Search results for: fabric ink
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 497

Search results for: fabric ink

407 Influence of Annealing on the Mechanical Properties of Polyester-Cotton Friction Spun Yarn

Authors: Sujit Kumar Sinha, R. Chattopadhyay

Abstract:

In the course of processing phases and use, fibres, yarns, or fabrics are subjected to a variety of stresses and strains, which cause the development of internal stresses. Given an opportunity, these inherent stresses try to bring back the structure to the original state. As an example, a twisted yarn always shows a tendency to untwist whenever its one end is made free. If the yarn is not held under tension, it may form snarls due to the presence of excessive torque. The running performance of such yarn or thread may, therefore, get negatively affected by it, as a snarl may not pass through the knitting or sewing needle smoothly, leading to an end break. A fabric shows a tendency to form wrinkles whenever squeezed. It may also shrink when brought to a relaxed state. In order to improve performance (i.e., dimensional stability or appearance), stabilization of the structure is needed. The stabilization can be attained through the release of internal stresses, which can be brought about by the process of annealing and/or other finishing treatments. When a fabric is subjected to heat, a change in the properties of the fibers, yarns, and fabric is expected. The degree to which the properties are affected would depend upon the condition of heat treatment and on the properties & structure of fibres, yarns, and fabric. In the present study, an attempt has been made to investigate the effect of annealing treatment on the properties of polyester cotton yarns with varying sheath structures.

Keywords: friction spun yarn, annealing, tenacity, structural integrity, decay

Procedia PDF Downloads 18
406 Effect of Repellent Coatings, Aerosol Protective Liners, and Lamination on the Properties of Chemical/Biological Protective Textiles

Authors: Natalie Pomerantz, Nicholas Dugan, Molly Richards, Walter Zukas

Abstract:

The primary research question to be answered for Chemical/Biological (CB) protective clothing, is how to protect wearers from a range of chemical and biological threats in liquid, vapor, and aerosol form, while reducing the thermal burden. Currently, CB protective garments are hot, heavy, and wearers are limited by short work times in order to prevent heat injury. This study demonstrates how to incorporate different levels of protection on a material level and modify fabric composites such that the thermal burden is reduced to such an extent it approaches that of a standard duty uniform with no CB protection. CB protective materials are usually comprised of several fabric layers: a cover fabric with a liquid repellent coating, a protective layer which is comprised of a carbon-based sorptive material or semi-permeable membrane, and a comfort next-to-skin liner. In order to reduce thermal burden, all of these layers were laminated together to form one fabric composite which had no insulative air gap in between layers. However, the elimination of the air gap also reduced the CB protection of the fabric composite. In order to increase protection in the laminated composite, different nonwoven aerosol protective liners were added, and a super repellent coating was applied to the cover fabric, prior to lamination. Different adhesive patterns were investigated to determine the durability of the laminate with the super repellent coating, and the effect on air permeation. After evaluating the thermal properties, textile properties and protective properties of the iterations of these fabric composites, it was found that the thermal burden of these materials was greatly reduced by decreasing the thermal resistance with the elimination of the air gap between layers. While the level of protection was reduced in laminate composites, the addition of a super repellent coating increased protection towards low volatility agents without impacting thermal burden. Similarly, the addition of aerosol protective liner increased protection without reducing water vapor transport, depending on the nonwoven used, however, the air permeability was significantly decreased. The balance of all these properties and exploration of the trade space between thermal burden and protection will be discussed.

Keywords: aerosol protection, CBRNe protection, lamination, nonwovens, repellent coatings, thermal burden

Procedia PDF Downloads 329
405 Investigation of Garment Fit Using Virtual Try-On Technology

Authors: Kristina Ancutiene, Agne Lage, Ada Gulbiniene

Abstract:

Virtual garment fitting has gotten considerable attention for researchers currently. Virtual try-on technologies provide the opportunity to check garment fit using various fabrics and sizes. Differences in fabric mechanical properties produce differences in garment fit. This research aimed to investigate the virtual garment fit concerning the fabric's mechanical properties by determining distance ease between the body and the garment. In this research, virtual women mannequin was covered with straight fit virtual dress stitched in Modaris 3D (CAD Lectra). Garment fitting was investigated using seven cotton/cotton blended plain weave fabrics. Ease allowance value at bust, waist and hip girths in 2D basic patterns was changed uniformly from 0 cm to 8 cm. The values of distance ease in 3D virtual garments at the three main girths were investigated. Distance ease distribution in the virtual garment was investigated also. It was defined that by increasing of 2D patterns ease allowance, 3D garment distance ease changes proportionally but differently using various fabrics. Correlation analysis between 3D garment ease and mechanical properties showed that tensile strain in weft direction had the strongest relation.

