Search results for: flexible blade
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1273

Search results for: flexible blade

1003 Development of Surface-Enhanced Raman Spectroscopy-Active Gelatin Based Hydrogels for Label Free Detection of Bio-Analytes

Authors: Zahra Khan

Abstract:

Hydrogels are a macromolecular network of hydrophilic copolymers with physical or chemical cross-linking structures with significant water uptake capabilities. They are a promising substrate for surface-enhanced Raman spectroscopy (SERS) as they are both flexible and biocompatible materials. Conventional SERS-active substrates suffer from limitations such as instability and inflexibility, which restricts their use in broader applications. Gelatin-based hydrogels have been synthesised in a facile and relatively quick method without the use of any toxic cross-linking agents. Composite gel material was formed by combining the gelatin with simple polymers to enhance the functional properties of the gel. Gold nanoparticles prepared by a reproducible seed-mediated growth method were combined into the bulk material during gel synthesis. After gel formation, the gel was submerged in the analyte solution overnight. SERS spectra were then collected from the gel using a standard Raman spectrometer. A wide range of analytes was successfully detected on these hydrogels showing potential for further optimization and use as SERS substrates for biomedical applications.

Keywords: gelatin, hydrogels, flexible materials, SERS

Procedia PDF Downloads 90
1002 Facile Wick and Oil Flame Synthesis of High-Quality Hydrophilic Carbon Nano Onions for Flexible Binder-Free Supercapacitor

Authors: Debananda Mohapatra, Subramanya Badrayyana, Smrutiranjan Parida

Abstract:

Carbon nano-onions (CNOs) are the spherical graphitic nanostructures composed of concentric shells of graphitic carbon can be hypothesized as the intermediate state between fullerenes and graphite. These are very important members in fullerene family also known as the multi-shelled fullerenes can be envisioned as promising supercapacitor electrode with high energy & power density as they provide easy access to ions at electrode-electrolyte interface due to their curvature. There is still very sparse report concerning on CNOs as electrode despite having an excellent electrodechemical performance record due to their unavailability and lack of convenient methods for their high yield preparation and purification. Keeping all these current pressing issues in mind, we present a facile scalable and straightforward flame synthesis method of pure and highly dispersible CNOs without contaminated by any other forms of carbon; hence, a post processing purification procedure is not necessary. To the best of our knowledge, this is the very first time; we developed an extremely simple, light weight, novel inexpensive, flexible free standing pristine CNOs electrode without using any binder element. Locally available daily used cotton wipe has been used for fabrication of such an ideal electrode by ‘dipping and drying’ process providing outstanding stretchability and mechanical flexibility with strong adhesion between CNOs and porous wipe. The specific capacitance 102 F/g, energy density 3.5 Wh/kg and power density 1224 W/kg at 20 mV/s scan rate are the highest values that ever recorded and reported so far in symmetrical two electrode cell configuration with 1M Na2SO4 electrolyte; indicating a very good synthesis conditions employed with optimum pore size in agreement with electrolyte ion size. This free standing CNOs electrode also showed an excellent cyclic performance and stability retaining 95% original capacity after 5000 charge –discharge cycles. Furthermore, this unique method not only affords binder free - freestanding electrode but also provide a general way of fabricating such multifunctional promising CNOs based nanocomposites for their potential device applications in flexible solar cells and lithium-ion batteries.

Keywords: binder-free, flame synthesis, flexible, carbon nano onion

Procedia PDF Downloads 171
1001 Study on Flexible Diaphragm In-Plane Model of Irregular Multi-Storey Industrial Plant

Authors: Cheng-Hao Jiang, Mu-Xuan Tao

Abstract:

The rigid diaphragm model may cause errors in the calculation of internal forces due to neglecting the in-plane deformation of the diaphragm. This paper thus studies the effects of different diaphragm in-plane models (including in-plane rigid model and in-plane flexible model) on the seismic performance of structures. Taking an actual industrial plant as an example, the seismic performance of the structure is predicted using different floor diaphragm models, and the analysis errors caused by different diaphragm in-plane models including deformation error and internal force error are calculated. Furthermore, the influence of the aspect ratio on the analysis errors is investigated. Finally, the code rationality is evaluated by assessing the analysis errors of the structure models whose floors were determined as rigid according to the code’s criterion. It is found that different floor models may cause great differences in the distribution of structural internal forces, and the current code may underestimate the influence of the floor in-plane effect.

Keywords: industrial plant, diaphragm, calculating error, code rationality

Procedia PDF Downloads 116
1000 Digital Image Steganography with Multilayer Security

Authors: Amar Partap Singh Pharwaha, Balkrishan Jindal

Abstract:

In this paper, a new method is developed for hiding image in a digital image with multilayer security. In the proposed method, the secret image is encrypted in the first instance using a flexible matrix based symmetric key to add first layer of security. Then another layer of security is added to the secret data by encrypting the ciphered data using Pythagorean Theorem method. The ciphered data bits (4 bits) produced after double encryption are then embedded within digital image in the spatial domain using Least Significant Bits (LSBs) substitution. To improve the image quality of the stego-image, an improved form of pixel adjustment process is proposed. To evaluate the effectiveness of the proposed method, image quality metrics including Peak Signal-to-Noise Ratio (PSNR), Mean Square Error (MSE), entropy, correlation, mean value and Universal Image Quality Index (UIQI) are measured. It has been found experimentally that the proposed method provides higher security as well as robustness. In fact, the results of this study are quite promising.

