Search results for: flight characteristics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7481

Search results for: flight characteristics

7421 Reinforcement Learning for Robust Missile Autopilot Design: TRPO Enhanced by Schedule Experience Replay

Authors: Bernardo Cortez, Florian Peter, Thomas Lausenhammer, Paulo Oliveira

Abstract:

Designing missiles’ autopilot controllers have been a complex task, given the extensive flight envelope and the nonlinear flight dynamics. A solution that can excel both in nominal performance and in robustness to uncertainties is still to be found. While Control Theory often debouches into parameters’ scheduling procedures, Reinforcement Learning has presented interesting results in ever more complex tasks, going from videogames to robotic tasks with continuous action domains. However, it still lacks clearer insights on how to find adequate reward functions and exploration strategies. To the best of our knowledge, this work is a pioneer in proposing Reinforcement Learning as a framework for flight control. In fact, it aims at training a model-free agent that can control the longitudinal non-linear flight dynamics of a missile, achieving the target performance and robustness to uncertainties. To that end, under TRPO’s methodology, the collected experience is augmented according to HER, stored in a replay buffer and sampled according to its significance. Not only does this work enhance the concept of prioritized experience replay into BPER, but it also reformulates HER, activating them both only when the training progress converges to suboptimal policies, in what is proposed as the SER methodology. The results show that it is possible both to achieve the target performance and to improve the agent’s robustness to uncertainties (with low damage on nominal performance) by further training it in non-nominal environments, therefore validating the proposed approach and encouraging future research in this field.

Keywords: Reinforcement Learning, flight control, HER, missile autopilot, TRPO

Procedia PDF Downloads 226
7420 Effect of Design Parameters on a Two Stage Launch Vehicle Performance

Authors: Assem Sallam, Aly Elzahaby, Ahmed Makled, Mohamed Khalil

Abstract:

Change in design parameters of launch vehicle affects its overall flight path trajectory. In this paper, several design parameters are introduced to study their effect. Selected parameters are the launch vehicle mass, which is presented in the form of payload mass, the maximum allowable angle of attack the launch vehicle can withstand, the flight path angle that is predefined for the launch vehicle second stage, the required inclination and its effect on the launch azimuth and finally by changing the launch pad coordinate. Selected design parameters are studied for their effect on the variation of altitude, ground range, absolute velocity and the flight path angle. The study gives a general mean of adjusting the design parameters to reach the required launch vehicle performance.

Keywords: launch vehicle azimuth, launch vehicle trajectory, launch vehicle payload, launch pad location

Procedia PDF Downloads 285
7419 Modeling of a UAV Longitudinal Dynamics through System Identification Technique

Authors: Asadullah I. Qazi, Mansoor Ahsan, Zahir Ashraf, Uzair Ahmad

Abstract:

System identification of an Unmanned Aerial Vehicle (UAV), to acquire its mathematical model, is a significant step in the process of aircraft flight automation. The need for reliable mathematical model is an established requirement for autopilot design, flight simulator development, aircraft performance appraisal, analysis of aircraft modifications, preflight testing of prototype aircraft and investigation of fatigue life and stress distribution etc.  This research is aimed at system identification of a fixed wing UAV by means of specifically designed flight experiment. The purposely designed flight maneuvers were performed on the UAV and aircraft states were recorded during these flights. Acquired data were preprocessed for noise filtering and bias removal followed by parameter estimation of longitudinal dynamics transfer functions using MATLAB system identification toolbox. Black box identification based transfer function models, in response to elevator and throttle inputs, were estimated using least square error   technique. The identification results show a high confidence level and goodness of fit between the estimated model and actual aircraft response.

Keywords: fixed wing UAV, system identification, black box modeling, longitudinal dynamics, least square error

Procedia PDF Downloads 292
7418 Relationship between Relational Energy, Emotional Labour and Cognitive Flexibility of Cabin Crew

Authors: Rithi Baruah

Abstract:

The aviation industry is one such sectors whose primary aim is to work for the safety and comfort of their clients and customers. The crew members in the aviation industry include pilots, flight attendants, air traffic controllers, baggage personnel and maintenance personnel. This study will concentrate on the frontline employees of the aviation industry, the flight attendants. Flight attendants belong to the niche group of population who are paid to smile. Although the profession seems to be very glamorous, it is physically and psychologically very taxing. Energy at workplace is a fairly new concept and is an organizational resource which helps employee attain their goals. Therefore, the researcher will aim to establish the relationship between relational energy and the major issue of emotional labor and cognitive flexibility among flight attendants. The researcher will hypothesize that there will be a negative relationship between relational energy and emotional labour, and a positive relationship between relational energy and cognitive flexibility. Also, a positive relationship will be expected between cognitive flexibility and emotional labour of cabin crew. A quantitative research design will be used to study the relationship among 50 flight attendants in India. The findings of the research will not only help the aviation sector but will be a major contribution to the existing literature of aviation psychology in India which is scanty. The relationships can also provide scope to develop a model using the same. From crew resource management and aviation psychology perspectives, relationships among the study variables will not only provide scope for helping the aviation employees in particular but also develop the performance and safety of aviation sector at large.

Keywords: cabin crew, cognitive flexibility, emotional labour, relational energy

Procedia PDF Downloads 271
7417 Tuning of Fixed Wing Micro Aerial Vehicles Using Tethered Setup

Authors: Shoeb Ahmed Adeel, Vivek Paul, K. Prajwal, Michael Fenelon

Abstract:

Techniques have been used to tether and stabilize a multi-rotor MAV but carrying out the same process to a fixed wing MAV is a novel method which can be utilized in order to reduce damage occurring to the fixed wing MAVs while conducting flight test trials and PID tuning. A few sensors and on board controller is required to carry out this experiment in horizontal and vertical plane of the vehicle. Here we will be discussing issues such as sensitivity of the air vehicle, endurance and external load of the string acting on the vehicle.