Keywords: 3D CAD, distance ease, fabric, garment fit, virtual try-on

Procedia PDF Downloads 132
404 Digital Fashion: An Integrated Approach to Additive Manufacturing in Wearable Fashion

Authors: Lingju Wu, Hao Hua

Abstract:

This paper presents a digital fashion production methodology and workflow based on fused deposition modeling additive manufacturing technology, as demonstrated through a 3D printed fashion show held at Southeast University in Nanjing, China. Unlike traditional fashion, 3D printed fashion allows for the creation of complex geometric shapes and unique structural designs, facilitating diverse reconfiguration and sustainable production of textile fabrics. The proposed methodology includes two components: morphogenesis and the 3D printing process. The morphogenesis part comprises digital design methods such as mesh deformation, structural reorganization, particle flow stretching, sheet partitioning, and spreading methods. The 3D printing process section includes three types of methods: sculptural objects, multi-material composite fabric, and self-forming composite fabrics. This paper focuses on multi-material composite fabrics and self-forming composite fabrics, both of which involve weaving fabrics with 3D-printed material sandwiches. Multi-material composite fabrics create specially tailored fabric from the original properties of the printing path and multiple materials, while self-forming fabrics apply pre-stress to the flat fabric and then print the sandwich, allowing the fabric's own elasticity to interact with the printed components and shape into a 3D state. The digital design method and workflow enable the integration of abstract sensual aesthetics and rational thinking, showcasing a digital aesthetic that challenges conventional handicraft workshops. Overall, this paper provides a comprehensive framework for the production of 3D-printed fashion, from concept to final product.

Keywords: digital fashion, composite fabric, self-forming structure, additive manufacturing, generating design

Procedia PDF Downloads 74
403 Effect of Weave on Cotton Fabric to Improve the Durable Press Finish Rating

Authors: Mayur Kudale, Priyanka Panchal

Abstract:

Cellulose fibres, mainly cotton, are the most important kind of fibre used for manufacturing shirting fabric. However, to overcome its main disadvantage, that is it gets wrinkled after washing, is to use special kind of finish which is resin finish. This finish provides a resistance against shrinkage along with improved wet and dry wrinkle recovery to cellulosic textiles. The Durable Press (DP) finish uses a mechanism of cross-linking with polymers or resin to inhibit the easy movement of the cellulose chains. The purpose of these experimentations on the weave is to observe and compare the variations in properties after DP finish without adverse effect on strength of the fabric. In this work, we have prepared three types of fabric weaves viz. Plain, Twill and Sateen with their construction parameters intact. To get the projected results, this work uses three types of variables viz. concentration of Resin, Temperature and Time. Resultant of these variables is only change in weave or construction on DP finish which further opens the possibilities of improvement of DP either of mentioned weaves. The combined effect of such various parametric resin finish methodology will give the best method to improve the DP. However, the DP finish can cause a side effect of reduction in elasticity and flexibility of cellulosic fibres. The natural cellulose could loss abrasion resistance along with tear and tensile strength by applying DP finish. In this work, it is taken care that the tear strength of fabric will not drop below certain limit otherwise the fabric will tear down easily. In this work, it is found that there is a significant drop in tearing and tensile strength with the improvement of DP finish. Later on, it is also found that the twill weave has more percentage drop in tearing strength as compared to plain and sateen weave. There is major kind of observations obtained after this work. First, the mixing of cotton should be done properly to achieve the higher DP rating in plain weave. Second, the careful combination of warp, weft and fabric construction must be decided to avoid the high drop in tear and tensile strength in a twill weave. Third, the sateen weave has a good sheen and DP rating hence it can be used in shirting of gents and ladies dress materials. This concludes that to achieve higher DP ratings, use plain weave construction than twill and sateen because it has the lowest tear and tensile strength drop.

Keywords: concentration of resin, cross-linking, durable press (DP) finish, sheen, tear and tensile strength, weave

Procedia PDF Downloads 277
402 Development and Characterization of Sandwich Bio-Composites Based on Short Alfa Fiber and Jute Fabric

Authors: Amine Rezzoug, Selsabil Rokia Laraba, Mourad Ancer, Said Abdi

Abstract:

Composite materials are taking center stage in different fields thanks to their mechanical characteristics and their ease of preparation. Environmental constraints have led to the development of composite with natural reinforcements. The sandwich structure has the advantage to have good flexural proprieties for low density, which is why it was chosen in this work. The development of these materials is related to an energy saving strategy and environmental protection. The present work refers to the study of the development and characterization of sandwiches composites based on hybrids laminates with natural reinforcements (Alfa and Jute), a metal fabric was introduced into composite in order to have a compromise between weight and properties. We use different configurations of reinforcements (jute, metallic fabric) to develop laminates in order to use them as thin facings for sandwiches materials. While the core was an epoxy matrix reinforced with Alfa short fibers, a chemical treatment sodium hydroxide was cared to improve the adhesion of the Alfa fibers. The mechanical characterization of our materials was made by the tensile and bending test, to highlight the influence of jute and Alfa. After testing, the fracture surfaces are observed by scanning electron microscopy (SEM). Optical microscopy allowed us to calculate the degree of porosity and to observe the morphology of the individual layers. Laminates based on jute fabric have shown better results in tensile test as well as to bending, compared to those of the metallic fabric (100%, 65%). Sandwich Panels were also characterized in terms of bending test. Results we had provide, shows that this composite has sufficient properties for possible replacing conventional composite materials by considering the environmental factors.

Keywords: bending test, bio-composites, sandwiches, tensile test

Procedia PDF Downloads 405
401 Textile Dyeing with Natural Dye from Sappan Tree (Caesalpinia sappan Linn.) Extract

Authors: Ploysai Ohama, Nattida Tumpat

Abstract:

Natural dye extracted from Caesalpinia sappan Linn. was applied to a cotton fabric and silk yarn by dyeing process. The dyestuff component of Caesalpinia sappan Linn. was extracted using water and ethanol. Analytical studies such as UV–VIS spectrophotometry and gravimetric analysis were performed on the extracts. Brazilein, the major dyestuff component of Caesalpinia sappan Linn. was confirmed in both aqueous and ethanolic extracts by UV–VIS spectrum. The color of each dyed material was investigated in terms of the CIELAB (L*, a* and b*) and K/S values. Cotton fabric dyed without mordant had a shade of reddish-brown, while those post-mordanted with aluminum potassium sulfate, ferrous sulfate and copper sulfate produced a variety of wine red to dark purple color shades. Cotton fabric and silk yarn dyeing was studied using aluminum potassium sulfate as a mordant. The observed color strength was enhanced with increase in mordant concentration.

