmosphere. The absorption experiments of CO2 in varying concentrations of sodium hydroxide solution are carried out in T-junction glass milli-channels with a circular cross section (inner diameter of 2mm). The gas and liquid flow rates are controlled by a mass flow controller (MFC) and a Harvard syringe pump respectively. The slug flow in the channel is recorded using a camera and the videos are analysed. The gas slug of pure CO2 is found to decrease in size along the length of the channel due to absorption of gas in the liquid. This is also captured with the model developed and the mass transfer characteristics are studied. The pressure drop across the channel is determined by sum of the pressure drops from the gas slugs and the liquid plugs. A dimensionless correlation for the mass transfer coefficient is developed in terms of Sherwood number and compared with the existing correlations in the literature. They are found to be in close agreement with each other. In this case, due to the presence of chemical reaction, the enhancement of mass transfer is obtained. This is quantified with the help of an enhancement factor.

Keywords: absorption, enhancement factor, mass transfer coefficient, Sherwood number

Procedia PDF Downloads 147
5471 Beyond the “Breakdown” of Karman Vortex Street

Authors: Ajith Kumar S., Sankaran Namboothiri, Sankrish J., SarathKumar S., S. Anil Lal

Abstract:

A numerical analysis of flow over a heated circular cylinder is done in this paper. The governing equations, Navier-Stokes, and energy equation within the Boussinesq approximation along with continuity equation are solved using hybrid FEM-FVM technique. The density gradient created due to the heating of the cylinder will induce buoyancy force, opposite to the direction of action of acceleration due to gravity, g. In the present work, the flow direction and the direction of buoyancy force are taken as same (vertical flow configuration), so that the buoyancy force accelerates the mean flow past the cylinder. The relative dominance of the buoyancy force over the inertia force is characterized by the Richardson number (Ri), which is one of the parameter that governs the flow dynamics and heat transfer in this analysis. It is well known that above a certain value of Reynolds number, Re (ratio of inertia force over the viscous forces), the unsteady Von Karman vortices can be seen shedding behind the cylinder. The shedding wake patterns could be seriously altered by heating/cooling the cylinder. The non-dimensional shedding frequency called the Strouhal number is found to be increasing as Ri increases. The aerodynamic force coefficients CL and CD are observed to change its value. In the present vertical configuration of flow over the cylinder, as Ri increases, shedding frequency gets increased and suddenly drops down to zero at a critical value of Richardson number. The unsteady vortices turn to steady standing recirculation bubbles behind the cylinder after this critical Richardson number. This phenomenon is well known in literature as "Breakdown of the Karman Vortex Street". It is interesting to see the flow structures on further increase in the Richardson number. On further heating of the cylinder surface, the size of the recirculation bubble decreases without loosing its symmetry about the horizontal axis passing through the center of the cylinder. The separation angle is found to be decreasing with Ri. Finally, we observed a second critical Richardson number, after which the the flow will be attached to the cylinder surface without any wake behind it. The flow structures will be symmetrical not only about the horizontal axis, but also with the vertical axis passing through the center of the cylinder. At this stage, there will be a "single plume" emanating from the rear stagnation point of the cylinder. We also observed the transition of the plume is a strong function of the Richardson number.

Keywords: drag reduction, flow over circular cylinder, flow control, mixed convection flow, vortex shedding, vortex breakdown

Procedia PDF Downloads 377
5470 Hydrological Method to Evaluate Environmental Flow: Case Study of Gharasou River, Ardabil

Authors: Mehdi Fuladipanah, Mehdi Jorabloo

Abstract:

Water flow management is one of the most important parts of river engineering. Non-uniformity distribution of rainfall and various flow demand with unreasonable flow management will be caused destroyed of the river ecosystem. Then, it is severe to determine ecosystem flow requirement. In this paper, Flow duration curve indices method which has hydrological based was used to evaluate environmental flow in Gharasou River, Ardabil, Iran. Using flow duration curve, Q90 and Q95 for different return periods were calculated. Their magnitude was determined as 1-day, 3-day, 7-day, and 30 days. According to the second method, hydraulic alteration indices often had low and medium range. To maintain river at an acceptable ecological condition, minimum daily discharge of index Q95 is 0.7 m^3.s^-1.

Keywords: Gharasou River, water flow management, non-uniformity distribution, ecosystem flow requirement, hydraulic alteration

Procedia PDF Downloads 302
5469 Layer by Layer Coating of Zinc Oxide/Metal Organic Framework Nanocomposite on Ceramic Support for Solvent/Solvent Separation Using Pervaporation Method

Authors: S. A. A. Nabeela Nasreen, S. Sundarrajan, S. A. Syed Nizar, Seeram Ramakrishna

Abstract:

Metal-organic frameworks (MOFs) have attracted considerable interest due to its diverse pore size tunability, fascinating topologies and extensive uses in fields such as catalysis, membrane separation, chemical sensing, etc. Zeolitic imidazolate frameworks (ZIFs) are a class of MOF with porous crystals containing extended three-dimensional structures of tetrahedral metal ions (e.g., Zn) bridged by Imidazolate (Im). Selected ZIFs are used to separate solvent/solvent mixtures. A layer by layer formation of the nanocomposite of Zinc oxide (ZnO) and ZIF on a ceramic support using a solvothermal method was engaged and tested for target solvent/solvent separation. Metal oxide layer was characterized by XRD, SEM, and TEM to confirm the smooth and continuous coating for the separation process. The chemical composition of ZIF films was studied by using X-Ray absorption near-edge structure (XANES) spectroscopy. The obtained ceramic tube with metal oxide and ZIF layer coating were tested for its packing density, thickness, distribution of seed layers and variation of permeation rate of solvent mixture (isopropyl alcohol (IPA)/methyl isobutyl ketone (MIBK). Pervaporation technique was used for the separation to achieve a high permeation rate with separation ratio of > 99.5% of the solvent mixture.