Keywords: MAV, PID tuning, tethered flight, UAV

Procedia PDF Downloads 609
7416 Assessing the Incapacity of Indonesian Aviators Medical Conditions in 2016 – 2017

Authors: Ferdi Afian, Inne Yuliawati

Abstract:

Background: The change in causes of death from infectious diseases to non-communicable diseases also occurs in the aviation community in Indonesia. Non-communicable diseases are influenced by several internal risk factors, such as age, lifestyle changes and the presence of other diseases. These risk factors will increase the incidence of heart diseases resulting in the incapacity of Indonesian aviators which will disrupt flight safety. Method: The study was conducted by collecting secondary data. The retrieval of primary data was obtained from medical records at the Indonesian Aviation Health Center in 2016-2017. The subjects in this study were all cases of incapacity in Indonesian aviators medical conditions. Results: In this study, there were 15 cases of aviators in Indonesia who experienced incapacity of medical conditions related to heart and lung diseases in 2016-2017. Based on the secondary data contained in the flight medical records at the Aviation Health Center Aviation, it was found that several factors related to aviators incapacity causing its inability to carried out flight duties. Conclusion: Incapacity of Indonesian aviators medical conditions are most affected by the high value of Body Mass Index (86%) and less affected by high of Uric Acid in the blood (26%) and Hyperglycemia (26%).

Keywords: incapacity, aviators, flight, Indonesia

Procedia PDF Downloads 107
7415 The Relationship between Fight-Flight-Freeze System, Level of Expressed Emotion in Family, and Emotion Regulation Difficulties of University Students: Comparison Experienced to Inexperienced Non-Suicidal Self-Injury Students (NSSI)

Authors: Hyojung Shin, Munhee Kweon

Abstract:

Non-suicide Self Injuri (NSSI) can be defined as the act of an individual who does not intend to die directly and intentionally damaging his or her body tissues. According to a study conducted by the Korean Ministry of Education in 2018, the NSSI is widely spreading among teenagers, with 7.9 percent of all middle school students and 6.4 percent of high school students reporting experience in NSSI. As such, it is understood that the first time of the NSSI is in adolescence. However, the NSSI may not start and stop at a certain time, but may last longer. However, despite the widespread prevalence of NSSI among teenagers, little is known about the process and maintenance of NSSI college students on a continuous development basis. Korea's NSSI research trends are mainly focused on individual internal vulnerabilities (high levels of painful emotions/awareness, lack of pain tolerance) and interpersonal vulnerabilities (poor communication skills and social problem solving), and little studies have been done on individuals' unique characteristics and environmental factors such as substrate or environmental vulnerability factors. In particular, environmental factors are associated with the occurrence of NSSI by acting as a vulnerability factor that can interfere with the emotional control of individuals, whereas individual factors play a more direct role by contributing to the maintenance of NSSI, so it is more important to consider this for personal environmental involvement in NSSI. This study focused on the Fight-Flight-Freeze System as a factor in the defensive avoidance system of Reward Sensitivity in individual factors. Also, Environmental factors include the level of expressed emotion in family. Wedig and Nock (2007) said that if parents with a self-critical cognitive style take the form of criticizing their children, the experience of NSSI increases. The high level of parental criticism is related to the increasing frequency of NSSI acts as well as to serious levels of NSSI. If the normal coping mechanism fails to control emotions, people want to overcome emotional difficulties even through NSSI, and emotional disturbances experienced by individuals within an unsupported social relationship increase vulnerability to NSSI. Based on these theories, this study is to find ways to prevent NSSI and intervene in counseling effectively by verifying the differences between the characteristics experienced NSSI persons and non-experienced NSSI persons. Therefore, the purpose of this research was to examine the relationship of Fight-Flight-Freeze System (FFFS), level of expressed emotion in family and emotion regulation difficulties, comparing those who experienced Non-Suicidal Self-Injury (NSSI) with those who did not experienced Non-Suicidal Self-Injury (NSSI). The data were collected from university students in Seoul Korea and Gyeonggi-do province. 99 subjects were experienced student of NSSI, while 375 were non- experienced student of NSSI. The results of this study are as follows. First, the result of t-test indicated that NSSI attempters showed a significant difference in fight-flight-freeze system, level of expressed emotion and emotion regulation difficulties, compared with non-attempters. Second, fight-flight-freeze system, level of expressed emotion in family and emotion regulation difficulties of NSSI attempters showed a significant difference in correlation. The correlation was significant only freeze system of fight-flight-freeze system, Level of expressed emotion in family and emotion regulation difficulties. Third, freeze system and level of expressed emotion in family predicted emotion regulation difficulties of NSSI attempters. Fight-freeze system and level of expressed emotion in family predicted emotion regulation difficulties of non-NSSI attempters. Lastly, Practical implications for counselors and limitations of this study are discussed.

Keywords: fight-flight-freeze system, level of expressed emotion in family, emotion regulation difficulty, non-suicidal self injury

Procedia PDF Downloads 83
7414 Physiological Effects during Aerobatic Flights on Science Astronaut Candidates

Authors: Pedro Llanos, Diego García

Abstract:

Spaceflight is considered the last frontier in terms of science, technology, and engineering. But it is also the next frontier in terms of human physiology and performance. After more than 200,000 years humans have evolved under earth’s gravity and atmospheric conditions, spaceflight poses environmental stresses for which human physiology is not adapted. Hypoxia, accelerations, and radiation are among such stressors, our research involves suborbital flights aiming to develop effective countermeasures in order to assure sustainable human space presence. The physiologic baseline of spaceflight participants is subject to great variability driven by age, gender, fitness, and metabolic reserve. The objective of the present study is to characterize different physiologic variables in a population of STEM practitioners during an aerobatic flight. Cardiovascular and pulmonary responses were determined in Science Astronaut Candidates (SACs) during unusual attitude aerobatic flight indoctrination. Physiologic data recordings from 20 subjects participating in high-G flight training were analyzed. These recordings were registered by wearable sensor-vest that monitored electrocardiographic tracings (ECGs), signs of dysrhythmias or other electric disturbances during all the flight. The same cardiovascular parameters were also collected approximately 10 min pre-flight, during each high-G/unusual attitude maneuver and 10 min after the flights. The ratio (pre-flight/in-flight/post-flight) of the cardiovascular responses was calculated for comparison of inter-individual differences. The resulting tracings depicting the cardiovascular responses of the subjects were compared against the G-loads (Gs) during the aerobatic flights to analyze cardiovascular variability aspects and fluid/pressure shifts due to the high Gs. In-flight ECG revealed cardiac variability patterns associated with rapid Gs onset in terms of reduced heart rate (HR) and some scattered dysrhythmic patterns (15% premature ventricular contractions-type) that were considered as triggered physiological responses to high-G/unusual attitude training and some were considered as instrument artifact. Variation events were observed in subjects during the +Gz and –Gz maneuvers and these may be due to preload and afterload, sudden shift. Our data reveal that aerobatic flight influenced the breathing rate of the subject, due in part by the various levels of energy expenditure due to the increased use of muscle work during these aerobatic maneuvers. Noteworthy was the high heterogeneity in the different physiological responses among a relatively small group of SACs exposed to similar aerobatic flights with similar Gs exposures. The cardiovascular responses clearly demonstrated that SACs were subjected to significant flight stress. Routine ECG monitoring during high-G/unusual attitude flight training is recommended to capture pathology underlying dangerous dysrhythmias in suborbital flight safety. More research is currently being conducted to further facilitate the development of robust medical screening, medical risk assessment approaches, and suborbital flight training in the context of the evolving commercial human suborbital spaceflight industry. A more mature and integrative medical assessment method is required to understand the physiology state and response variability among highly diverse populations of prospective suborbital flight participants.

Keywords: g force, aerobatic maneuvers, suborbital flight, hypoxia, commercial astronauts

Procedia PDF Downloads 100
7413 Body Fluids Identification by Raman Spectroscopy and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

Authors: Huixia Shi, Can Hu, Jun Zhu, Hongling Guo, Haiyan Li, Hongyan Du

Abstract:

The identification of human body fluids during forensic investigations is a critical step to determine key details, and present strong evidence to testify criminal in a case. With the popularity of DNA and improved detection technology, the potential question must be revolved that whether the suspect’s DNA derived from saliva or semen, menstrual or peripheral blood, how to identify the red substance or aged blood traces on the spot is blood; How to determine who contribute the right one in mixed stains. In recent years, molecular approaches have been developing increasingly on mRNA, miRNA, DNA methylation and microbial markers, but appear expensive, time-consuming, and destructive disadvantages. Physicochemical methods are utilized frequently such us scanning electron microscopy/energy spectroscopy and X-ray fluorescence and so on, but results only showing one or two characteristics of body fluid itself and that out of working in unknown or mixed body fluid stains. This paper focuses on using chemistry methods Raman spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to discriminate species of peripheral blood, menstrual blood, semen, saliva, vaginal secretions, urine or sweat. Firstly, non-destructive, confirmatory, convenient and fast Raman spectroscopy method combined with more accurate matrix-assisted laser desorption/ionization time-of-flight mass spectrometry method can totally distinguish one from other body fluids. Secondly, 11 spectral signatures and specific metabolic molecules have been obtained by analysis results after 70 samples detected. Thirdly, Raman results showed peripheral and menstrual blood, saliva and vaginal have highly similar spectroscopic features. Advanced statistical analysis of the multiple Raman spectra must be requested to classify one to another. On the other hand, it seems that the lactic acid can differentiate peripheral and menstrual blood detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, but that is not a specific metabolic molecule, more sensitivity ones will be analyzed in a forward study. These results demonstrate the great potential of the developed chemistry methods for forensic applications, although more work is needed for method validation.

Keywords: body fluids, identification, Raman spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

Procedia PDF Downloads 102
7412 ASEAN Air Transport Liberalization and Its Impact to Indonesian Air Service

Authors: Oentoeng Wahjoe

Abstract:

Liberalisation of air transportation practically is known as open sky policy. In the practice, the liberalisation of air transportation is divided into two group of services, i.e.: air transportation services, for passengers and goods (air service) which is categorized as hard rights and supporting services of the air transportation services (ancillary services) which is categorized as soft rights. The research in this paper focused in air transportation services for passengers and goods, consists of nine freedom of the air. The impact of the policy such as the Agreement regarding ASEAN open sky policy, is the readiness of Indonesian air transportation companies to compete with foreign air transportation companies. The goverment of Indonesia has to regulate the implementation of ASEAN Open Sky Policy to be projected in order to comply with national development, i.e. the function of air law in national development. The policy has been implemented by enact or amend the existing law as air law that regulate flight lines, the following provisions: To regulate flight line for foreign airlines to open flight lines in Indonesia region which may not or have not land and sea transportation. The regulation is intended to supprot mobility of humans, goods and services that may fulfil the needs of the people of Indonesia, which materially and spiritually and the development of the region. The regulation of flight lines of foreign air transportation for region of tourism, industrial and trade centre. The regulation is intended to support the national economic development of Indonesia.

Keywords: transport, liberalization, impact, Indonesian air service

Procedia PDF Downloads 308
7411 A Detailed Study of Two Different Airfoils on Flight Performance of MAV of Same Physical Dimension

Authors: Shoeb A. Adeel, Shashant Anand, Vivek Paul, Dinesh, Suraj, Roshan

Abstract:

The paper presents a study of micro air vehicles (MAVs) with wingspans of 20 Cm with two different airfoil configurations. MAVs have vast potential applications in both military and civilian areas. These MAVs are fully autonomous and supply real-time data. The paper focuses on two different designs of the MAVs one being N22 airfoil and the other a flat plate with similar dimension. As designed, the MAV would fly in a low Reynolds-number regime at airspeeds of 15 & 20 m/sec. Propulsion would be provided by an electric motor with an advanced lithium. Because of the close coupling between vehicle elements, system integration would be a significant challenge, requiring tight packaging and multifunction components to meet mass limitations and Centre of Gravity (C.G) balancing. These MAVs are feasible and within a couple of years of technology development in key areas including sensors, propulsion, Aerodynamics, and packaging these would be easily available to the users at affordable prices. The paper finally compares the flight performance of the two configurations.