Keywords: natural dyes, plant materials, dyeing, mordant

Procedia PDF Downloads 262
400 Water Repellent Finishing of Cotton: Teaching and Learning Materials

Authors: C. W. Kan

Abstract:

Fabrics can be treated to equip them with certain functional properties in which water repellency is one of the important functional effects. In this study, commercial water repellent agent was used under different application conditions to cotton fabric. Finally, the water repellent effect was evaluated by standard testing method. Thus, the aim of this study is to illustrate the proper application of water repellent finishing to cotton fabric and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: learning materials, water repellent, textiles, cotton

Procedia PDF Downloads 210
399 The Impact of Rising Architectural Façade in Improving Terms of the Physical Urban Ambience Inside the Free Space for Urban Fabric - the Street- Case Study the City of Biskra

Authors: Rami Qaoud, Alkama Djamal

Abstract:

When we ask about the impact of rising architectural façade in improving the terms physical urban ambiance inside the free space for urban fabric. Considered as bringing back life and culture values and civilization to these cities. And This will be the theme of this search. Where we have conducted the study about the relationship that connects the empty and full of in the urban fabric in terms of the density construction and the architectural elevation of its façade to street view. In this framework, we adopted in the methodology of this research the technical field experience. And according to three types of Street engineering(H≥2W, H=W, H≤0.5W). Where we conducted a field to raise the values of the physical ambiance according to three main axes of ambiance. The first axe 1 - Thermal ambiance. Where the temperature values were collected, relative humidity, wind speed, temperature of surfaces (the outer wall-ground). The second axe 2- Visual ambiance. Where we took the values of natural lighting levels during the daytime. The third axe 3- Acoustic ambiance . Where we take sound values during the entire day. That experience, which lasted for three consecutive days, and through six stations of measuring, where it has been one measuring station for each type of the street engineering and in two different way street. Through the obtained results and with the comparison of those values. We noticed the difference between this values and the three type of street engineering. Where the difference the calorific values of air equal 4 ° C , in terms of the visual ambiance the difference in the direct lighting natural periods amounted six hours between the three types of street engineering. As well in terms of sound ambience, registered a difference in values of up 15 (db) between the three types. This difference in values indicates The impact of rising architectural façade in improving the physical urban ambiance within the free field - street- for urban fabric.

Keywords: street, physical urban ambience, rising architectural façade, urban fabric

Procedia PDF Downloads 258
398 Resin Finishing of Cotton: Teaching and Learning Materials

Authors: C. W. Kan

Abstract:

Cotton is the most commonly used material for apparel purpose because of its durability, good perspiration absorption characteristics, comfort during wear and dyeability. However, proneness to creasing and wrinkling give cotton garments a poor rating during actual wear. Resin finishing is a process to bring out crease or wrinkle free/resistant effect to cotton fabric. Thus, the aim of this study is to illustrate the proper application of resin finishing to cotton fabric, and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: learning materials, resin, textiles, wrinkle

Procedia PDF Downloads 225
397 Investigating the Thermal Comfort Properties of Mohair Fabrics

Authors: Adine Gericke, Jiri Militky, Mohanapriya Venkataraman

Abstract:

Mohair, obtained from the Angora goat, is a luxury fiber and recognized as one of the best quality natural fibers. Expansion of the use of mohair into technical and functional textile products necessitates the need for a better understanding of how the use of mohair in fabrics will impact on its thermo-physiological comfort related properties. Despite its popularity, very little information is available on the quantification of the thermal and moisture management properties of mohair fabrics. This study investigated the effect of fibrous matter composition and fabric structural parameters on conductive and convective heat transfers to attain more information on the thermal comfort properties of mohair fabrics. Dry heat transfer through textiles may involve conduction through the fibrous phase, radiation through fabric interstices and convection of air within the structure. Factors that play a major role in heat transfer by conduction are fabric areal density (g/m2) and derived quantities such as cover factor and porosity. Convective heat transfer through fabrics is found in environmental conditions where there is wind-flow or the object is moving (e.g. running or walking). The thermal comfort properties of mohair fibers were objectively evaluated firstly in comparison with other textile fibers and secondly in a variety of fabric structures. Two sample sets were developed for this purpose, with fibre content, yarn structure and fabric design as main variables. SEM and microscopic images were obtained to closely examine the physical structures of the fibers and fabrics. Thermal comfort properties such as thermal resistance and thermal conductivity, as well as fabric thickness, were measured on the well-known Alambeta test instrument. Clothing insulation (clo) was calculated from the above. The thermal properties of fabrics under heat convection was evaluated using a laboratory model device developed at the Technical University of Liberec (referred to as the TP2-instrument). The effects of the different variables on fabric thermal comfort properties were analyzed statistically using TIBCO Statistica Software. The results showed that fabric structural properties, specifically sample thickness, played a significant role in determining the thermal comfort properties of the fabrics tested. It was found that regarding thermal resistance related to conductive heat flow, the effect of fiber type was not always statistically significant, probably as a result of the amount of trapped air within the fabric structure. The very low thermal conductivity of air, compared to that of the fibers, had a significant influence on the total conductivity and thermal resistance of the samples. This was confirmed by the high correlation of these factors with sample thickness. Regarding convective heat flow, the most important factor influencing the ability of the fabric to allow dry heat to move through the structure, was again fabric thickness. However, it would be wrong to totally disregard the effect of fiber composition on the thermal resistance of textile fabrics. In this study, the samples containing mohair or mohair/wool were consistently thicker than the others even though weaving parameters were kept constant. This can be ascribed to the physical properties of the mohair fibers that renders it exceptionally well towards trapping air among fibers (in a yarn) as well as among yarns (inside a fabric structure). The thicker structures trap more air to provide higher thermal insulation, but also prevent the free flow of air that allow thermal convection.