Keywords: metal oxide, membrane, pervaporation, solvothermal, ZIF

Procedia PDF Downloads 165
5468 Improved Multi-Channel Separation Algorithm for Satellite-Based Automatic Identification System Signals Based on Artificial Bee Colony and Adaptive Moment Estimation

Authors: Peng Li, Luan Wang, Haifeng Fei, Renhong Xie, Yibin Rui, Shanhong Guo

Abstract:

The applications of satellite-based automatic identification system (S-AIS) pave the road for wide-range maritime traffic monitoring and management. But the coverage of satellite’s view includes multiple AIS self-organizing networks, which leads to the collision of AIS signals from different cells. The contribution of this work is to propose an improved multi-channel blind source separation algorithm based on Artificial Bee Colony (ABC) and advanced stochastic optimization to perform separation of the mixed AIS signals. The proposed approach adopts modified ABC algorithm to get an optimized initial separating matrix, which can expedite the initialization bias correction, and utilizes the Adaptive Moment Estimation (Adam) to update the separating matrix by adjusting the learning rate for each parameter dynamically. Simulation results show that the algorithm can speed up convergence and lead to better performance in separation accuracy.

Keywords: satellite-based automatic identification system, blind source separation, artificial bee colony, adaptive moment estimation

Procedia PDF Downloads 159
5467 Separation of Hazardous Brominated Plastics from Waste Plastics by Froth Flotation after Surface Modification with Mild Heat-Treatment

Authors: Nguyen Thi Thanh Truc, Chi-Hyeon Lee, Srinivasa Reddy Mallampati, Byeong-Kyu Lee

Abstract:

This study evaluated to facilitate separation of ABS plastics from other waste plastics by froth flotation after surface hydrophilization of ABS with heat treatment. The mild heat treatment at 100oC for 60s could selectively increase the hydrophilicity of the ABS plastics surface (i.e., ABS contact angle decreased from 79o to 65.8o) among other plastics mixture. The SEM and XPS results of plastic samples sufficiently supported the increase in hydrophilic functional groups and decrease contact angle on ABS surface, after heat treatment. As a result of the froth flotation (at mixing speed 150 rpm and airflow rate 0.3 L/min) after heat treatment, about 85% of ABS was selectively separated from other heavy plastics with 100% of purity. The effect of optimum treatment condition and detailed mechanism onto separation efficiency in the froth floatation was also investigated. This research is successful in giving a simple, effective, and inexpensive method for ABS separation from waste plastics.

Keywords: ABS, hydrophilic, heat treatment, froth flotation, contact angle

Procedia PDF Downloads 324
5466 Design, Development and Testing of Polymer-Glass Microfluidic Chips for Electrophoretic Analysis of Biological Sample

Authors: Yana Posmitnaya, Galina Rudnitskaya, Tatyana Lukashenko, Anton Bukatin, Anatoly Evstrapov

Abstract:

An important area of biological and medical research is the study of genetic mutations and polymorphisms that can alter gene function and cause inherited diseases and other diseases. The following methods to analyse DNA fragments are used: capillary electrophoresis and electrophoresis on microfluidic chip (MFC), mass spectrometry with electrophoresis on MFC, hybridization assay on microarray. Electrophoresis on MFC allows to analyse small volumes of samples with high speed and throughput. A soft lithography in polydimethylsiloxane (PDMS) was chosen for operative fabrication of MFCs. A master-form from silicon and photoresist SU-8 2025 (MicroChem Corp.) was created for the formation of micro-sized structures in PDMS. A universal topology which combines T-injector and simple cross was selected for the electrophoretic separation of the sample. Glass K8 and PDMS Sylgard® 184 (Dow Corning Corp.) were used for fabrication of MFCs. Electroosmotic flow (EOF) plays an important role in the electrophoretic separation of the sample. Therefore, the estimate of the quantity of EOF and the ways of its regulation are of interest for the development of the new methods of the electrophoretic separation of biomolecules. The following methods of surface modification were chosen to change EOF: high-frequency (13.56 MHz) plasma treatment in oxygen and argon at low pressure (1 mbar); 1% aqueous solution of polyvinyl alcohol; 3% aqueous solution of Kolliphor® P 188 (Sigma-Aldrich Corp.). The electroosmotic mobility was evaluated by the method of Huang X. et al., wherein the borate buffer was used. The influence of physical and chemical methods of treatment on the wetting properties of the PDMS surface was controlled by the sessile drop method. The most effective way of surface modification of MFCs, from the standpoint of obtaining the smallest value of the contact angle and the smallest value of the EOF, was the processing with aqueous solution of Kolliphor® P 188. This method of modification has been selected for the treatment of channels of MFCs, which are used for the separation of mixture of oligonucleotides fluorescently labeled with the length of chain with 10, 20, 30, 40 and 50 nucleotides. Electrophoresis was performed on the device MFAS-01 (IAI RAS, Russia) at the separation voltage of 1500 V. 6% solution of polydimethylacrylamide with the addition of 7M carbamide was used as the separation medium. The separation time of components of the mixture was determined from electropherograms. The time for untreated MFC was ~275 s, and for the ones treated with solution of Kolliphor® P 188 – ~ 220 s. Research of physical-chemical methods of surface modification of MFCs allowed to choose the most effective way for reducing EOF – the modification with aqueous solution of Kolliphor® P 188. In this case, the separation time of the mixture of oligonucleotides decreased about 20%. The further optimization of method of modification of channels of MFCs will allow decreasing the separation time of sample and increasing the throughput of analysis.