Keywords: airfoil, CFD, MAV, flight performance, endurance, climb, lift, drag

Procedia PDF Downloads 469
7410 Nonlinear Aerodynamic Parameter Estimation of a Supersonic Air to Air Missile by Using Artificial Neural Networks

Authors: Tugba Bayoglu

Abstract:

Aerodynamic parameter estimation is very crucial in missile design phase, since accurate high fidelity aerodynamic model is required for designing high performance and robust control system, developing high fidelity flight simulations and verification of computational and wind tunnel test results. However, in literature, there is not enough missile aerodynamic parameter identification study for three main reasons: (1) most air to air missiles cannot fly with constant speed, (2) missile flight test number and flight duration are much less than that of fixed wing aircraft, (3) variation of the missile aerodynamic parameters with respect to Mach number is higher than that of fixed wing aircraft. In addition to these challenges, identification of aerodynamic parameters for high wind angles by using classical estimation techniques brings another difficulty in the estimation process. The reason for this, most of the estimation techniques require employing polynomials or splines to model the behavior of the aerodynamics. However, for the missiles with a large variation of aerodynamic parameters with respect to flight variables, the order of the proposed model increases, which brings computational burden and complexity. Therefore, in this study, it is aimed to solve nonlinear aerodynamic parameter identification problem for a supersonic air to air missile by using Artificial Neural Networks. The method proposed will be tested by using simulated data which will be generated with a six degree of freedom missile model, involving a nonlinear aerodynamic database. The data will be corrupted by adding noise to the measurement model. Then, by using the flight variables and measurements, the parameters will be estimated. Finally, the prediction accuracy will be investigated.

Keywords: air to air missile, artificial neural networks, open loop simulation, parameter identification

Procedia PDF Downloads 246
7409 Pre-Service Teachers’ Reasoning and Sense Making of Variables

Authors: Olteanu Constanta, Olteanu Lucian

Abstract:

Researchers note that algebraic reasoning and sense making is essential for building conceptual knowledge in school mathematics. Consequently, pre-service teachers’ own reasoning and sense making are useful in fostering and developing students’ algebraic reasoning and sense making. This article explores the forms of reasoning and sense making that pre-service mathematics teachers exhibit and use in the process of analysing problem-posing tasks with a focus on first-degree equations. Our research question concerns the characteristics of the problem-posing tasks used for reasoning and sense making of first-degree equations as well as the characteristics of pre-service teachers’ reasoning and sense making in problem-posing tasks. The analyses are grounded in a post-structuralist philosophical perspective and variation theory. Sixty-six pre-service primary teachers participated in the study. The results show that the characteristics of reasoning in problem-posing tasks and of pre-service teachers are selecting, exploring, reconfiguring, encoding, abstracting and connecting. The characteristics of sense making in problem-posing tasks and of pre-service teachers are recognition, relationships, profiling, comparing, laddering and verifying. Beside this, the connection between reasoning and sense making is rich in line of flight in problem-posing tasks, while the connection is rich in line of rupture for pre-service teachers.

Keywords: first-degree equations, problem posing, reasoning, rhizomatic assemblage, sense-making, variation theory

Procedia PDF Downloads 81
7408 Flight Safety Hazard: An Investigation into Bird Strike Prevention in the Vicinity of Suvarnabhumi Airport, Thailand

Authors: Chantarat Manvichien

Abstract:

The purpose of this research paper was aimed to examine the bird strike prevention in the vicinity of Suvarnabhumi Airport, Thailand. A bird strike event occurs when a bird or a flock of birds collide with an operating airplane and results in flight interruption. This is the reason why International Civil Aviation Organization (ICAO), a part of the United Nations, has an assumption that birds, including other wildlife, are a serious hazard to aircraft and attempts should be accomplished to overcome this hazard. ICAO requires all airports worldwide to set up proactive countermeasures in order to reduce the risk from bird strike and wildlife hazard. In Thailand, the Airports of Thailand Public Company Limited which manages Suvarnabhumi Airport, also known as Bangkok International Airport, responds to the requirements and spends a lot of effort to ensure this hazard is manageable. An intensive study on the countermeasures to prevent aircraft accident from bird strike and other wildlife have been continuously executed since the early construction of the Airport until nowadays.

Keywords: bird strike, flight safety, wildlife hazard, Suvarnabhumi airport

Procedia PDF Downloads 339
7407 An Accurate Prediction of Surface Temperature History in a Supersonic Flight

Authors: A. M. Tahsini, S. A. Hosseini

Abstract:

In the present study, the surface temperature history of the adaptor part in a two-stage supersonic launch vehicle is accurately predicted. The full Navier-Stokes equations are used to estimate the aerodynamic heat flux. The one-dimensional heat conduction in solid phase is used to compute the temperature history. The instantaneous surface temperature is used to improve the applied heat flux, to improve the accuracy of the results.