Keywords: mohair fabrics, convective heat transfer, thermal comfort properties, thermal resistance

Procedia PDF Downloads 119
396 Improved Embroidery Based Textile Electrodes for Sustainability of Impedance Measurement Characteristics

Authors: Bulcha Belay Etana

Abstract:

Research shows that several challenges are to be resolved for textile sensors and wearable smart textiles systems to make it accurate and reproducible minimizing variability issues when tested. To achieve this, we developed stimulating embroidery electrode with three different filling textiles such as 3Dknit, microfiber, and nonwoven fabric, and tested with FTT for high recoverability on compression. Hence The impedance characteristics of wetted electrodes were caried out after 1hr of wetting under normal environmental conditions. The wetted 3D knit (W-3D knit), Wetted nonwoven (W-nonwoven), and wetted microfiber (W-microfiber) developed using Satin stitch performed better than a dry standard stitch or dry Satin stitch electrodes. Its performance was almost the same as that of the gel electrode (Ag/AgCl) as shown by the impedance result in figure 2 .The impedance characteristics of Dry and wetted 3D knit based Embroidered electrodes are better than that of the microfiber, and nonwoven filling textile. This is due to the fact that 3D knit fabric has high recoverability on compression to retain electrolyte gel than microfiber, and nonwoven. However,The non-woven fabric held the electrolyte for longer time without releasing it to the skin when needed, thus making its impedance characteristics poor as observed from the results. Whereas the dry Satin stitch performs better than the standard stitch based developed electrode. The inter electrode distance of all types of the electrode was 25mm, with the area of the electrode being 20mm by 20mm. Detail evaluation and further analysis is in progress for EMG monitoring application

Keywords: impedance, moisture retention, 3D knit fabric, microfiber, nonwoven

Procedia PDF Downloads 101
395 Numerical and Experimental Investigation of Pulse Combustion for Fabric Drying

Authors: Dan Zhao, Y. W. Sheng

Abstract:

The present work considers a convection-driven T-shaped pulse combustion system. Both experimental and numerical investigations are conducted to study the mechanism of pulse combustion and its potential application in fabric drying. To gain insight on flame-acoustic dynamic interaction and pulsating flow characteristics, 3D numerical simulation of the pulse combustion process of a premixed turbulent flame in a Rijke-type combustor is performed. Two parameters are examined: (1) fuel-air ratio, (2) inlet flow velocity. Their effects on triggering pulsating flow and Nusselt number are studied. As each of the parameters is varied, Nusselt number characterizing the heat transfer rate and the heat-driven pulsating flow signature is found to change. The main nonlinearity is identified in the heat fluxes. To validate our numerical findings, a cylindrical T-shaped Rijke-type combustor made of quartz-glass with a Bunsen burner is designed and tested.

Keywords: pulse combustion, fabric drying, heat transfer, combustion oscillations, pressure oscillations

Procedia PDF Downloads 221
394 Heat Setting of Polyester: Teaching and Learning Materials

Authors: C. W. Kan

Abstract:

Heat setting is a commonly used technique in textile industry for treating synthetic fibers. In this study, we examined the effect of heat-setting process on the dyeing properties of polyester fabric. The heat setting conditions were varied, and these conditions would affect the dyeing results. The aim of this study is to illustrate the proper application method of heat setting process to polyester fabric, and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: learning materials, heat setting, polyester, dyeing

Procedia PDF Downloads 222
393 Sensitizing Bamboo Fabric with Antimicrobial Turmeric Dye

Authors: Varinder Kaur, Amanjit Kaur, Simran Kaur, Samriti Vaid

Abstract:

Coating of fabrics with anti-microbial dyes is an adaptable technique of protection from various diseases. Natural dyes, which are known to possess antibacterial properties, can be used for antibacterial finishing of fibers like cotton, wool, bamboo and so many. Dyeing of fabrics with natural dyes normally requires the use of mordants so that dyes can stay on the fabric as well as into interstices of the fabric during multiple washings. In this study, the mordants used are alum and chitosan for ensuring a reasonable color fastness to light and washing. Chitosan is a natural polysaccharide having significant biological and chemical properties such as biodegradability, biocompatibility, bioactivity, microbial activity and polycationicity. The metal ion of alum mordant can act as electron acceptor for electron donor to form coordination bond with the dye molecule, making them insoluble in water. The dyeing of bamboo fabric using a natural dye extracted from turmeric has been studied using conventional dyeing method. Natural dye was extracted using water as solvent by Soxhlet extraction method. The extracted color was characterized by spectroscopic studies like UV/visible and further tested for antimicrobial activity. The effect of mordants on the dyeing outcome in terms of colour depth as well as fastness properties of the dyeing was investigated. It has been found that employing the conventional dyeing technique at 100 oC, the mordanted samples were deeper in depth than their unmordanted counterparts. The results of fastness properties of the dyed fabrics were fair to good. Turmeric extract was found to enhance microbial resistance of bamboo as well as was itself as a good cause of coloration. These textiles dyed with the turmeric as natural dye can be very useful in developing clothing for infants, elderly and infirm people to protect them against common infections. The outcome of this study will provide a new feature to the interface of dyeing and pharmaceutical industry.