Keywords: electrophoresis, microfluidic chip, modification, nucleic acid, polydimethylsiloxane, soft lithography

Procedia PDF Downloads 384
5465 Optimization of Tangential Flow Filtration Process for Purifying DNA Vaccine

Authors: Piyakajornkul T., Noppiboon S., Hochareon L., Kitsubun P.

Abstract:

Nowadays, DNA vaccines become an interesting subject in the third vaccine generation. The platform of DNA vaccines production has been developed and its downstream process becomes challenging due to the quality of the products in terms of purity and percentage of supercoiled DNA. To overcome these challenges, tangential flow filtration (TFF), which is involved in the purification process, could be used since it provides effective separation of impurity prior to performing further purification steps. However, operating conditions of TFF is varied based on several factors such as sizes of target particle and impurities, a concentration of solution as well as a concentration polarization on the membrane surface. In this study, pVAX1/lacZ was used as a model of TFF optimization in order to prevent a concentration polarization that can lead to the membrane fouling and also minimize a diafiltration volume while maintaining the maximum permeate flux resulting in proper operating times and buffer volume. By using trans membrane pressure (TMP) excursion method, feed flow rates and TMP were varied. The results showed a correlation of permeate flux with TMP where the maximum volume concentration factor reached 2.5 times of the initial volume when feed flow rate and TMP were 7 liters/m²/min and 1 bar, respectively. It was optimal operating conditions before TFF system undergone pressure independent regime. In addition, the diafiltration volume was 14 times of the concentrated volume prior to performing a further anion chromatography process.

Keywords: concentration polarization, DNA vaccines, optimization, permeate flux, pressure dependent, tangential flow filtration (TFF), trans membrane pressure (TMP)

Procedia PDF Downloads 123
5464 Numerical Investigation of Flow Behaviour Across a Trapezoidal Bluff Body at Low Reynolds Number

Authors: Zaaraoui Abdelkader, Kerfah Rabeh, Noura Belkheir, Matene Elhacene

Abstract:

The trapezoidal bluff body is a typical configuration of vortex shedding bodies. The aim of this work is to study flow behaviour over a trapezoidal cylinder at low Reynolds number. The geometry was constructed from a prototype device for measuring the volumetric flow-rate by counting vortices. Simulations were run for this geometry under steady and unsteady flow conditions using finite volume discretization. Laminar flow was investigated in this model with rigid walls and homogeneous incompressible Newtonian fluid. Calculations were performed for Reynolds number range 5 ≤ Re ≤ 180 and several flow parameters were documented. The present computations are in good agreement with the experimental observations and the numerical calculations by several investigators.

Keywords: bluff body, confined flow, numerical calculations, steady and unsteady flow, vortex shedding flow meter

Procedia PDF Downloads 252
5463 Investigation of the Operational Principle and Flow Analysis of a Newly Developed Dry Separator

Authors: Sung Uk Park, Young Su Kang, Sangmo Kang, Young Kweon Suh

Abstract:

Mineral product, waste concrete (fine aggregates), waste in the optical field, industry, and construction employ separators to separate solids and classify them according to their size. Various sorting machines are used in the industrial field such as those operating under electrical properties, centrifugal force, wind power, vibration, and magnetic force. Study on separators has been carried out to contribute to the environmental industry. In this study, we perform CFD analysis for understanding the basic mechanism of the separation of waste concrete (fine aggregate) particles from air with a machine built with a rotor with blades. In CFD, we first performed two-dimensional particle tracking for various particle sizes for the model with 1 degree, 1.5 degree, and 2 degree angle between each blade to verify the boundary conditions and the method of rotating domain method to be used in 3D. Then we developed 3D numerical model with ANSYS CFX to calculate the air flow and track the particles. We judged the capability of particle separation for given size by counting the number of particles escaping from the domain toward the exit among 10 particles issued at the inlet. We confirm that particles experience stagnant behavior near the exit of the rotating blades where the centrifugal force acting on the particles is in balance with the air drag force. It was also found that the minimum particle size that can be separated by the machine with the rotor is determined by its capability to stay at the outlet of the rotor channels.