Keywords: Pythagorean theorem, pixel adjustment, ciphered data, image hiding, least significant bit, flexible matrix

Procedia PDF Downloads 311
999 The Impact of Organizational Culture on Internet Marketing Adoption

Authors: Hafiz Mushtaq Ahmad, Syed Faizan Ali Shah, Bushra Hussain, Muneeb Iqbal

Abstract:

Purpose: The purpose of this study is to investigate the impact of organizational culture on internet marketing adoption. Moreover, the study intends to explore the role of organizational culture in the internet marketing adoption that helps business to achieve organizational growth and augmented market share. Background: With the enormous expansion of technology, organizations now need technology-based marketing paradigm in order to capture larger group of customers. Organizational culture plays a dominant and prominent role in the internet marketing adoption. Changes in the world economy have demolished current organizational competition and generating new technology standards and strategies. With all the technological advances, e-marketing has become one of the essential part of marketing strategies. Organizations require advance internet marketing strategies in order to compete in a global market. Methodology: The population of this study consists of telecom sector organizations of Pakistan. The sample size consists of 200 telecom sector employees. Data were gathered through the questionnaire instrument. The research strategy of this study is survey. The study uses a deductive approach. The sampling technique of this study is convenience sampling. Tentative Results: The study reveals that organizational culture played a vital role in the internet marketing adoption. The results show that there is a strong association between the organizational culture and internet marketing adoption. The results further show that flexible organizational culture helps organization to easily adopt internet marketing. Conclusion: The study discloses that flexible organizational culture helps organizations to easily adopt e-marketing. The study guides decision-makers and owners of organizations to recognize the importance of internet marketing strategy and help them to increase market share by using e-marketing. The study offers solution to the managers to develop flexible organizational culture that helps in internet marketing adoption.

Keywords: internet technology, internet marketing, marketing paradigm, organizational culture

Procedia PDF Downloads 207
998 Active Linear Quadratic Gaussian Secondary Suspension Control of Flexible Bodied Railway Vehicle

Authors: Kaushalendra K. Khadanga, Lee Hee Hyol

Abstract:

Passenger comfort has been paramount in the design of suspension systems of high speed cars. To analyze the effect of vibration on vehicle ride quality, a vertical model of a six degree of freedom railway passenger vehicle, with front and rear suspension, is built. It includes car body flexible effects and vertical rigid modes. A second order linear shaping filter is constructed to model Gaussian white noise into random rail excitation. The temporal correlation between the front and rear wheels is given by a second order Pade approximation. The complete track and the vehicle model are then designed. An active secondary suspension system based on a Linear Quadratic Gaussian (LQG) optimal control method is designed. The results show that the LQG control method reduces the vertical acceleration, pitching acceleration and vertical bending vibration of the car body as compared to the passive system.

Keywords: active suspension, bending vibration, railway vehicle, vibration control

Procedia PDF Downloads 237
997 Fast Prototyping of Precise, Flexible, Multiplexed, Printed Electrochemical Enzyme-Linked Immunosorbent Assay System for Point-of-Care Biomarker Quantification

Authors: Zahrasadat Hosseini, Jie Yuan

Abstract:

Point-of-care (POC) diagnostic devices based on lab-on-a-chip (LOC) technology have the potential to revolutionize medical diagnostics. However, the development of an ideal microfluidic system based on LOC technology for diagnostics purposes requires overcoming several obstacles, such as improving sensitivity, selectivity, portability, cost-effectiveness, and prototyping methods. While numerous studies have introduced technologies and systems that advance these criteria, existing systems still have limitations. Electrochemical enzyme-linked immunosorbent assay (e-ELISA) in a LOC device offers numerous advantages, including enhanced sensitivity, decreased turnaround time, minimized sample and analyte consumption, reduced cost, disposability, and suitability for miniaturization, integration, and multiplexing. In this study, we present a novel design and fabrication method for a microfluidic diagnostic platform that integrates screen-printed electrochemical carbon/silver chloride electrodes on flexible printed circuit boards with flexible, multilayer, polydimethylsiloxane (PDMS) microfluidic networks to accurately manipulate and pre-immobilize analytes for performing electrochemical enzyme-linked immunosorbent assay (e-ELISA) for multiplexed quantification of blood serum biomarkers. We further demonstrate fast, cost-effective prototyping, as well as accurate and reliable detection performance of this device for quantification of interleukin-6-spiked samples through electrochemical analytics methods. We anticipate that our invention represents a significant step towards the development of user-friendly, portable, medical-grade, POC diagnostic devices.

Keywords: lab-on-a-chip, point-of-care diagnostics, electrochemical ELISA, biomarker quantification, fast prototyping

Procedia PDF Downloads 52
996 Fast Prototyping of Precise, Flexible, Multiplexed, Printed Electrochemical Enzyme-Linked Immunosorbent Assay Platform for Point-of-Care Biomarker Quantification

Authors: Zahrasadat Hosseini, Jie Yuan

Abstract:

Point-of-care (POC) diagnostic devices based on lab-on-a-chip (LOC) technology have the potential to revolutionize medical diagnostics. However, the development of an ideal microfluidic system based on LOC technology for diagnostics purposes requires overcoming several obstacles, such as improving sensitivity, selectivity, portability, cost-effectiveness, and prototyping methods. While numerous studies have introduced technologies and systems that advance these criteria, existing systems still have limitations. Electrochemical enzyme-linked immunosorbent assay (e-ELISA) in a LOC device offers numerous advantages, including enhanced sensitivity, decreased turnaround time, minimized sample and analyte consumption, reduced cost, disposability, and suitability for miniaturization, integration, and multiplexing. In this study, we present a novel design and fabrication method for a microfluidic diagnostic platform that integrates screen-printed electrochemical carbon/silver chloride electrodes on flexible printed circuit boards with flexible, multilayer, polydimethylsiloxane (PDMS) microfluidic networks to accurately manipulate and pre-immobilize analytes for performing electrochemical enzyme-linked immunosorbent assay (e-ELISA) for multiplexed quantification of blood serum biomarkers. We further demonstrate fast, cost-effective prototyping, as well as accurate and reliable detection performance of this device for quantification of interleukin-6-spiked samples through electrochemical analytics methods. We anticipate that our invention represents a significant step towards the development of user-friendly, portable, medical-grade POC diagnostic devices.