Keywords: antimicrobial activity, bamboo fabric, natural dye, turmeric

Procedia PDF Downloads 137
392 Development of Bioactive Medical Textiles by Immobilizing Nanoparticles at Cotton Fabric

Authors: Munir Ashraf, Shagufta Riaz

Abstract:

Personal protective equipment (PPE) and bioactive textiles are highly important for the health care of front line hospital workers, patients, and the general population to be safe from highly infectious diseases. This was even more critical in the wake of COVID-19 outbreak. Most of the medical textiles are inactive against various viruses and bacteria, hence there is a need to wash them frequently to avoid the spread of microorganisms. According to survey conducted by the world health organization, more than 500 million people get infected from hospitals, and more than 13 million died due to these hospitals’ acquired deadly diseases. The market available PPE are though effective against the penetration of pathogens and to kill bacteria but, they are not breathable and active against different viruses. Therefore, there was a great need to develop textiles that are not only effective against bacteria, fungi, and viruses but also are comfortable to the medical personnel and patients. In the present study, waterproof breathable, and biologically active textiles were developed using antiviral and antibacterial nanomaterials. These nanomaterials like TiO₂, ZnO, Cu, and Ag were immobilized at the surface of cotton fabric by using different silane coupling agents and electroless deposition that they retained their functionality even after 30 industrial laundering cycles. Afterwards, the treated fabrics were coated with a waterproof breathable film to prevent the permeation of liquid droplets, any particle or microorganisms greater than 80 nm. The developed cotton fabric was highly active against bacteria and viruses. The good durability of nanomaterials at the cotton surface after several industrial washing cycles makes this fabric an ideal candidate for bioactive textiles used in the medical field.

Keywords: antibacterial, antiviral, cotton, durable

Procedia PDF Downloads 138
391 Investigation of Knitted Fabric Properties Effect on Evaporation Rate

Authors: N. S. Achour, M. Hamdaoui, S. Ben Nasrallah

Abstract:

Evaporation kinetics of water from porous knitted fabrics are studied: An experimental study of determining evaporated water mass (g) versus time (s) from different knitted fabrics was gravimetrically investigated in various atmospheric conditions. Then evaporation rates are calculated. The goal is to determine the effect of fabric composition, knit structure and yarns properties on evaporation rate. The results show that fabrics geometrical properties, such as porosity and thickness, have a significant influence on evaporated water quantities.

Keywords: evaporation rate, experimental study, geometrical properties, porous knitted fabrics

Procedia PDF Downloads 476
390 Development of Stretchable Woven Fabrics with Auxetic Behaviour

Authors: Adeel Zulifqar, Hong Hu

Abstract:

Auxetic fabrics are a special kind of textile materials which possess negative Poisson’s ratio. Opposite to most of the conventional fabrics, auxetic fabrics get bigger in the transversal direction when stretched or get smaller when compressed. Auxetic fabrics are superior to conventional fabrics because of their counterintuitive properties, such as enhanced porosity under the extension, excellent formability to a curved surface and high energy absorption ability. Up till today, auxetic fabrics have been produced based on two approaches. The first approach involves using auxetic fibre or yarn and weaving technology to fabricate auxetic fabrics. The other method to fabricate the auxetic fabrics is by using non-auxetic yarns. This method has gained extraordinary curiosity of researcher in recent years. This method is based on realizing auxetic geometries into the fabric structure. In the woven fabric structure auxetic geometries can be realized by creating a differential shrinkage phenomenon into the fabric structural unit cell. This phenomenon can be created by using loose and tight weave combinations within the unit cell of interlacement pattern along with elastic and non-elastic yarns. Upon relaxation, the unit cell of interlacement pattern acquires a non-uniform shrinkage profile due to different shrinkage properties of loose and tight weaves in designed pattern, and the auxetic geometry is realized. The development of uni-stretch auxetic woven fabrics and bi-stretch auxetic woven fabrics by using this method has already been reported. This study reports the development of another kind of bi-stretch auxetic woven fabric. The fabric is first designed by transforming the auxetic geometry into interlacement pattern and then fabricated, using the available conventional weaving technology and non-auxetic elastic and non-elastic yarns. The tensile tests confirmed that the developed bi-stretch auxetic woven fabrics exhibit negative Poisson’s ratio over a wide range of tensile strain. Therefore, it can be concluded that the auxetic geometry can be realized into the woven fabric structure by creating the phenomenon of differential shrinkage and bi-stretch woven fabrics made of non-auxetic yarns having auxetic behavior and stretchability are possible can be obtained. Acknowledgement: This work was supported by the Research Grants Council of Hong Kong Special Administrative Region Government (grant number 15205514).