Keywords: environmental industry, separator, CFD, fine aggregate

Procedia PDF Downloads 568
5462 Bifurcations of the Rotations in the Thermocapillary Flows

Authors: V. Batishchev, V. Getman

Abstract:

We study the self-similar fluid flows in the Marangoni layers with the axial symmetry. Such flows are induced by the radial gradients of the temperatures whose distributions along the free boundary obey some power law. The self-similar solutions describe thermo-capillar flows both in the thin layers and in the case of infinite thickness. We consider both positive and negative temperature gradients. In the former case the cooling of free boundary nearby the axis of symmetry gives rise to the rotation of fluid. The rotating flow concentrates itself inside the Marangoni layer while outside of it the fluid does not revolve. In the latter case we observe no rotating flows at all. In the layers of infinite thickness the separation of the rotating flow creates two zones where the flows are directed oppositely. Both the longitudinal velocity and the temperature have exactly one critical point inside the boundary layer. It is worth to note that the profiles are monotonic in the case of non-swirling flows. We describe the flow outside the boundary layer with the use of self-similar solution of the Euler equations. This flow is slow and non-swirling. The introducing of an outer flow gives rise to the branching of swirling flows from the non-swirling ones. There is such the critical velocity of the outer flow that a non-swirling flow exists for supercritical velocities and cannot be extended to the sub-critical velocities. For the positive temperature gradients there are two non-swirling flows. For the negative temperature gradients the non-swirling flow is unique. We determine the critical velocity of the outer flow for which the branching of the swirling flows happens. In the case of a thin layer confined within free boundaries we show that the cooling of the free boundaries near the axis of symmetry leads to the separating of the layer and creates two sub-layers with opposite rotations inside. This makes sharp contrast with the case of infinite thickness. We show that such rotation arises provided the thickness of the layer exceed some critical value. In the case of a thin layer confined within free and rigid boundaries we construct the branching equation and the asymptotic approximation for the secondary swirling flows near the bifurcation point. It turns out that the bifurcation gives rise to one pair of the secondary swirling flows with different directions of swirl.

Keywords: free surface, rotation, fluid flow, bifurcation, boundary layer, Marangoni layer

Procedia PDF Downloads 319
5461 Analysis of Thermal Damage Characteristics of High Pressure Turbine Blade According to Off-Design Operating Conditions

Authors: Seon Ho Kim, Minho Bang, Seok Min Choi, Young Moon Lee, Dong Kwan Kim, Hyung Hee Cho

Abstract:

Gas turbines are heat engines that convert chemical energy into electrical energy through mechanical energy. Since their high energy density per unit volume and low pollutant emissions, gas turbines are classified as clean energy. In order to obtain better performance, the turbine inlet temperature of the current gas turbine is operated at about 1600℃, and thermal damage is a very serious problem. Especially, these thermal damages are more prominent in off-design conditions than in design conditions. In this study, the thermal damage characteristics of high temperature components of a gas turbine made of a single crystal material are studied numerically for the off-design operating conditions. The target gas turbine is configured as a reheat cycle and is operated in peak load operation mode, not normal operation. In particular, the target gas turbine features a lot of low-load operation. In this study, a commercial code, ANSYS 18.2, was used for analyzing the thermal-flow coupling problems. As a result, the flow separation phenomenon on the pressure side due to the flow reduction was remarkable at the off-design condition, and the high heat transfer coefficient at the upper end of the suction surface due to the tip leakage flow was appeared.

Keywords: gas turbine, single crystal blade, off-design, thermal analysis

Procedia PDF Downloads 185
5460 Anisotropic Approach for Discontinuity Preserving in Optical Flow Estimation

Authors: Pushpendra Kumar, Sanjeev Kumar, R. Balasubramanian

Abstract:

Estimation of optical flow from a sequence of images using variational methods is one of the most successful approach. Discontinuity between different motions is one of the challenging problem in flow estimation. In this paper, we design a new anisotropic diffusion operator, which is able to provide smooth flow over a region and efficiently preserve discontinuity in optical flow. This operator is designed on the basis of intensity differences of the pixels and isotropic operator using exponential function. The combination of these are used to control the propagation of flow. Experimental results on the different datasets verify the robustness and accuracy of the algorithm and also validate the effect of anisotropic operator in the discontinuity preserving.

Keywords: optical flow, variational methods, computer vision, anisotropic operator

Procedia PDF Downloads 842
5459 Flow as a Positive Intervention for Post-Traumatic Stress Disorder

Authors: Sonal Khosla

Abstract:

A research is proposed in the present paper to explore the role of flow in coping with traumatic experiences and attaining post-traumatic growth. A grounded theory research is proposed to be carried by analyzing memoirs of people who have been through trauma. A pilot study was carried out on two memoirs of women who were held captive for over ten years and were sexually assaulted repeatedly. The role of flow in their coping experiences was explored by analyzing the books. Some of the flow activities that were used by them were- drawing and daydreaming. Their narratives show the evidence for flow as having cathartic and healing effects on them. Applicability of the findings can take two forms: 1. Flow can be applied as a preventive technique to help the people who are going through trauma, 2. Flow can be adopted into a positive intervention to help people suffering from PTSD.

Keywords: flow, positive intervention, PTSD, PTG

Procedia PDF Downloads 332
5458 Optimization of Bifurcation Performance on Pneumatic Branched Networks in next Generation Soft Robots

Authors: Van-Thanh Ho, Hyoungsoon Lee, Jaiyoung Ryu

Abstract:

Efficient pressure distribution within soft robotic systems, specifically to the pneumatic artificial muscle (PAM) regions, is essential to minimize energy consumption. This optimization involves adjusting reservoir pressure, pipe diameter, and branching network layout to reduce flow speed and pressure drop while enhancing flow efficiency. The outcome of this optimization is a lightweight power source and reduced mechanical impedance, enabling extended wear and movement. To achieve this, a branching network system was created by combining pipe components and intricate cross-sectional area variations, employing the principle of minimal work based on a complete virtual human exosuit. The results indicate that modifying the cross-sectional area of the branching network, gradually decreasing it, reduces velocity and enhances momentum compensation, preventing flow disturbances at separation regions. These optimized designs achieve uniform velocity distribution (uniformity index > 94%) prior to entering the connection pipe, with a pressure drop of less than 5%. The design must also consider the length-to-diameter ratio for fluid dynamic performance and production cost. This approach can be utilized to create a comprehensive PAM system, integrating well-designed tube networks and complex pneumatic models.