Keywords: lab-on-a-chip, point-of-care diagnostics, electrochemical ELISA, biomarker quantification, fast prototyping

Procedia PDF Downloads 57
995 Relationship between Functional Properties and Supramolecular Structure of the Poly(Trimethylene 2,5-Furanoate) Based Multiblock Copolymers with Aliphatic Polyethers or Aliphatic Polyesters

Authors: S. Paszkiewicz, A. Zubkiewicz, A. Szymczyk, D. Pawlikowska, I. Irska, E. Piesowicz, A. Linares, T. A. Ezquerra

Abstract:

Over the last century, the world has become increasingly dependent on oil as its main source of chemicals and energy. Driven largely by the strong economic growth of India and China, demand for oil is expected to increase significantly in the coming years. This growth in demand, combined with diminishing reserves, will require the development of new, sustainable sources for fuels and bulk chemicals. Biomass is an attractive alternative feedstock, as it is widely available carbon source apart from oil and coal. Nowadays, academic and industrial research in the field of polymer materials is strongly oriented towards bio-based alternatives to petroleum-derived plastics with enhanced properties for advanced applications. In this context, 2,5-furandicarboxylic acid (FDCA), a biomass-based chemical product derived from lignocellulose, is one of the most high-potential biobased building blocks for polymers and the first candidate to replace the petro-derived terephthalic acid. FDCA has been identified as one of the top 12 chemicals in the future, which may be used as a platform chemical for the synthesis of biomass-based polyester. The aim of this study is to synthesize and characterize the multiblock copolymers containing rigid segments of poly(trimethylene 2,5-furanoate) (PTF) and soft segments of poly(tetramethylene oxide) (PTMO) with excellent elastic properties or aliphatic polyesters of polycaprolactone (PCL). Two series of PTF based copolymers, i.e., PTF-block-PTMO-T and PTF-block-PCL-T, with different content of flexible segments were synthesized by means of a two-step melt polycondensation process and characterized by various methods. The rigid segments of PTF, as well as the flexible PTMO/or PCL ones, were randomly distributed along the chain. On the basis of 1H NMR, SAXS and WAXS, DSC an DMTA results, one can conclude that both phases were thermodynamically immiscible and the values of phase transition temperatures varied with the composition of the copolymer. The copolymers containing 25, 35 and 45wt.% of flexible segments (PTMO) exhibited elastomeric property characteristics. Moreover, with respect to the flexible segments content, the temperatures corresponding to 5%, 25%, 50% and 90% mass loss as well as the values of tensile modulus decrease with the increasing content of aliphatic polyether or aliphatic polyester in the composition.

Keywords: furan based polymers, multiblock copolymers, supramolecular structure, functional properties

Procedia PDF Downloads 103
994 Occupational Health: The Impact of Employee Work Schedules and Employee Morale

Authors: Melissa C. Monney

Abstract:

Employee morale is an area in which many companies invest millions of dollars, time and effort. Whether these are attributed in benefits or additional monetary compensation, each year, such companies understand that human capital is one of their greatest assets to driving production and revenue. However, with the ever-changing economy, such emphasis on work and production may be counterproductive to employee morale as employees attempt to achieve a healthy work-life balance. A flexible work schedule may be the solution to both companies’ attempt at increasing employee morale and productivity, while affording employees the opportunity to maintain a healthy work-life balance. The information presented in this review derives mostly from research articles, in which the research conducted by means of direct employee feedback through surveys, telephone or face-to-face interviews, or a collection of both, attempted to corroborate (in one way or another) previous research on the largely debated topic of schedule flexibility as the dynamics of economies and families have over the years. This review endeavors to provide a holistic view of schedule flexibility policies, implementation, and perceptions from research in various industries in different countries.

Keywords: flexible scheduling, perceived flexibility, employee morale, productivity

Procedia PDF Downloads 169
993 Coils and Antennas Fabricated with Sewing Litz Wire for Wireless Power Transfer

Authors: Hikari Ryu, Yuki Fukuda, Kento Oishi, Chiharu Igarashi, Shogo Kiryu

Abstract:

Recently, wireless power transfer has been developed in various fields. Magnetic coupling is popular for feeding power at a relatively short distance and at a lower frequency. Electro-magnetic wave coupling at a high frequency is used for long-distance power transfer. The wireless power transfer has attracted attention in e-textile fields. Rigid batteries are required for many body-worn electric systems at the present time. The technology enables such batteries to be removed from the systems. Flexible coils have been studied for such applications. Coils with a high Q factor are required in the magnetic-coupling power transfer. Antennas with low return loss are needed for the electro-magnetic coupling. Litz wire is so flexible to fabricate coils and antennas sewn on fabric and has low resistivity. In this study, the electric characteristics of some coils and antennas fabricated with the Litz wire by using two sewing techniques are investigated. As examples, a coil and an antenna are described. Both were fabricated with 330/0.04 mm Litz wire. The coil was a planar coil with a square shape. The outer side was 150 mm, the number of turns was 15, and the pitch interval between each turn was 5 mm. The Litz wire of the coil was overstitched with a sewing machine. The coil was fabricated as a receiver coil for a magnetic coupled wireless power transfer. The Q factor was 200 at a frequency of 800 kHz. A wireless power system was constructed by using the coil. A power oscillator was used in the system. The resonant frequency of the circuit was set to 123 kHz, where the switching loss of power FETs was small. The power efficiencies were 0.44 – 0.99, depending on the distance between the transmitter and receiver coils. As an example of an antenna with a sewing technique, a fractal pattern antenna was stitched on a 500 mm x 500 mm fabric by using a needle punch method. The pattern was the 2nd-oder Vicsec fractal. The return loss of the antenna was -28 dB at a frequency of 144 MHz.