Keywords: auxetic, differential shrinkage, negative Poisson's ratio, weaving, stretchable

Procedia PDF Downloads 127
389 Crafting of Paper Cutting Techniques for Embellishment of Fashion Textiles

Authors: A. Vaidya-Soocheta, K. M. Wong-Hon-Lang

Abstract:

Craft and fashion have always been interlinked. The combination of both often gives stunning results. The present study introduces ‘Paper Cutting Craft Techniques’ like the Japanese –Kirigami, Mexican –PapelPicado, German –Scherenschnitte, Polish –Wycinankito in textiles to develop innovative and novel design structures as embellishments and ornamentation. The project studies various ways of using these paper cutting techniques to obtain interesting features and delicate design patterns on fabrics. While paper has its advantages and related uses, it is fragile rigid and thus not appropriate for clothing. Fabric is sturdy, flexible, dimensionally stable and washable. In the present study, the cut out techniques develop creative design motifs and patterns to give an inventive and unique appeal to the fabrics. The beauty and fascination of lace in garments have always given them a nostalgic charm. Laces with their intricate and delicate complexity in combination with other materials add a feminine touch to a garment and give it a romantic, mysterious appeal. Various textured and decorative effects through fabric manipulation are experimented along with the use of paper cutting craft skills as an innovative substitute for developing lace or “Broderie Anglaise” effects on textiles. A number of assorted fabric types with varied textures were selected for the study. Techniques to avoid fraying and unraveling of the design cut fabrics were introduced. Fabrics were further manipulated by use of interesting prints with embossed effects on cut outs. Fabric layering in combination with assorted techniques such as cutting of folded fabric, printing, appliqué, embroidery, crochet, braiding, weaving added a novel exclusivity to the fabrics. The fabrics developed by these innovative methods were then tailored into garments. The study thus tested the feasibility and practicability of using these fabrics by designing a collection of evening wear garments based on the theme ‘Nostalgia’. The prototypes developed were complemented by designing fashion accessories with the crafted fabrics. Prototypes of accessories add interesting features to the study. The adaptation and application of this novel technique of paper cutting craft on textiles can be an innovative start for a new trend in textile and fashion industry. The study anticipates that this technique will open new avenues in the world of fashion to incorporate its use commercially.

Keywords: collection, fabric cutouts, nostalgia, prototypes

Procedia PDF Downloads 329
388 Pre and Post Mordant Effect of Alum on Gamma Rays Assisted Cotton Fabric by Using Ipomoea indica Leaves Extract

Authors: Abdul Hafeez, Shahid Adeel, Ayesha Hussain

Abstract:

There are number of plants species in the universe which give the protections from different diseases and give colour for the foods and textiles. The environmental condition of the universe suggested toward the ecofriendly textiles. The aim of the paper is to analyze the influence of pre & post mordanting of alum on radiated cotton fabric with Gamma Radiation of different doses by using Ipomoea indica leaves extract. Alum used as mordant with the concentration of 2, 4, 6, 8 and 10% as pre and post mordanting to observe the effect of light and colour fastness of radiated cotton. 6% of alum concentration in pre mordanting gave good colour strength 117.82 with darker in shade toward the greenish tone and in post mordanting 6% concentration gave good colour strength 102.19. The lab values show that the colour is darker in tone and gave bluish effect. Further results showed that alum gave good light and rubbing fastness on gamma radiated cotton fabric.

Keywords: Ipomoea indica, gamma radiation, alum, light fastness

Procedia PDF Downloads 146
387 Cultural Entanglements in the Urban Fabric: A Case of Festivals in Old Dhaka and its Impacts

Authors: Khandoker Upama Kabir, Mohammad Fuhad Anwar Sinha

Abstract:

Dhaka, the capital of Bangladesh, is known not only for its fast growing economy, lively atmosphere, rich history, and culture but is also known for having a reputation of being a vastly populated city. The historic city centre of Dhaka (currently known as Puran Dhaka or Old Dhaka) which was conceived around the Pre-Mughal era and holds a lot of history and heritage of the region. This historic site has further been neglected, and most of the urban development has been done without integrating this part of the city into the plans. As a result, the festivals that take place traditionally throughout the year in this area create a greater impact on the urban fabric of the whole city. These festivals generate a huge amount of visitors and play a huge role in shaping the identity of the people. This paper will attempt to look at the importance of these traditions, the way these festivals are influencing the urban life of the community, and whether or not it has any significant effect on the economy. Through the use of both primary and secondary sources and SWOT analysis, this paper will attempt to identify the issues faced during these festivals. This paper will also try to suggest some basic remedies based on general comparisons between case studies of similar festivals celebrated globally and how these countries are dealing with such issues while also promoting tourism.

Keywords: urban fabric, festivals, cultural celebration, impact, historic city centre urban memory, mega events

Procedia PDF Downloads 122
386 Serviceability of Fabric-Formed Concrete Structures

Authors: Yadgar Tayfur, Antony Darby, Tim Ibell, Mark Evernden, John Orr

Abstract:

Fabric form-work is a technique to cast concrete structures with a great advantage of saving concrete material of up to 40%. This technique is particularly associated with the optimized concrete structures that usually have smaller cross-section dimensions than equivalent prismatic members. However, this can make the structural system produced from these members prone to smaller serviceability safety margins. Therefore, it is very important to understand the serviceability issue of non-prismatic concrete structures. In this paper, an analytical computer-based model to optimize concrete beams and to predict load-deflection behaviour of both prismatic and non-prismatic concrete beams is presented. The model was developed based on the method of sectional analysis and integration of curvatures. Results from the analytical model were compared to load-deflection behaviour of a number of beams with different geometric and material properties from other researchers. The results of the comparison show that the analytical program can accurately predict the load-deflection response of concrete beams with medium reinforcement ratios. However, it over-estimates deflection values for lightly reinforced specimens. Finally, the analytical program acceptably predicted load-deflection behaviour of on-prismatic concrete beams.