Keywords: pneumatic artificial muscles, pipe networks, pressure drop, compressible turbulent flow, uniformity flow, murray's law

Procedia PDF Downloads 44
5457 Effect of Different Parameters of Converging-Diverging Vortex Finders on Cyclone Separator Performance

Authors: V. Kumar, K. Jha

Abstract:

The present study is done to explore design modifications of the vortex finder, as it has a significant effect on the cyclone separator performance. It is evident that modifications of the vortex finder improve the performance of the cyclone separator significantly. The study conducted strives to improve the overall performance of cyclone separators by utilizing a converging-diverging (CD) vortex finder instead of the traditional uniform diameter vortex finders. The velocity and pressure fields inside a Stairmand cyclone separator with body diameter 0.29m and vortex finder diameter 0.1305m are calculated. The commercial software, Ansys Fluent v14.0 is used to simulate the flow field in a uniform diameter cyclone and six cyclones modified with CD vortex finders. Reynolds stress model is used to simulate the effects of turbulence on the fluid and particulate phases, discrete phase model is used to calculate the particle trajectories. The performance of the modified vortex finders is compared with the traditional vortex finder. The effects of the lengths of the converging and diverging sections, the throat diameter and the end diameters of the convergent divergent section are also studied to achieve enhanced performance. The pressure and velocity fields inside the vortex finder are presented by means of contour plots and velocity vectors and changes in the flow pattern due to variation of the geometrical variables are also analysed. Results indicate that a convergent-divergent vortex finder is capable of decreasing the pressure drop than that achieved through a uniform diameter vortex finder. It is also observed that the end diameters of the CD vortex finder, the throat diameter and the length of the diverging part of the vortex finder have a significant impact on the cyclone separator performance. Increase in the lower diameter of the vortex finder by 66% results in 11.5% decrease in the dimensionless pressure drop (Euler number) with 5.8% decrease in separation efficiency. Whereas 50% decrease in the throat diameter gives 5.9% increase in the Euler number with 10.2% increase in the separation efficiency and increasing the length of the diverging part gives 10.28% increase in the Euler number with 5.74% increase in the separation efficiency. Increasing the upper diameter of the CD vortex finder is seen to produce an adverse effect on the performance as it increases the pressure drop significantly and decreases the separation efficiency. Increase in length of the converging is not seen to affect the performance significantly. From the present study, it is concluded that convergent-divergent vortex finders can be used in place of uniform diameter vortex finders to achieve a better cyclone separator performance.

Keywords: convergent-divergent vortex finder, cyclone separator, discrete phase modeling, Reynolds stress model

Procedia PDF Downloads 147
5456 Production of Hydrophilic PVC Surfaces with Microwave Treatment for its Separation from Mixed Plastics by Froth Floatation

Authors: Srinivasa Reddy Mallampati, Chi-Hyeon Lee, Nguyen Thanh Truc, Byeong-Kyu Lee

Abstract:

Organic polymeric materials (plastics) are widely used in our daily life and various industrial fields. The separation of waste plastics is important for its feedstock and mechanical recycling. One of the major problems in incineration for thermal recycling or heat melting for material recycling is the polyvinyl chloride (PVC) contained in waste plastics. This is due to the production of hydrogen chloride, chlorine gas, dioxins, and furans originated from PVC. Therefore, the separation of PVC from waste plastics is necessary before recycling. The separation of heavy polymers (PVC 1.42, PMMA 1.12, PC 1.22 and PET 1.27 g/cm3 ) from light ones (PE and PP 0.99 g/cm3) can be achieved on the basis of their density. However it is difficult to separate PVC from other heavy polymers basis of density. There are no simple and inexpensive techniques to separate PVC from others. If hydrophobic the PVC surface is selectively changed into hydrophilic, where other polymers still have hydrophobic surface, flotation process can separate PVC from others. In the present study, the selective surface hydrophilization of polyvinyl chloride (PVC) by microwave treatment after alkaline/acid washing and with activated carbon was studied as the pre-treatment of its separation by the following froth flotation. In presence of activated carbon as absorbent, the microwave treatment could selectively increase the hydrophilicity of the PVC surface (i.e. PVC contact angle decreased about 19o) among other plastics mixture. At this stage, 100% PVC separation from other plastics could be achieved by the combination of the pre- microwave treatment with activated carbon and the following froth floatation. The hydrophilization of PVC by surface analysis would be due to the hydrophilic groups produced by microwave treatment with activated carbon. The effect of optimum condition and detailed mechanism onto separation efficiency in the froth floatation was also investigated.