Keywords: aerodynamic heating, heat conduction, numerical simulation, supersonic flight, launch vehicle

Procedia PDF Downloads 423
7406 Cooling of Exhaust Gases Emitted Into the Atmosphere as the Possibility to Reduce the Helicopter Radiation Emission Level

Authors: Mateusz Paszko, Mirosław Wendeker, Adam Majczak

Abstract:

Every material body that temperature is higher than 0K (absolute zero) emits infrared radiation to the surroundings. Infrared radiation is highly meaningful in military aviation, especially in military applications of helicopters. Helicopters, in comparison to other aircraft, have much lower flight speeds and maneuverability, which makes them easy targets for actual combat assets like infrared-guided missiles. When designing new helicopter types, especially for combat applications, it is essential to pay enormous attention to infrared emissions of the solid parts composing the helicopter’s structure, as well as to exhaust gases egressing from the engine’s exhaust system. Due to their high temperature, exhaust gases, egressed to the surroundings are a major factor in infrared radiation emission and, in consequence, detectability of a helicopter performing air combat operations. Protection of the helicopter in flight from early detection, tracking and finally destruction can be realized in many ways. This paper presents the analysis of possibilities to decrease the infrared radiation level that is emitted to the environment by helicopter in flight, by cooling exhaust in special ejection-based coolers. The paper also presents the concept 3D model and results of numeric analysis of ejective-based cooler cooperation with PA-10W turbine engine. Numeric analysis presented promising results in decreasing the infrared emission level by PA W-3 helicopter in flight.

Keywords: exhaust cooler, helicopter propulsion, infrared radiation, stealth

Procedia PDF Downloads 321
7405 Ways to Spend Time at an Airport before Boarding a Flight

Authors: Amol Parikh

Abstract:

The goal of this study is to understand the most preferred ways to spend time at an airport while waiting for a flight to board. Survey was done on 1639 people of the United States of America. In the overall data, it was found that majority people always preferred spending time doing something in their mobile phone. Second most preferred option was reading something, followed by wanting a companion to talk to or to eat/drink. Least preferred option was to eat/drink alone. Overall data was then filtered based on age, gender, income and urban density groups. Percentage of people wanting to use a mobile phone was highest in the age group of 18-24. People aged 45 and above chose reading as the most preferred option. In any of the ranges of income, gender or urban density using mobile phone was the most preferred option. Conclusion of this study is that introducing a mobile app to search for a companion at an airport to do like minded activity would get noticed by majority travelers and would be a business idea worth trying as wanting a companion to talk or eat/drink with is not the least preferred option.

Keywords: waiting for a flight, airport, mobile phone, companion

Procedia PDF Downloads 261
7404 3D Stereoscopic Measurements from AR Drone Squadron

Authors: R. Schurig, T. Désesquelles, A. Dumont, E. Lefranc, A. Lux

Abstract:

A cost-efficient alternative is proposed to the use of a single drone carrying multiple cameras in order to take stereoscopic images and videos during its flight. Such drone has to be particularly large enough to take off with its equipment, and stable enough in order to make valid measurements. Corresponding performance for a single aircraft usually comes with a large cost. Proposed solution consists in using multiple smaller and cheaper aircrafts carrying one camera each instead of a single expensive one. To give a proof of concept, AR drones, quad-rotor UAVs from Parrot Inc., are experimentally used.

Keywords: drone squadron, flight control, rotorcraft, Unmanned Aerial Vehicle (UAV), AR drone, stereoscopic vision

Procedia PDF Downloads 439
7403 Two-Stage Launch Vehicle Trajectory Modeling for Low Earth Orbit Applications

Authors: Assem M. F. Sallam, Ah. El-S. Makled

Abstract:

This paper presents a study on the trajectory of a two stage launch vehicle. The study includes dynamic responses of motion parameters as well as the variation of angles affecting the orientation of the launch vehicle (LV). LV dynamic characteristics including state vector variation with corresponding altitude and velocity for the different LV stages separation, as well as the angle of attack and flight path angles are also discussed. A flight trajectory study for the drop zone of first stage and the jettisoning of fairing are introduced in the mathematical modeling to study their effect. To increase the accuracy of the LV model, atmospheric model is used taking into consideration geographical location and the values of solar flux related to the date and time of launch, accurate atmospheric model leads to enhancement of the calculation of Mach number, which affects the drag force over the LV. The mathematical model is implemented on MATLAB based software (Simulink). The real available experimental data are compared with results obtained from the theoretical computation model. The comparison shows good agreement, which proves the validity of the developed simulation model; the maximum error noticed was generally less than 10%, which is a result that can lead to future works and enhancement to decrease this level of error.

Keywords: launch vehicle modeling, launch vehicle trajectory, mathematical modeling, Matlab- Simulink

Procedia PDF Downloads 253
7402 Design of Electromagnetic Field of PMSG for VTOL Series-Hybrid UAV

Authors: Sooyoung Cho, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee

Abstract:

Series hybrid UAV(Unmanned aerial vehicle) that is proposed in this paper performs VTOL(Vertical take-off and landing) using the battery and generator, and it applies the series hybrid system with combination of the small engine and generator when cruising flight. This system can be described as the next-generation system that can dramatically increase the UAV flight times. Also, UAV systems require a large energy at the time of VTOL to be conducted for a short time. Therefore, this paper designs PMSG(Permanent Magnet Synchronous Generator) having a high specific power considering VTOL through the FEA.

Keywords: PMSG, VTOL, UAV, high specific power density

Procedia PDF Downloads 488
7401 Evaluation of Redundancy Architectures Based on System on Chip Internal Interfaces for Future Unmanned Aerial Vehicles Flight Control Computer

Authors: Sebastian Hiergeist

Abstract:

It is a common view that Unmanned Aerial Vehicles (UAV) tend to migrate into the civil airspace. This trend is challenging UAV manufacturer in plenty ways, as there come up a lot of new requirements and functional aspects. On the higher application levels, this might be collision detection and avoidance and similar features, whereas all these functions only act as input for the flight control components of the aircraft. The flight control computer (FCC) is the central component when it comes up to ensure a continuous safe flight and landing. As these systems are flight critical, they have to be built up redundantly to be able to provide a Fail-Operational behavior. Recent architectural approaches of FCCs used in UAV systems are often based on very simple microprocessors in combination with proprietary Application-Specific Integrated Circuit (ASIC) or Field Programmable Gate Array (FPGA) extensions implementing the whole redundancy functionality. In the future, such simple microprocessors may not be available anymore as they are more and more replaced by higher sophisticated System on Chip (SoC). As the avionic industry cannot provide enough market power to significantly influence the development of new semiconductor products, the use of solutions from foreign markets is almost inevitable. Products stemming from the industrial market developed according to IEC 61508, or automotive SoCs, according to ISO 26262, can be seen as candidates as they have been developed for similar environments. Current available SoC from the industrial or automotive sector provides quite a broad selection of interfaces like, i.e., Ethernet, SPI or FlexRay, that might come into account for the implementation of a redundancy network. In this context, possible network architectures shall be investigated which could be established by using the interfaces stated above. Of importance here is the avoidance of any single point of failures, as well as a proper segregation in distinct fault containment regions. The performed analysis is supported by the use of guidelines, published by the aviation authorities (FAA and EASA), on the reliability of data networks. The main focus clearly lies on the reachable level of safety, but also other aspects like performance and determinism play an important role and are considered in the research. Due to the further increase in design complexity of recent and future SoCs, also the risk of design errors, which might lead to common mode faults, increases. Thus in the context of this work also the aspect of dissimilarity will be considered to limit the effect of design errors. To achieve this, the work is limited to broadly available interfaces available in products from the most common silicon manufacturer. The resulting work shall support the design of future UAV FCCs by giving a guideline on building up a redundancy network between SoCs, solely using on board interfaces. Therefore the author will provide a detailed usability analysis on available interfaces provided by recent SoC solutions, suggestions on possible redundancy architectures based on these interfaces and an assessment of the most relevant characteristics of the suggested network architectures, like e.g. safety or performance.

Keywords: redundancy, System-on-Chip, UAV, flight control computer (FCC)

Procedia PDF Downloads 185
7400 System-Driven Design Process for Integrated Multifunctional Movable Concepts

Authors: Oliver Bertram, Leonel Akoto Chama

Abstract:

In today's civil transport aircraft, the design of flight control systems is based on the experience gained from previous aircraft configurations with a clear distinction between primary and secondary flight control functions for controlling the aircraft altitude and trajectory. Significant system improvements are now seen particularly in multifunctional moveable concepts where the flight control functions are no longer considered separate but integral. This allows new functions to be implemented in order to improve the overall aircraft performance. However, the classical design process of flight controls is sequential and insufficiently interdisciplinary. In particular, the systems discipline is involved only rudimentarily in the early phase. In many cases, the task of systems design is limited to meeting the requirements of the upstream disciplines, which may lead to integration problems later. For this reason, approaching design with an incremental development is required to reduce the risk of a complete redesign. Although the potential and the path to multifunctional moveable concepts are shown, the complete re-engineering of aircraft concepts with less classic moveable concepts is associated with a considerable risk for the design due to the lack of design methods. This represents an obstacle to major leaps in technology. This gap in state of the art is even further increased if, in the future, unconventional aircraft configurations shall be considered, where no reference data or architectures are available. This means that the use of the above-mentioned experience-based approach used for conventional configurations is limited and not applicable to the next generation of aircraft. In particular, there is a need for methods and tools for a rapid trade-off between new multifunctional flight control systems architectures. To close this gap in the state of the art, an integrated system-driven design process for multifunctional flight control systems of non-classical aircraft configurations will be presented. The overall goal of the design process is to find optimal solutions for single or combined target criteria in a fast process from the very large solution space for the flight control system. In contrast to the state of the art, all disciplines are involved for a holistic design in an integrated rather than a sequential process. To emphasize the systems discipline, this paper focuses on the methodology for designing moveable actuation systems in the context of this integrated design process of multifunctional moveables. The methodology includes different approaches for creating system architectures, component design methods as well as the necessary process outputs to evaluate the systems. An application example of a reference configuration is used to demonstrate the process and validate the results. For this, new unconventional hydraulic and electrical flight control system architectures are calculated which result from the higher requirements for multifunctional moveable concept. In addition to typical key performance indicators such as mass and required power requirements, the results regarding the feasibility and wing integration aspects of the system components are examined and discussed here. This is intended to show how the systems design can influence and drive the wing and overall aircraft design.

Keywords: actuation systems, flight control surfaces, multi-functional movables, wing design process

Procedia PDF Downloads 108
7399 A Review Of Blended Wing Body And Slender Delta Wing Performance Utilizing Experimental Techniques And Computational Fluid Dynamics

Authors: Abhiyan Paudel, Maheshwaran M Pillai

Abstract:

This paper deals with the optimization and comparison of slender delta wing and blended wing body. The objective is to study the difference between the two wing types and analyze the various aerodynamic characteristics of both of these types.The blended-wing body is an aircraft configuration that has the potential to be more efficient than conventional large transport aircraft configurations with the same capability. The purported advantages of the BWB approach are efficient high-lift wings and a wide airfoil-shaped body. Similarly, symmetric separation vortices over slender delta wing may become asymmetric as the angle of attack is increased beyond a certain value, causing asymmetric forces even at symmetric flight conditions. The transition of the vortex pattern from being symmetric to asymmetric over symmetric bodies under symmetric flow conditions is a fascinating fluid dynamics problem and of major importance for the performance and control of high-maneuverability flight vehicles that favor the use of slender bodies. With the use of Star CCM, we analyze both the fluid properties. The CL, CD and CM were investigated in steady state CFD of BWB at Mach 0.3 and through wind tunnel experiments on 1/6th model of BWB at Mach 0.1. From CFD analysis pressure variation, Mach number contours and turbulence area was observed.