Keywords: e-textile, flexible coils and antennas, Litz wire, wireless power transfer

Procedia PDF Downloads 102
992 Scheduling Flexibility and Employee Health Outcomes: A Meta-Analytic Review

Authors: Nicole V. Shifrin

Abstract:

Scheduling flexibility is becoming an increasingly available option for employees struggling to balance their work and life responsibilities, allowing employees to coordinate work schedules with their additional roles. The goal of such opportunities is to help employees manage the demands they face across domains of life by allowing employees to work from home, design their own work hours, take time off when necessary, along with various other scheduling accommodations. Organizations are also turning to utilizing scheduling flexibility to facilitate employee health and wellbeing through the reduction of stress and maximization of efficiency. The purpose of the present study is to investigate the effects of scheduling flexibility on employee health-related behaviors and outcomes through a synthesis of research. The current meta-analytic review of 19 samples within 16 studies with a total sample size of 20,707 employees examines the relationship between the degree of scheduling flexibility available to employees and the resulting health outcomes and exercise habits. The results demonstrate that reduced scheduling flexibility is associated with poorer health status, suggesting that schedule inflexibility can hinder employees’ ability to maintain and support their health. These findings hold practical implications for developing work schedules to promote employee health and health-related behaviors, such as eating well and exercising. Additionally, there was a positive association between increased scheduling flexibility and engagement in exercise, suggesting that employees with more flexible schedules exercise more frequently than those with less flexible schedules. A potential explanation for the resulting relationship is that flexible schedules leave employees more time due to shorter work days, shorter or eliminated commutes, etc. with which they can use to engage in healthy behaviors. These findings stress the importance of promoting job designs that facilitate employee engagement in healthy behaviors, which directly impact their overall health status. Implications for practice are discussed as well as future directions in examining the link between job design and employee health and well-being.

Keywords: exercise, health, meta-analysis, job design, scheduling flexibility

Procedia PDF Downloads 109
991 A Polynomial Approach for a Graphical-based Integrated Production and Transport Scheduling with Capacity Restrictions

Authors: M. Ndeley

Abstract:

The performance of global manufacturing supply chains depends on the interaction of production and transport processes. Currently, the scheduling of these processes is done separately without considering mutual requirements, which leads to no optimal solutions. An integrated scheduling of both processes enables the improvement of supply chain performance. The integrated production and transport scheduling problem (PTSP) is NP-hard, so that heuristic methods are necessary to efficiently solve large problem instances as in the case of global manufacturing supply chains. This paper presents a heuristic scheduling approach which handles the integration of flexible production processes with intermodal transport, incorporating flexible land transport. The method is based on a graph that allows a reformulation of the PTSP as a shortest path problem for each job, which can be solved in polynomial time. The proposed method is applied to a supply chain scenario with a manufacturing facility in South Africa and shipments of finished product to customers within the Country. The obtained results show that the approach is suitable for the scheduling of large-scale problems and can be flexibly adapted to different scenarios.

Keywords: production and transport scheduling problem, graph based scheduling, integrated scheduling

Procedia PDF Downloads 450
990 Taguchi Method for Analyzing a Flexible Integrated Logistics Network

Authors: E. Behmanesh, J. Pannek

Abstract:

Logistics network design is known as one of the strategic decision problems. As these kinds of problems belong to the category of NP-hard problems, traditional ways are failed to find an optimal solution in short time. In this study, we attempt to involve reverse flow through an integrated design of forward/reverse supply chain network that formulated into a mixed integer linear programming. This Integrated, multi-stages model is enriched by three different delivery path which makes the problem more complex. To tackle with such an NP-hard problem a revised random path direct encoding method based memetic algorithm is considered as the solution methodology. Each algorithm has some parameters that need to be investigate to reveal the best performance. In this regard, Taguchi method is adapted to identify the optimum operating condition of the proposed memetic algorithm to improve the results. In this study, four factors namely, population size, crossover rate, local search iteration and a number of iteration are considered. Analyzing the parameters and improvement in results are the outlook of this research.

Keywords: integrated logistics network, flexible path, memetic algorithm, Taguchi method

Procedia PDF Downloads 164
989 Upgrading Engineering Education in Häme University of Applied Sciences: Towards Teacher Teams, Flexible Processes and Versatile Company Collaboration

Authors: Jussi Horelli, Salla Niittymäki

Abstract:

In this acceleratingly developing world, it will be crucial for our students to not only to adapt to continuous change, but to be the driving force of it. This raises the question of how can the educational processes motivate and encourage the students to learn the perhaps most important skill there for their further work career: the ability to learn and absorb more by themselves. In engineering education, the learning contents and methods have traditionally been very substance oriented and teacher-centered. In Häme University of Applied Sciences (HAMK), the pedagogical model has been completely renewed during the past few years. Terms like phenomenon or skills-based learning and collaborative teaching are things which have not very often been related to engineering education, but are now the foundation of HAMK’s pedagogical model in all disciplines, even in engineering studies. In this paper, a new flexible way of executing engineering studies will be introduced. The paper will summarize three years’ experiences and observations of a process where traditional teacher-centric mechanical engineering teaching was converted into a model where teachers work collaboratively in teams supporting the students’ learning processes.

Keywords: team teaching, collaborative learning, engineering education, new pedagogy

Procedia PDF Downloads 198
988 Textile Based Physical Wearable Sensors for Healthcare Monitoring in Medical and Protective Garments

Authors: Sejuti Malakar

Abstract:

Textile sensors have gained a lot of interest in recent years as it is instrumental in monitoring physiological and environmental changes, for a better diagnosis that can be useful in various fields like medical textiles, sports textiles, protective textiles, agro textiles, and geo-textiles. Moreover, with the development of flexible textile-based wearable sensors, the functionality of smart clothing is augmented for a more improved user experience when it comes to technical textiles. In this context, conductive textiles using new composites and nanomaterials are being developed while considering its compatibility with the textile manufacturing processes. This review aims to provide a comprehensive and detailed overview of the contemporary advancements in textile-based wearable physical sensors, used in the field of medical, security, surveillance, and protection, from a global perspective. The methodology used is through analysing various examples of integration of wearable textile-based sensors with clothing for daily use, keeping in mind the technological advances in the same. By comparing various case studies, we come across various challenges textile sensors, in terms of stability, the comfort of movement, and reliable sensing components to enable accurate measurements, in spite of progress in the engineering of the wearable. Addressing such concerns is critical for the future success of wearable sensors.