Keywords: Hydrophilic, PVC, contact angle, additive, microwave, froth floatation, waste plastics

Procedia PDF Downloads 598
5455 Threshold Sand Detection Limits for Acoustic Monitors in Multiphase Flow

Authors: Vinod Ponnagandla, Brenton McLaury, Siamack Shirazi

Abstract:

Sand production can lead to deposition of particles or erosion. Low production rates resulting in deposition can partially clog systems and cause under deposit corrosion. Commercially available nonintrusive acoustic sand detectors are attractive as they claim to detect sand production. Acoustic sand detectors are used during oil and gas production; however, operators often do not know the threshold detection limits of these devices. It is imperative to know the detection limits to appropriately plan for cleaning of separation equipment or examine risk of erosion. These monitors are based on detecting the acoustic signature of sand as the particles impact the pipe walls. The objective of this work is to determine threshold detection limits for acoustic sand monitors that are commercially available. The minimum threshold sand concentration that can be detected in a pipe are determined as a function of flowing gas and liquid velocities. A large scale flow loop with a 4-inch test section is utilized. Commercially available sand monitors (ClampOn and Roxar) are evaluated for different flow regimes, sand sizes and pipe orientation (vertical and horizontal). The manufacturers’ recommend that the monitors be placed on a bend to maximize the number of particle impacts, so results are shown for monitors placed at 45 and 90 degree positions in a bend. Acoustic sand monitors that clamp to the outside of pipe are passive and listen for solid particle impact noise. The threshold sand rate is calculated by eliminating the background noise created by the flow of gas and liquid in the pipe for various flow regimes that are generated in horizontal and vertical test sections. The average sand sizes examined are 150 and 300 microns. For stratified and bubbly flows the threshold sand rates are much higher than other flow regimes such as slug and annular flow regimes that are investigated. However, the background noise generated by slug flow regime is very high and cause a high uncertainty in detection limits. The threshold sand rates for annular flow and dry gas conditions are the lowest because of high gas velocities. The effects of monitor placement around elbows that are in vertical and horizontal pipes are also examined for 150 micron. The results show that the threshold sand rates that are detected in vertical orientation are generally lower for all various flow regimes that are investigated.

Keywords: acoustic monitor, sand, multiphase flow, threshold

Procedia PDF Downloads 373
5454 Turbulent Flow Characteristics and Bed Morphology around Circular Bridge Pier

Authors: Pratik Acharya

Abstract:

Scour is the natural phenomenon brought about by erosive action of the flowing stream in alluvial channels. Frequent scouring around bridge piers may cause damage to the structures. In alluvial channels, a complex interaction between the streamflow and the bed particles results in scouring around piers. Thus, the study of characteristics of flow around piers can give sound knowledge about the scouring process. The present research has been done to investigate the turbulent flow characteristics around bridge piers and corresponding changes in bed morphology. Laboratory experiments were carried out in a tilting flume with a sand bed. The velocities around the pier are measured by Acoustic Doppler Velocimeter. Measurements show that at upstream of the pier velocity and Reynolds stresses are negative near the bed and near the free surface at downstream of the pier. At the downstream of the pier, Reynolds stresses changes rapidly due to the formation of wake vortices. Experimental results show that secondary currents are more predominant at the downstream of the pier. As the flowing stream hits the pier, the flow gets separated in the form of downflow along the face of the pier due to a strong pressure gradient and along the sides of the piers. Separation of flow around the pier leads to scour the bed material and develop the vortex. The downflow hits the bed and removes the bed material, which can be carried forward by the flow circulations along sides of the piers. Eroded bed material is deposited along the centerline at the rear side of the pier and produces hump in the downstream region. Initially, the rate of scouring is high and reduces gradually with increasing time. After a certain limit, equilibrium sets between the erosive capacity of the flowing stream and resistance to the motion by bed particles.

Keywords: acoustic doppler velocimeter, pier, Reynolds stress, scour depth, velocity

Procedia PDF Downloads 116
5453 CFD Simulation of the Inlet Pressure Effects on the Cooling Capacity Enhancement for Vortex Tube with Couple Vortex Chambers

Authors: Nader Pourmahmoud, Amir Hassanzadeh

Abstract:

This article investigates the effects of inlet pressure in a newly introduced vortex tube which has been equipped with an additional vortex chamber. A 3-D compressible turbulent flow computation has been carried out toward analysis of complex flow field in this apparatus. Numerical results of flows are derived by utilizing the standard k-ε turbulence model for analyzing high rotating complex flow field. The present research has focused on cooling effect and given a characteristics curve for minimum cool temperature. In addition, the effect of inlet pressure for both chambers has been studied in details. To be presented numerical results show that the effect of inlet pressure in second chamber has more important role in improving the performance of the vortex tube than first one. By increasing the pressure in the second chamber, cold outlet temperature reaches a higher decrease. When both chambers are fed with high pressure fluid, best operation condition of vortex tube occurs. However, it is not possible to feed both chambers with high pressure due to the conditions of working environment.

Keywords: energy separation, inlet pressure, numerical simulation, vortex chamber, vortex tube

Procedia PDF Downloads 344
5452 Using Nanofiber-Like Attapulgite Microfiltration Membranes to Treat Oily Wastewater

Authors: Shouyong Zhou, Meisheng Li, Yijiang Zhao

Abstract:

The environmentally acceptable disposal of oily wastewater is a current challenge to many industries. The membrane separation technologies, which is no phase change, without pharmaceutical dosing, reprocessing costs low, less energy consumption, etc., have been widely applied in oily wastewater treatment. In our lab, a kind of low cost ceramic microfiltration membranes with a separation layer of attapulgite nanofibers (attapulgite nanofiber-like microfiltration membranes) has been prepared and applied in the purification of cellulase fermentation broth and TiO2 nanoparticles system successfully. In this paper, this new attapulgite nanofiber-like microfiltration membrane was selected to try to separate water from oily wastewater. The oil-in water emulsion was obtained from mixing 1 g/L engine oil, 0.5 g/L Tween-80, 0.5 g/L Span-80 and distilled water at mild speed in blender for 2 min. The particle size distribution of the oil-in-water emulsion was controlled. The maximum steady flux and COD rejection for a 0.2 um attapulgite nanofiber-like microfiltration membrane can reach about 450 L. m-2. h-1 and 98% at 0.2 MPa. The results obtained in this work indicated that the attapulgite microfiltration membrane may represent a feasible pretreatment for oily wastewater.