Keywords: fabric-formed concrete, continuous beams, optimisation, serviceability

Procedia PDF Downloads 341
385 Influence of Chemical Treatment on Elastic Properties of the Band Cotton Crepe 100%

Authors: Bachir Chemani, Rachid Halfaoui, Madani Maalem

Abstract:

The manufacturing technology of band cotton is very delicate and depends to choice of certain parameters such as torsion of warp yarn. The fabric elasticity is achieved without the use of any elastic material, chemical expansion, artificial or synthetic and it’s capable of creating pressures useful for therapeutic treatments.Before use, the band is subjected to treatments of specific preparation for obtaining certain elasticity, however, during its treatment, there are some regression parameters. The dependence of manufacturing parameters on the quality of the chemical treatment was confirmed. The aim of this work is to improve the properties of the fabric through the development of manufacturing technology appropriately. Finally for the treatment of the strip pancake 100% cotton, a treatment method is recommended.

Keywords: elastic, cotton, processing, torsion

Procedia PDF Downloads 355
384 Porosity and Ultraviolet Protection Ability of Woven Fabrics

Authors: Polona Dobnik Dubrovski, Abhijit Majumdar

Abstract:

The increasing awareness of negative effects of ultraviolet radiation and regular, effective protection are actual themes in many countries. Woven fabrics as clothing items can provide convenient personal protection however not all fabrics offer sufficient UV protection. Porous structure of the material has a great effect on UPF. The paper is focused on an overview of porosity in woven fabrics, including the determination of porosity parameters on the basis of an ideal geometrical model of porous structure. Our experiment was focused on 100% cotton woven fabrics in a grey state with the same yarn fineness (14 tex) and different thread densities (to achieve relative fabric density between 59 % and 87 %) and different type of weaves (plain, 4-end twill, 5-end satin). The results of the research dealing with the modelling of UPF and the influence of volume and open porosity of tested samples on UPF are exposed. The results show that open porosity should be lower than 12 % to achieve good UV protection according to AS/NZ standard of tested samples. The results also indicate that there is no direct correlation between volume porosity and UPF, moreover, volume porosity namely depends on the type of weave and affects UPF as well. Plain fabrics did not offer any UV protection, while twill and satin fabrics offered good UV protection when volume porosity was less than 64 % and 66 %, respectively.

Keywords: fabric engineering, UV radiation, porous materials, woven fabric construction, modelling

Procedia PDF Downloads 230
383 Effects of Increased Green Surface on a Densely Built Urban Fabric: The Case of Budapest

Authors: Viktória Sugár, Orsolya Frick, Gabriella Horváth, A. Bendegúz Vöröss, Péter Leczovics, Géza Baráth

Abstract:

Urban greenery has multiple positive effects both on the city and its residents. Apart from the visual advantages, it changes the micro-climate by cooling and shading, also increasing vapor and oxygen, reducing dust and carbon-dioxide content at the same time. The above are all critical factors of livability of an urban fabric. Unfortunately, in a dense, historical district there are restricted possibilities to build green surfaces. The present study collects and systemizes the applicable green solutions in the case of a historical downtown district of Budapest. The study contains a GIS-based measurement of the eligible surfaces for greenery, and also calculates the potential of oxygen production, carbon-dioxide reduction and cooling effect of an increased green surface.  It can be concluded that increasing the green surface has measurable effects on a densely built urban fabric, including air quality, micro-climate and other environmental factors.

Keywords: urban greenery, green roof, green wall, green surface potential, sustainable city, oxygen production, carbon-dioxide reduction, geographical information system

Procedia PDF Downloads 197
382 Layer-By-Layer Deposition of Poly(Ethylene Imine) Nanolayers on Polypropylene Nonwoven Fabric: Electrostatic and Thermal Properties

Authors: Dawid Stawski, Silviya Halacheva, Dorota Zielińska

Abstract:

The surface properties of many materials can be readily and predictably modified by the controlled deposition of thin layers containing appropriate functional groups and this research area is now a subject of widespread interest. The layer-by-layer (lbl) method involves depositing oppositely charged layers of polyelectrolytes onto the substrate material which are stabilized due to strong electrostatic forces between adjacent layers. This type of modification affords products that combine the properties of the original material with the superficial parameters of the new external layers. Through an appropriate selection of the deposited layers, the surface properties can be precisely controlled and readily adjusted in order to meet the requirements of the intended application. In the presented paper a variety of anionic (poly(acrylic acid)) and cationic (linear poly(ethylene imine), polymers were successfully deposited onto the polypropylene nonwoven using the lbl technique. The chemical structure of the surface before and after modification was confirmed by reflectance FTIR spectroscopy, volumetric analysis and selective dyeing tests. As a direct result of this work, new materials with greatly improved properties have been produced. For example, following a modification process significant changes in the electrostatic activity of a range of novel nanocomposite materials were observed. The deposition of polyelectrolyte nanolayers was found to strongly accelerate the loss of electrostatically generated charges and to increase considerably the thermal resistance properties of the modified fabric (the difference in T50% is over 20°C). From our results, a clear relationship between the type of polyelectrolyte layer deposited onto the flat fabric surface and the properties of the modified fabric was identified.