Keywords: Coefficient of Lift, Coefficient of Drag, CFD=Computational Fluid Dynamics, BWB=Blended Wing Body, slender delta wing

Procedia PDF Downloads 499
7398 Some Aspects on Formation Initialization and Its Maintenance of Leo Satellites

Authors: Y. Johnson

Abstract:

Study of multi-satellite formation flight systems has drawn wide attention recently due to so many potential advantages. The present work aims to model the relative motion dynamics in terms of change in classical orbital parameters between the two satellites-chief and deputy- under Earth’s oblateness effect. The required impulsive thrust control is calculated to minimize these orbital parameter changes. The formation configuration is initialized by selecting a set of orbital parameters for the chief and deputy satellites such that bounded motion is maintained for a long time in a J_2-invariant relative non-circular orbit between the satellites. The solution of J_2-modified Hill’s equations is also derived in this paper.

Keywords: satellite, formation flight, j2 effect, control

Procedia PDF Downloads 246
7397 Increasing Efficiency, Performance and Safety of Aircraft during Takeoff and Landing by Interpreting Electromagnetism

Authors: Sambit Supriya Dash

Abstract:

Aerospace Industry has evolved over the last century and is growing by approaching towards, more fuel efficient, cheaper, simpler, convenient and safer ways of flight stages. In this paper, the accident records of aircrafts are studied and found about 71% of accidents caused on runways during Takeoff and Landing. By introducing the concept of interpreting electromagnetism, the cause of bounced touchdown and flare failure such as landing impact loads and instability could be eliminated. During Takeoff, the rate of fuel consumption is observed to be maximum. By applying concept of interpreting electromagnetism, a remarkable rate of fuel consumption is reduced, which can be used in case of emergency due to lack of fuel or in case of extended flight. A complete setup of the concept, its effects and characteristics are studied and provided with references of few popular aircrafts. By embedding series of strong and controlled electromagnets below the runway along and aside the centre line and fixed in the line of acting force through wing-fuselage aerodynamic centre. By the essence of its strength controllable nature, it can contribute to performance and fuel efficiency for aircraft. This ensures a perfect Takeoff with less fuel consumption followed by safe cruise stage, which in turn ensures a short and safe landing, eliminating the till known failures, due to bounced touchdowns and flare failure.

Keywords: efficiency, elctromagnetism, performance, reduced fuel consumption, safety

Procedia PDF Downloads 201
7396 Strategy and Mechanism for Intercepting Unpredictable Moving Targets in the Blue-Tailed Damselfly (Ischnura elegans)

Authors: Ziv Kassner, Gal Ribak

Abstract:

Members of the Odonata order (dragonflies and damselflies) stand out for their maneuverability and superb flight control, which allow them to catch flying prey in the air. These outstanding aerial abilities were fine-tuned during millions of years of an evolutionary arms race between Odonata and their prey, providing an attractive research model for studying the relationship between sensory input – and aerodynamic output in a flying insect. The ability to catch a maneuvering target in air is interesting not just for insect behavioral ecology and neuroethology but also for designing small and efficient robotic air vehicles. While the aerial prey interception of dragonflies (suborder: Anisoptera) have been studied before, little is known about how damselflies (suborder: Zygoptera) intercept prey. Here, high-speed cameras (filming at 1000 frames per second) were used to explore how damselflies catch unpredictable targets that move through air. Blue-tailed damselflies - Ischnura elegans (family: Coenagrionidae) were introduced to a flight arena and filmed while landing on moving targets that were oscillated harmonically. The insects succeeded in capturing targets that were moved with an amplitude of 6 cm and frequencies of 0-2.5 Hz (fastest mean target speed of 0.3 m s⁻¹) and targets that were moved in 1 Hz (an average speed of 0.3 m s⁻¹) but with an amplitude of 15 cm. To land on stationary or slow targets, damselflies either flew directly to the target, or flew sideways, up to a point in which the target was fixed in the center of the field of view, followed by direct flight path towards the target. As the target moved in increased frequency, damselflies demonstrated an ability to track the targets while flying sideways and minimizing the changes of their body direction on the yaw axis. This was likely an attempt to keep the targets at the center of the visual field while minimizing rotational optic flow of the surrounding visual panorama. Stabilizing rotational optic flow helps in estimation of the velocity and distance of the target. These results illustrate how dynamic visual information is used by damselflies to guide them towards a maneuvering target, enabling the superb aerial hunting abilities of these insects. They also exemplifies the plasticity of the damselfly flight apparatus which enables flight in any direction, irrespective of the direction of the body.

Keywords: bio-mechanics, insect flight, target fixation, tracking and interception

Procedia PDF Downloads 128
7395 Investigation of the Technological Demonstrator 14x B in Different Angle of Attack in Hypersonic Velocity

Authors: Victor Alves Barros Galvão, Israel Da Silveira Rego, Antonio Carlos Oliveira, Paulo Gilberto De Paula Toro

Abstract:

The Brazilian hypersonic aerospace vehicle 14-X B, VHA 14-X B, is a vehicle integrated with the hypersonic airbreathing propulsion system based on supersonic combustion (scramjet), developing in Aerothermodynamics and hypersonic Prof. Henry T. Nagamatsu Laboratory, to conduct demonstration in atmospheric flight at the speed corresponding to Mach number 7 at an altitude of 30km. In the experimental procedure the hypersonic shock tunnel T3 was used, installed in that laboratory. This device simulates the flow over a model is fixed in the test section and can also simulate different atmospheric conditions. The scramjet technology offers substantial advantages to improve aerospace vehicle performance which flies at a hypersonic speed through the Earth's atmosphere by reducing fuel consumption on board. Basically, the scramjet is an aspirated aircraft engine fully integrated that uses oblique/conic shock waves generated during hypersonic flight, to promote the deceleration and compression of atmospheric air in scramjet inlet. During the hypersonic flight, the vehicle VHA 14-X will suffer atmospheric influences, promoting changes in the vehicle's angles of attack (angle that the mean line of vehicle makes with respect to the direction of the flow). Based on this information, a study is conducted to analyze the influences of changes in the vehicle's angle of attack during the atmospheric flight. Analytical theoretical analysis, simulation computational fluid dynamics and experimental investigation are the methodologies used to design a technological demonstrator prior to the flight in the atmosphere. This paper considers analysis of the thermodynamic properties (pressure, temperature, density, sound velocity) in lower surface of the VHA 14-X B. Also, it considers air as an ideal gas and chemical equilibrium, with and without boundary layer, considering changes in the vehicle's angle of attack (positive and negative in relation to the flow) and bi-dimensional expansion wave theory at the expansion section (Theory of Prandtl-Meyer).