Keywords: flexible textile-based wearable sensors, contemporary advancements, conductive textiles, body conformal design

Procedia PDF Downloads 150
987 Pyridine-N-oxide Based AIE-active Triazoles: Synthesis, Morphology and Photophysical Properties

Authors: Luminita Marin, Dalila Belei, Carmen Dumea

Abstract:

Aggregation induced emission (AIE) is an intriguing optical phenomenon recently evidenced by Tang and his co-workers, for which aggregation works constructively in the improving of light emission. The AIE challenging phenomenon is quite opposite to the notorious aggregation caused quenching (ACQ) of light emission in the condensed phase, and comes in line with requirements of photonic and optoelectronic devices which need solid state emissive substrates. This paper reports a series of ten new aggregation induced emission (AIE) low molecular weight compounds based on triazole and pyridine-N-oxide heterocyclic units bonded by short flexible chains, obtained by a „click” chemistry reaction. The compounds present extremely weak luminescence in solution but strong light emission in solid state. To distinguish the influence of the crystallinity degree on the emission efficiency, the photophysical properties were explored by UV-vis and photoluminescence spectroscopy in solution, water suspension, amorphous and crystalline films. On the other hand, the compound morphology of the up mentioned states was monitored by dynamic light scattering, scanning electron microscopy, atomic force microscopy and polarized light microscopy methods. To further understand the structural design – photophysical properties relationship, single crystal X-ray diffraction on some understudy compounds was performed too. The UV-vis absorption spectra of the triazole water suspensions indicated a typical behaviour for nanoparticle formation, while the photoluminescence spectra revealed an emission intensity enhancement up to 921-fold higher of the crystalline films compared to solutions, clearly indicating an AIE behaviour. The compounds have the tendency to aggregate forming nano- and micro- crystals in shape of rose-like and fibres. The crystals integrity is kept due to the strong lateral intermolecular forces, while the absence of face-to-face forces explains the enhanced luminescence in crystalline state, in which the intramolecular rotations are restricted. The studied flexible triazoles draw attention to a new structural design in which small biologically friendly luminophore units are linked together by small flexible chains. This design enlarges the variety of the AIE luminogens to the flexible molecules, guiding further efforts in development of new AIE structures for appropriate applications, the biological ones being especially envisaged.

Keywords: aggregation induced emission, pyridine-N-oxide, triazole

Procedia PDF Downloads 426
986 The Hidden Characteristics That Tutors Hope Dundee Mmed Graduates Might Have after Graduation

Authors: Afnan Khoja, Ittisak Subrungruang, Kritchaya Ritruechai, Linda Jones, David Wall

Abstract:

Background: Some characteristics might be stated as an objective of the curriculum and some might be hidden. The hidden curriculum is the unwritten and unintended lessons and perspectives that students absorb in school. Though, the hidden characteristics are expected that tutors hope students might have in order to become medical educators. We suspected our faculty hoped we would develop skills, know and develop beyond the written outcomes. Our research question aimed to explore the hidden curriculum; as part of our learning; we had to design and report findings. Summary of Work: We undertook semi-structured interviews with a sample of the centre for medical education faculty at Dundee. Participants answered the question , of what are the hidden characteristics that they hope Dundee MMed graduates might have after graduation. Thematic analysis was carried out on the interview scripts. Summary of Results: A thematic analysis was carried out on the interview transcripts. Three main themes were identified from all respondents' comments. These were lifelong learners, being flexible and problem solvers. In addition individual respondents also described sense of humour, collaboration, humility, role model, inquisitiveness, optimism, and ability to express oneself clearly. Discussion: Tutors put great value on three behaviours lifelong learner, flexible, and problem solver, which are part of professional characteristics in leadership. Therefore, leadership characteristics is incorporated as the outcomes of hidden characteristics that tutors would like to see. Conclusion: Tutors in the Master's program of medical education at the University of Dundee hope that medical education students should present the three main hidden characteristics, which are lifelong learner, flexible, and problem solver after graduation. Take-home Messages: These hidden characteristics are considered as informal unless a change has been made to the formal curriculum. Therefore, to reach the tutors’ expectations, further studies might be held to make this personal characteristics transformation more accessible.

Keywords: characteristics, hidden curriculum, transformation, informal

Procedia PDF Downloads 52
985 Blended Learning and English Language Teaching: Instructors' Perceptions and Aspirations

Authors: Rasha Alshaye

Abstract:

Blended learning has become an innovative model that combines face-to-face with e-learning approaches. The Saudi Electronic University (SEU) has adopted blended learning as a flexible approach that provides instructors and learners with a motivating learning environment to stimulate the teaching and learning process. This study investigates the perceptions of English language instructors, teaching the four English language skills at Saudi Electronic University. Four main domains were examined in this study; challenges that the instructors encounter while implementing the blended learning approach, enhancing student-instructor interaction, flexibility in teaching, and the lack of technical skills. Furthermore, the study identifies and represents the instructors’ aspirations and plans to utilize this approach in enhancing the teaching and learning experience. Main findings indicate that instructors at Saudi Electronic University experience some challenges while teaching the four language skills. However, they find the blended learning approach motivating and flexible for them and their students. This study offers some important understandings into how instructors are applying the blended learning approach and how this process can be enriched.