Keywords: attapulgite, microfiltration membrane, oily wastewater, cross-flow filtration

Procedia PDF Downloads 308
5451 Nanofluid-Based Emulsion Liquid Membrane for Selective Extraction and Separation of Dysprosium

Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari

Abstract:

Dysprosium is a rare earth element which is essential for many growing high-technology applications. Dysprosium along with neodymium plays a significant role in different applications such as metal halide lamps, permanent magnets, and nuclear reactor control rods preparation. The purification and separation of rare earth elements are challenging because of their similar chemical and physical properties. Among the various methods, membrane processes provide many advantages over the conventional separation processes such as ion exchange and solvent extraction. In this work, selective extraction and separation of dysprosium from aqueous solutions containing an equimolar mixture of dysprosium and neodymium by emulsion liquid membrane (ELM) was investigated. The organic membrane phase of the ELM was a nanofluid consisting of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as carrier, kerosene as base fluid, and nitric acid solution as internal aqueous phase. Factors affecting separation of dysprosium such as carrier concentration, MWCNT concentration, feed phase pH and stripping phase concentration were analyzed using Taguchi method. Optimal experimental condition was obtained using analysis of variance (ANOVA) after 10 min extraction. Based on the results, using MWCNT nanofluid in ELM process leads to increase the extraction due to higher stability of membrane and mass transfer enhancement and separation factor of 6 for dysprosium over neodymium can be achieved under the optimum conditions. Additionally, demulsification process was successfully performed and the membrane phase reused effectively in the optimum condition.

Keywords: emulsion liquid membrane, MWCNT nanofluid, separation, Taguchi method

Procedia PDF Downloads 264
5450 Heart Murmurs and Heart Sounds Extraction Using an Algorithm Process Separation

Authors: Fatima Mokeddem

Abstract:

The phonocardiogram signal (PCG) is a physiological signal that reflects heart mechanical activity, is a promising tool for curious researchers in this field because it is full of indications and useful information for medical diagnosis. PCG segmentation is a basic step to benefit from this signal. Therefore, this paper presents an algorithm that serves the separation of heart sounds and heart murmurs in case they exist in order to use them in several applications and heart sounds analysis. The separation process presents here is founded on three essential steps filtering, envelope detection, and heart sounds segmentation. The algorithm separates the PCG signal into S1 and S2 and extract cardiac murmurs.

Keywords: phonocardiogram signal, filtering, Envelope, Detection, murmurs, heart sounds

Procedia PDF Downloads 112
5449 Using of TFC Polysulfone Electrospun Nanofiber Mats in Oil-Water Separation

Authors: Nasser A. M. Barakat

Abstract:

Membrane technology is the most promising process for oil-water separation operation if the hydrophilicity, fouling and reusability properties could be improved. In this study, novel effective and reusable membrane for oil-water separation process is introduced based on modification of polysulfone (PSF) electrospun nanofiber mats. The modification process was achieved by incorporation of NaOH nanoparticles inside the PSF nanofibers, and formation of a thin layer from a polyamide polymer on the surface of the electrospun mat. Typically, solutions composed of PSF and NaOH (twelve solutions were prepared based on different PSF concentrations; 15, 18 and 20 wt%, and various NaOH content; 1.5, 1.7 and 2.5 wt%) have been electrospun, then the dried nanofiber mats were treated by m-phenylenediamine and 1,3,5-benzenetricarbonyl chloride to form polyamide thin layer on the surface of the mats. The results indicated that incorporation of NaOH and the formed polyamide could decrease the water contact angle from ~ 130˚ to 13˚ for the nanofiber mats obtained from 20 wt% PSF solutions containing 1.7 wt% sodium hydroxide powders. Interestingly, the membrane having the lowest contact angle could separate oil-water mixture for three successive cycles and 100% removal of the oil with relatively high water flux; 5.5 m3/m2.day. Overall, simplicity of the manufacturing technique, and effectiveness and reusability of the produced nanofiber mats open new avenue for the introduced as promising membranes for the oil-water separation process.

Keywords: electrospinning, oil-water separation, hydrophilic membrane, nanofibers

Procedia PDF Downloads 312
5448 Influence of Intra-Yarn Permeability on Mesoscale Permeability of Plain Weave and 3D Fabrics

Authors: Debabrata Adhikari, Mikhail Matveev, Louise Brown, Andy Long, Jan Kočí

Abstract:

A good understanding of mesoscale permeability of complex architectures in fibrous porous preforms is of particular interest in order to achieve efficient and cost-effective resin impregnation of liquid composite molding (LCM). Fabrics used in structural reinforcements are typically woven or stitched. However, 3D fabric reinforcement is of particular interest because of the versatility in the weaving pattern with the binder yarn and in-plain yarn arrangements to manufacture thick composite parts, overcome the limitation in delamination, improve toughness etc. To predict the permeability based on the available pore spaces between the inter yarn spaces, unit cell-based computational fluid dynamics models have been using the Stokes Darcy model. Typically, the preform consists of an arrangement of yarns with spacing in the order of mm, wherein each yarn consists of thousands of filaments with spacing in the order of μm. The fluid flow during infusion exchanges the mass between the intra and inter yarn channels, meaning there is no dead-end of flow between the mesopore in the inter yarn space and the micropore in the yarn. Several studies have employed the Brinkman equation to take into account the flow through dual-scale porosity reinforcement to estimate their permeability. Furthermore, to reduce the computational effort of dual scale flow, scale separation criteria based on the ratio between yarn permeability to the yarn spacing was also proposed to quantify the dual scale and negligible micro-scale flow regime for the prediction of mesoscale permeability. In the present work, the key parameter to identify the influence of intra yarn permeability on the mesoscale permeability has been investigated with the systematic study of weft and warp yarn spacing on the plane weave as well as the position of binder yarn and number of in-plane yarn layers on 3D weave fabric. The permeability tensor has been estimated using an OpenFOAM-based model for the various weave pattern with idealized geometry of yarn implemented using open-source software TexGen. Additionally, scale separation criterion has been established based on the various configuration of yarn permeability for the 3D fabric with both the isotropic and anisotropic yarn from Gebart’s model. It was observed that the variation of mesoscale permeability Kxx within 30% when the isotropic porous yarn is considered for a 3D fabric with binder yarn. Furthermore, the permeability model developed in this study will be used for multi-objective optimizations of the preform mesoscale geometry in terms of yarn spacing, binder pattern, and a number of layers with an aim to obtain improved permeability and reduced void content during the LCM process.

Keywords: permeability, 3D fabric, dual-scale flow, liquid composite molding

Procedia PDF Downloads 72
5447 Analytical Derivative: Importance on Environment and Water Analysis/Cycle

Authors: Adesoji Sodeinde

Abstract:

Analytical derivatives has recently undergone an explosive growth in areas of separation techniques, likewise in detectability of certain compound/concentrated ions. The gloomy and depressing scenario which charaterized the application of analytical derivatives in areas of water analysis, water cycle and the environment should not be allowed to continue unabated. Due to technological advancement in various chemical/biochemical analysis separation techniques is widely used in areas of medical, forensic and to measure and assesses environment and social-economic impact of alternative control strategies. This technological improvement was dully established in the area of comparison between certain separation/detection techniques to bring about vital result in forensic[as Gas liquid chromatography reveals the evidence given in court of law during prosecution of drunk drivers]. The water quality analysis,pH and water temperature analysis can be performed in the field, the concentration of dissolved free amino-acid [DFAA] can also be detected through separation techniques. Some important derivatives/ions used in separation technique. Water analysis : Total water hardness [EDTA to determine ca and mg ions]. Gas liquid chromatography : innovative gas such as helium [He] or nitrogen [N] Water cycle : Animal bone charcoal,activated carbon and ultraviolet light [U.V light].

Keywords: analytical derivative, environment, water analysis, chemical/biochemical analysis

Procedia PDF Downloads 313
5446 Numerical Analysis of Passive Controlled Turbulent Flow around a Circular Cylinder

Authors: Mustafa Soyler, Mustafa M. Yavuz, Bulent Yaniktepe, Coskun Ozalp

Abstract:

In this study, unsteady two-dimensional turbulent flow around a circular cylinder and passive control of the flow with groove on the cylinder was examined. In the CFD analysis, solutions were made using turbulent flow conditions. Steady and unsteady solutions were used in turbulent flow analysis. Numerical analysis of the flow around the circular cylinder is difficult since flow is not in a stable regime when Reynold number is between 1000 and 10000. The analyses in this study were performed at a subcritical Re number of 5000 and the results were compared with available experimental results of the drag coefficient (Cd) and Strouhal (St) number values in the literature. The effect of different groove types and depths on the Cd coefficient has been analyzed and grooves increase the Cd coefficient compared to the smooth cylinder.

Keywords: CFD, drag coefficient, flow over cylinder, passive flow control

Procedia PDF Downloads 198
5445 Implementation of Real-Time Multiple Sound Source Localization and Separation

Authors: Jeng-Shin Sheu, Qi-Xun Zheng

Abstract:

This paper mainly discusses a method of separating speech when using a microphone array without knowing the number and direction of sound sources. In recent years, there have been many studies on the method of separating signals by using masking, but most of the separation methods must be operated under the condition of a known number of sound sources. Such methods cannot be used for real-time applications. In our method, this paper uses Circular-Integrated-Cross-Spectrum to estimate the statistical histogram distribution of the direction of arrival (DOA) to obtain the number of sound sources and sound in the mixed-signal Source direction. In calculating the relevant parameters of the ring integrated cross-spectrum, the phase (Phase of the Cross-Power Spectrum) and phase rotation factors (Phase Rotation Factors) calculated by the cross power spectrum of each microphone pair are used. In the part of separating speech, it uses the DOA weighting and shielding separation method to calculate the sound source direction (DOA) according to each T-F unit (time-frequency point). The weight corresponding to each T-F unit can be used to strengthen the intensity of each sound source from the T-F unit and reduce the influence of the remaining sound sources, thereby achieving voice separation.

Keywords: real-time, spectrum analysis, sound source localization, sound source separation

Procedia PDF Downloads 122