Keywords: angle of attack, experimental hypersonic, hypersonic airbreathing propulsion, Scramjet

Procedia PDF Downloads 380
7394 Hohmann Transfer and Bi-Elliptic Hohmann Transfer in TRAPPIST-1 System

Authors: Jorge L. Nisperuza, Wilson Sandoval, Edward. A. Gil, Johan A. Jimenez

Abstract:

In orbital mechanics, an active research topic is the calculation of interplanetary trajectories efficient in terms of energy and time. In this sense, this work concerns the calculation of the orbital elements for sending interplanetary probes in the extrasolar system TRAPPIST-1. Specifically, using the mathematical expressions of the circular and elliptical trajectory parameters, expressions for the flight time and the orbital transfer rate increase between orbits, the orbital parameters and the graphs of the trajectories of Hohmann and Hohmann bi-elliptic for sending a probe from the innermost planet to all the other planets of the studied system, are obtained. The relationship between the orbital transfer rate increments and the relationship between the flight times for the two transfer types is found. The results show that, for all cases under consideration, the Hohmann transfer results to be the least energy and temporary cost, a result according to the theory associated with Hohmann and Hohmann bi-elliptic transfers. Saving in the increase of the speed reaches up to 87% was found, and it happens for the transference between the two innermost planets, whereas the time of flight increases by a factor of up to 6.6 if one makes use of the bi-elliptic transfer, this for the case of sending a probe from the innermost planet to the outermost.

Keywords: bi-elliptic Hohmann transfer, exoplanet, extrasolar system, Hohmann transfer, TRAPPIST-1

Procedia PDF Downloads 161
7393 Exposing Latent Fingermarks on Problematic Metal Surfaces Using Time of Flight Secondary Ion Mass Spectroscopy

Authors: Tshaiya Devi Thandauthapani, Adam J. Reeve, Adam S. Long, Ian J. Turner, James S. Sharp

Abstract:

Fingermarks are a crucial form of evidence for identifying a person at a crime scene. However, visualising latent (hidden) fingermarks can be difficult, and the correct choice of techniques is essential to develop and preserve any fingermarks that might be present. Knives, firearms and other metal weapons have proven to be challenging substrates (stainless steel in particular) from which to reliably obtain fingermarks. In this study, time of flight secondary ion mass spectroscopy (ToF-SIMS) was used to image fingermarks on metal surfaces. This technique was compared to a conventional superglue based fuming technique that was accompanied by a series of contrast enhancing dyes (basic yellow 40 (BY40), crystal violet (CV) and Sudan black (SB)) on three different metal surfaces. The conventional techniques showed little to no evidence of fingermarks being present on the metal surfaces after a few days. However, ToF-SIMS images revealed fingermarks on the same and similar substrates with an exceptional level of detail demonstrating clear ridge definition as well as detail about sweat pore position and shape, that persist for over 26 days after deposition when the samples were stored under ambient conditions.

Keywords: conventional techniques, latent fingermarks, metal substrates, time of flight secondary ion mass spectroscopy

Procedia PDF Downloads 136
7392 Hypersonic Propulsion Requirements for Sustained Hypersonic Flight for Air Transportation

Authors: James Rate, Apostolos Pesiridis

Abstract:

In this paper, the propulsion requirements required to achieve sustained hypersonic flight for commercial air transportation are evaluated. In addition, a design methodology is developed and used to determine the propulsive capabilities of both ramjet and scramjet engines. Twelve configurations are proposed for hypersonic flight using varying combinations of turbojet, turbofan, ramjet and scramjet engines. The optimal configuration was determined based on how well each of the configurations met the projected requirements for hypersonic commercial transport. The configurations were separated into four sub-configurations each comprising of three unique derivations. The first sub-configuration comprised four afterburning turbojets and either one or two ramjets idealised for Mach 5 cruise. The number of ramjets required was dependent on the thrust required to accelerate the vehicle from a speed where the turbojets cut out to Mach 5 cruise. The second comprised four afterburning turbojets and either one or two scramjets, similar to the first configuration. The third used four turbojets, one scramjet and one ramjet to aid acceleration from Mach 3 to Mach 5. The fourth configuration was the same as the third, but instead of turbojets, it implemented turbofan engines for the preliminary acceleration of the vehicle. From calculations which determined the fuel consumption at incremental Mach numbers this paper found that the ideal solution would require four turbojet engines and two Scramjet engines. The ideal mission profile was determined as being an 8000km sortie based on an averaging of popular long haul flights with strong business ties, which included Los Angeles to Tokyo, London to New York and Dubai to Beijing. This paper deemed that these routes would benefit from hypersonic transport links based on the previously mentioned factors. This paper has found that this configuration would be sufficient for the 8000km flight to be completed in approximately two and a half hours and would consume less fuel than Concord in doing so. However, this propulsion configuration still result in a greater fuel cost than a conventional passenger. In this regard, this investigation contributes towards the specification of the engine requirements throughout a mission profile for a hypersonic passenger vehicle. A number of assumptions have had to be made for this theoretical approach but the authors believe that this investigation lays the groundwork for appropriate framing of the propulsion requirements for sustained hypersonic flight for commercial air transportation. Despite this, it does serve as a crucial step in the development of the propulsion systems required for hypersonic commercial air transportation. This paper provides a methodology and a focus for the development of the propulsion systems that would be required for sustained hypersonic flight for commercial air transportation.

Keywords: hypersonic, ramjet, propulsion, Scramjet, Turbojet, turbofan

Procedia PDF Downloads 290