Keywords: blended learning, English language skills, English teaching, instructors' perceptions

Procedia PDF Downloads 105
984 Optimal Design of RC Pier Accompanied with Multi Sliding Friction Damping Mechanism Using Combination of SNOPT and ANN Method

Authors: Angga S. Fajar, Y. Takahashi, J. Kiyono, S. Sawada

Abstract:

The structural system concept of RC pier accompanied with multi sliding friction damping mechanism was developed based on numerical analysis approach. However in the implementation, to make design for such kind of this structural system consumes a lot of effort in case high of complexity. During making design, the special behaviors of this structural system should be considered including flexible small deformation, sufficient elastic deformation capacity, sufficient lateral force resistance, and sufficient energy dissipation. The confinement distribution of friction devices has significant influence to its. Optimization and prediction with multi function regression of this structural system expected capable of providing easier and simpler design method. The confinement distribution of friction devices is optimized with SNOPT in Opensees, while some design variables of the structure are predicted using multi function regression of ANN. Based on the optimization and prediction this structural system is able to be designed easily and simply.

Keywords: RC Pier, multi sliding friction device, optimal design, flexible small deformation

Procedia PDF Downloads 340
983 Environmental Impacts on the Appearance of Disbonds in Metal Rotor Blades of Mi-2 Helicopters

Authors: Piotr Synaszko, Michał Sałaciński, Andrzej Leski

Abstract:

This paper describes the analysis of construction Mi-2 helicopter rotor blades in order to determine the causes of appearance disbonds. Authors describe construction of rotor blade with impact on bonded joins and areas of water migration. They also made analysis which determines possibility of disbond between critical parts of rotor blades based on more than one hundred non-destructive inspections results. They showed which parts of the blades most likely to damage. The main source of damage is water presence.

Keywords: disbonds, environmental effect, helicopter rotor blades, service life extension

Procedia PDF Downloads 283
982 The Development of Traffic Devices Using Natural Rubber in Thailand

Authors: Weeradej Cheewapattananuwong, Keeree Srivichian, Godchamon Somchai, Wasin Phusanong, Nontawat Yoddamnern

Abstract:

Natural rubber used for traffic devices in Thailand has been developed and researched for several years. When compared with Dry Rubber Content (DRC), the quality of Rib Smoked Sheet (RSS) is better. However, the cost of admixtures, especially CaCO₃ and sulphur, is higher than the cost of RSS itself. In this research, Flexible Guideposts and Rubber Fender Barriers (RFB) are taken into consideration. In case of flexible guideposts, the materials used are both RSS and DRC60%, but for RFB, only RSS is used due to the controlled performance tests. The objective of flexible guideposts and RFB is to decrease a number of accidents, fatal rates, and serious injuries. Functions of both devices are to save road users and vehicles as well as to absorb impact forces from vehicles so as to decrease of serious road accidents. This leads to the mitigation methods to remedy the injury of motorists, form severity to moderate one. The solution is to find the best practice of traffic devices using natural rubber under the engineering concepts. In addition, the performances of materials, such as tensile strength and durability, are calculated for the modulus of elasticity and properties. In the laboratory, the simulation of crashes, finite element of materials, LRFD, and concrete technology methods are taken into account. After calculation, the trials' compositions of materials are mixed and tested in the laboratory. The tensile test, compressive test, and weathering or durability test are followed and based on ASTM. Furthermore, the Cycle-Repetition Test of Flexible Guideposts will be taken into consideration. The final decision is to fabricate all materials and have a real test section in the field. In RFB test, there will be 13 crash tests, 7 Pickup Truck tests, and 6 Motorcycle Tests. The test of vehicular crashes happens for the first time in Thailand, applying the trial and error methods; for example, the road crash test under the standard of NCHRP-TL3 (100 kph) is changed to the MASH 2016. This is owing to the fact that MASH 2016 is better than NCHRP in terms of speed, types, and weight of vehicles and the angle of crash. In the processes of MASH, Test Level 6 (TL-6), which is composed of 2,270 kg Pickup Truck, 100 kph, and 25 degree of crash-angle is selected. The final test for real crash will be done, and the whole system will be evaluated again in Korea. The researchers hope that the number of road accidents will decrease, and Thailand will be no more in the top tenth ranking of road accidents in the world.

Keywords: LRFD, load and resistance factor design, ASTM, american society for testing and materials, NCHRP, national cooperation highway research program, MASH, manual for assessing safety hardware

Procedia PDF Downloads 94
981 Concepts of Technologies Based on Smart Materials to Improve Aircraft Aerodynamic Performance

Authors: Krzysztof Skiba, Zbigniew Czyz, Ksenia Siadkowska, Piotr Borowiec

Abstract:

The article presents selected concepts of technologies that use intelligent materials in aircraft in order to improve their performance. Most of the research focuses on solutions that improve the performance of fixed wing aircraft due to related to their previously dominant market share. Recently, the development of the rotorcraft has been intensive, so there are not only helicopters but also gyroplanes and unmanned aerial vehicles using rotors and vertical take-off and landing. There are many different technologies to change a shape of the aircraft or its elements. Piezoelectric, deformable actuator systems can be applied in the system of an active control of vibration dampening in the aircraft tail structure. Wires made of shape memory alloys (SMA) could be used instead of hydraulic cylinders in the rear part of the aircraft flap. The aircraft made of intelligent materials (piezoelectrics and SMA) is one of the NASA projects which provide the possibility of changing a wing shape coefficient by 200%, a wing surface by 50%, and wing deflections by 20 degrees. Active surfaces made of shape memory alloys could be used to control swirls in the flowing stream. An intelligent control system for helicopter blades is a method for the active adaptation of blades to flight conditions and the reduction of vibrations caused by the rotor. Shape memory alloys are capable of recovering their pre-programmed shapes. They are divided into three groups: nickel-titanium-based, copper-based, and ferromagnetic. Due to the strongest shape memory effect and the best vibration damping ability, a Ni-Ti alloy is the most commercially important. The subject of this work was to prepare a conceptual design of a rotor blade with SMA actuators. The scope of work included 3D design of the supporting rotor blade, 3D design of beams enabling to change the geometry by changing the angle of rotation and FEM (Finite Element Method) analysis. The FEM analysis was performed using NX 12 software in the Pre/Post module, which includes extended finite element modeling tools and visualizations of the obtained results. Calculations are presented for two versions of the blade girders. For FEM analysis, three types of materials were used for comparison purposes (ABS, aluminium alloy 7057, steel C45). The analysis of internal stresses and extreme displacements of crossbars edges was carried out. The internal stresses in all materials were close to the yield point in the solution of girder no. 1. For girder no. 2 solution, the value of stresses decreased by about 45%. As a result of the displacement analysis, it was found that the best solution was the ABS girder no. 1. The displacement of about 0.5 mm was obtained, which resulted in turning the crossbars (upper and lower) by an angle equal to 3.59 degrees. This is the largest deviation of all the tests. The smallest deviation was obtained for beam no. 2 made of steel. The displacement value of the second girder solution was approximately 30% lower than the first solution. Acknowledgement: This work has been financed by the Polish National Centre for Research and Development under the LIDER program, Grant Agreement No. LIDER/45/0177/L-9/17/NCBR/2018.

Keywords: aircraft, helicopters, shape memory alloy, SMA, smart material, unmanned aerial vehicle, UAV

Procedia PDF Downloads 103
980 A Concept for Flexible Battery Cell Manufacturing from Low to Medium Volumes

Authors: Tim Giesen, Raphael Adamietz, Pablo Mayer, Philipp Stiefel, Patrick Alle, Dirk Schlenker

Abstract:

The competitiveness and success of new electrical energy storages such as battery cells are significantly dependent on a short time-to-market. Producers who decide to supply new battery cells to the market need to be easily adaptable in manufacturing with respect to the early customers’ needs in terms of cell size, materials, delivery time and quantity. In the initial state, the required output rates do not yet allow the producers to have a fully automated manufacturing line nor to supply handmade battery cells. Yet there was no solution for manufacturing battery cells in low to medium volumes in a reproducible way. Thus, in terms of cell format and output quantity, a concept for the flexible assembly of battery cells was developed by the Fraunhofer-Institute for Manufacturing Engineering and Automation. Based on clustered processes, the modular system platform can be modified, enlarged or retrofitted in a short time frame according to the ordered product. The paper shows the analysis of the production steps from a conventional battery cell assembly line. Process solutions were found by using I/O-analysis, functional structures, and morphological boxes. The identified elementary functions were subsequently clustered by functional coherences for automation solutions and thus the single process cluster was generated. The result presented in this paper enables to manufacture different cell products on the same production system using seven process clusters. The paper shows the solution for a batch-wise flexible battery cell production using advanced process control. Further, the performed tests and benefits by using the process clusters as cyber-physical systems for an integrated production and value chain are discussed. The solution lowers the hurdles for SMEs to launch innovative cell products on the global market.

Keywords: automation, battery production, carrier, advanced process control, cyber-physical system

Procedia PDF Downloads 303
979 Impact of Job Crafting on Work Engagement and Well-Being among Indian Working Professionals

Authors: Arjita Jhingran

Abstract:

The pandemic was a turning point for flexible employment. In today’s market, employees prefer companies that provide the autonomy to change their work environment and are flexible. Post pandemic employees have become accustomed to modifying, re-designing, and re-aligning their work environment, task, and the way they interact with co-workers based on their preferences after working from home for a long time. In this scenario, the concept of job crafting has come to the forefront, and research on the subject has expanded, particularly during COVID-19. Managers who provide opportunities to craft the job are driving enhanced engagement and well-being. The current study will aim to examine the impact of job crafting on work engagement and psychological well-being among 385 working professionals, ranging in the age group of 21- 39 years. (M age=30 years). The study will also draw comparisons between freelancers and full-time employees, as freelancers have been considered to have more autonomy over their job. A comparison-based among MNC or startups will be studied; as for the majority of startups, autonomy is a primary motivator. Moreover, a difference based on the level of experience will also be observed, which will add to the body of knowledge. The data will be collected through Job Crafting Questionnaire, Utrecht Work Engagement Scale, and Psychological Well-Being Scale. To infer the findings, correlation analysis will be used to study the relationship among variables, and a Three way ANOVA will be used to draw comparisons.

Keywords: job crafting, work engagement, well-being, freelancers, start-ups

Procedia PDF Downloads 80
978 An Image Processing Based Approach for Assessing Wheelchair Cushions

Authors: B. Farahani, R. Fadil, A. Aboonabi, B. Hoffmann, J. Loscheider, K. Tavakolian, S. Arzanpour

Abstract:

Wheelchair users spend long hours in a sitting position, and selecting the right cushion is highly critical in preventing pressure ulcers in that demographic. Pressure mapping systems (PMS) are typically used in clinical settings by therapists to identify the sitting profile and pressure points in the sitting area to select the cushion that fits the best for the users. A PMS is a flexible mat composed of arrays of distributed networks of flexible sensors. The output of the PMS systems is a color-coded image that shows the intensity of the pressure concentration. Therapists use the PMS images to compare different cushions fit for each user. This process is highly subjective and requires good visual memory for the best outcome. This paper aims to develop an image processing technique to analyze the images of PMS and provide an objective measure to assess the cushions based on their pressure distribution mappings. In this paper, we first reviewed the skeletal anatomy of the human sitting area and its relation to the PMS image. This knowledge is then used to identify the important features that must be considered in image processing. We then developed an algorithm based on those features to analyze the images and rank them according to their fit to the users' needs.