Keywords: layer-by-layer technique, polypropylene nonwoven, surface modification, surface properties

Procedia PDF Downloads 409
381 Superhydrophobic Coatings Based On Waterborne Polyolefin And Silica Nanoparticles

Authors: Kyuwon Lee, Young-Wook Chang

Abstract:

Superhydrophobic surfaces have been paid great attentions over the years due to their various applications. In this study, superhydrophobic coatings based on the hybrids of hydrophobically modified silica nanoparticles and waterborne polyolefin were fabricated onto a cotton fabric by spraying a mixture of surface dodecylated silica nanoparticles with aqueous dispersion of polyolefin onto the fabric and a subsequent drying at 80℃. The coated fabrics were characterized using water-contact angle measurement, SEM, and AFM analysis. The coated fabrics exhibit superhydrophobicity with a water contact angle of 155° along with excellent self-cleaning and water/oil separation ability. It was also revealed that such superhydrophobicity was maintained after repeated mechanical abrasion using a sandpaper.

Keywords: superhydrophobic coating, waterborne polyolefin, dodecylated silica nanoparticle, durability

Procedia PDF Downloads 99
380 The Optimization Design of Sound Absorbing for Automotive Interior Material

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Gyu Park

Abstract:

Nonwoven fabric such as an automobile interior material becomes consists of several material layers required for the sound-absorbing function. Because several material layers, many experimental tuning is required to achieve the target of sound absorption. Therefore, a lot of time and money is spent in the development of the car interior materials. In this study, we present the method to predict the sound-absorbing performance of the various layers with physical properties of each material. and we will verify it with the measured value of a prototype. If the sound absorption can be estimated, it can be optimized without a number of tuning tests of the interiors. So, it can reduce the development cost and time during development

Keywords: automotive interior material, sound absorbing, optimization design, nonwoven fabric

Procedia PDF Downloads 801
379 Cotton Fabrics Functionalized with Green and Commercial Ag Nanoparticles

Authors: Laura Gonzalez, Santiago Benavides, Martha Elena Londono, Ana Elisa Casas, Adriana Restrepo-Osorio

Abstract:

Cotton products are sensitive to microorganisms due to its ability to retain moisture, which might cause change into the coloration, mechanical properties reduction or foul odor generation; consequently, this represents risks to the health of users. Nowadays, have been carried out researches to give antibacterial properties to textiles using different strategies, which included the use of silver nanoparticles (AgNPs). The antibacterial behavior can be affected by laundering process reducing its effectiveness. In the other way, the environmental impact generated for the synthetic antibacterial agents has motivated to seek new and more ecological ways for produce AgNPs. The aims of this work are to determine the antibacterial activity of cotton fabric functionalized with green (G) and commercial (C) AgNPs after twenty washing cycles, also to evaluate morphological and color changes. A plain weave cotton fabric suitable for dyeing and two AgNPs solutions were use. C a commercial product and G produced using an ecological method, both solutions with 0.5 mM concentration were impregnated on cotton fabric without stabilizer, at a liquor to fabric ratio of 1:20 in constant agitation during 30min and then dried at 70 °C by 10 min. After that the samples were subjected to twenty washing cycles using phosphate-free detergent simulated on agitated flask at 150 rpm, then were centrifuged and dried on a tumble. The samples were characterized using Kirby-Bauer test determine antibacterial activity against E. coli y S. aureus microorganisms, the results were registered by photographs establishing the inhibition halo before and after the washing cycles, the tests were conducted in triplicate. Scanning electron microscope (SEM) was used to observe the morphologies of cotton fabric and treated samples. The color changes of cotton fabrics in relation to the untreated samples were obtained by spectrophotometer analysis. The images, reveals the presence of inhibition halo in the samples treated with C and G AgNPs solutions, even after twenty washing cycles, which indicated a good antibacterial activity and washing durability, with a tendency to better results against to S. aureus bacteria. The presence of AgNPs on the surface of cotton fiber and morphological changes were observed through SEM, after and before washing cycles. The own color of the cotton fiber has been significantly altered with both antibacterial solutions. According to the colorimetric results, the samples treated with C lead to yellowing while the samples modified with G to red yellowing Cotton fabrics treated AgNPs C and G from 0.5 mM solutions exhibited excellent antimicrobial activity against E. coli and S. aureus with good laundering durability effects. The surface of the cotton fibers was modified with the presence of AgNPs C and G due to the presence of NPs and its agglomerates. There are significant changes in the natural color of cotton fabric due to deposition of AgNPs C and G which were maintained after laundering process.

Keywords: antibacterial property, cotton fabric, fastness to wash, Kirby-Bauer test, silver nanoparticles

Procedia PDF Downloads 215
378 A Study of Parameters That Have an Influence on Fabric Prints in Judging the Attractiveness of a Female Body Shape

Authors: Man N. M. Cheung

Abstract:

In judging the attractiveness of female body shape, visual sense is one of the important means. The ratio and proportion of body shape influence the perception of female physical attractiveness. This study aims to examine visual perception of digital textile prints on a virtual 3D model in judging the attractiveness of the body shape. Also, investigate the influences when using different shape parameters and their relationships. Participants were asked to conduct a set of questionnaires with images to rank the attractiveness of the female body shape. Results showed that morphing the fabric prints with a certain ratio and combination of shape parameters - waist and hip, can enhance the attractiveness of the female body shape.

Keywords: digital printing, 3D body modeling, fashion print design, body shape attractiveness

Procedia PDF Downloads 145