Keywords: dynamic cushion, image processing, pressure mapping system, wheelchair

Procedia PDF Downloads 137
977 Advancing Entrepreneurial Knowledge Through Re-Engineering Social Studies Education

Authors: Chukwuka Justus Iwegbu, Monye Christopher Prayer

Abstract:

Propeller aircraft engines, and more generally engines with a large rotating part (turboprops, high bypass ratio turbojets, etc.) are widely used in the industry and are subject to numerous developments in order to reduce their fuel consumption. In this context, unconventional architectures such as open rotors or distributed propulsion appear, and it is necessary to consider the influence of these systems on the aircraft's stability in flight. Indeed, the tendency to lengthen the blades and wings on which these propulsion devices are fixed increases their flexibility and accentuates the risk of whirl flutter. This phenomenon of aeroelastic instability is due to the precession movement of the axis of rotation of the propeller, which changes the angle of attack of the flow on the blades and creates unsteady aerodynamic forces and moments that can amplify the motion and make it unstable. The whirl flutter instability can ultimately lead to the destruction of the engine. We note the existence of a critical speed of the incident flow. If the flow velocity is lower than this value, the motion is damped and the system is stable, whereas beyond this value, the flow provides energy to the system (negative damping) and the motion becomes unstable. A simple model of whirl flutter is based on the work of Houbolt & Reed who proposed an analytical expression of the aerodynamic load on a rigid blade propeller whose axis orientation suffers small perturbations. Their work considered a propeller subjected to pitch and yaw movements, a flow undisturbed by the blades and a propeller not generating any thrust in the absence of precession. The unsteady aerodynamic forces were then obtained using the thin airfoil theory and the strip theory. In the present study, the unsteady aerodynamic loads are expressed for a general movement of the propeller (not only pitch and yaw). The acceleration and rotation of the flow by the propeller are modeled using a Blade Element Momentum Theory (BEMT) approach, which also enable to take into account the thrust generated by the blades. It appears that the thrust has a stabilizing effect. The aerodynamic model is further developed using Theodorsen theory. A reduced order model of the aerodynamic load is finally constructed in order to perform linear stability analysis.

Keywords: advancing, entrepreneurial, knowledge, industralization

Procedia PDF Downloads 66
976 Vibration Control of Hermetic Compressors Using Flexible Multi-Body Dynamics Theory

Authors: Armin Amindari

Abstract:

Hermetic compressors are used widely for refrigeration, heat pump, and air conditioning applications. With the improvement of energy conservation and environmental protection requirements, inverter compressors that operates at different speeds have become increasingly attractive in the industry. Although speed change capability is more efficient, passing through resonant frequencies may lead to excessive vibrations. In this work, an integrated vibration control approach based on flexible multi-body dynamics theory is used for optimizing the vibration amplitudes of the compressor at different operating speeds. To examine the compressor vibrations, all the forces and moments exerted on the cylinder block were clarified and minimized using balancers attached to the upper and lower ends of the motor rotor and crankshaft. The vibration response of the system was simulated using Motionview™ software. In addition, mass-spring optimization was adopted to shift the resonant frequencies out of the operating speeds. The modal shapes of the system were studied using Optistruct™ solver. Using this approach, the vibrations were reduced up to 56% through dynamic simulations. The results were in high agreement with various experimental test data. In addition, the vibration resonance problem observed at low speeds was solved by shifting the resonant frequencies through optimization studies.

Keywords: vibration, MBD, compressor, hermetic

Procedia PDF Downloads 70
975 The Secret Ingredient of Student Involvement: Applied Science Case Studies to Enhance Sustainability

Authors: Elizelle Juanee Cilliers

Abstract:

Recent planning thinking has laid the foundations for a general sense of best practice that aims to enhance the quality of life, suggesting an open and participatory process. It is accepted that integration of top-down and bottom-up approaches may lead to efficient action in environments and sustainable planning and development, although it is also accepted that such an integrated approach has various challenges of implementation. A flexible framework in which the strengths of both the top-down and bottom-up approaches were explored in this research, based on the EU Interreg VALUE Added project and five case studies where student education and student involvement played a crucial role within the participation process of the redesign of the urban environment. It was found that international student workshops were an effective tool to integrate bottom-up and top-down structures, as it acted as catalyst for communication, interaction, creative design, quick transformation from planning to implementation, building social cohesion, finding mutual ground between stakeholders and thus enhancing overall quality of life and quality of environments. It offered a good alternative to traditional participation modes and created a platform for an integrative planning approach. The role and importance of education and integration within the urban environment were emphasized.

Keywords: top-down, bottom-up, flexible, student involvement

Procedia PDF Downloads 188
974 Colour Quick Response Code with High Damage Resistance Capability

Authors: Minh Nguyen

Abstract:

Today, QR or Quick Response Codes are prevalent, and mobile/smart devices can efficiently read and understand them. Therefore, we can see their appearance in many areas, such as storing web pages/websites, business phone numbers, redirecting to an app download, business location, social media. The popularity of the QR Code is mainly because of its many advantages, such as it can hold a good amount of information, is small, easy to scan and read by a general RGB camera, and it can still work with some damages on its surface. However, there are still some issues. For instance, some areas needed to be kept untouched for its successful decode (e.g., the “Finder Patterns,” the “Quiet Zone,” etc.), the capability of built-in auto-correction is not robust enough, and it is not flexible enough for many application such as Augment Reality (AR). We proposed a new Colour Quick Response Code that has several advantages over the original ones: (1) there is no untouchable area, (2) it allows up to 40% of the entire code area to be damaged, (3) it is more beneficial for Augmented Reality applications, and (4) it is back-compatible and readable by available QR Code scanners such as Pyzbar. From our experience, our Colour Quick Response Code is significantly more flexible on damage compared to the original QR Code. Our code is believed to be suitable in situations where standard 2D Barcodes fail to work, such as curved and shiny surfaces, for instance, medical blood test sample tubes and syringes.

Keywords: QR code, computer vision, image processing, 2D barcode

Procedia PDF Downloads 91