Search results for: ethanol oxidation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1408

Search results for: ethanol oxidation

268 Biocompatible Beta Titanium Alloy Ti36Nb6Ta as a Suitable Material for Bone Regeneration

Authors: Vera Lukasova, Eva Filova, Jana Dankova, Vera Sovkova, Matej Daniel, Michala Rampichova

Abstract:

Proper bone implants should promote fast adhesion of cells, stimulate cell differentiation and support the formation of bone tissue. Nowadays titanium is used as a biocompatible material capable of bone tissue integration. This study was focused on comparison of bioactive properties of two titanium alloys - beta titanium alloy Ti36Nb6Ta and standard medical titanium alloy Ti6A14V. The advantage of beta titanium alloy Ti36Nb6Ta is mainly that this material does not contain adverse elements like vanadium or aluminium. Titanium alloys were sterilized in ethanol, placed into 48 well plates and seeded with porcine mesenchymal stem cells. Cells were cultivated for 14 days in standard growth cultivation media with osteogenic supplements. Cell metabolic activity was quantified using MTS assay (Promega). Cell adhesion on day 1 and cell proliferation on further days were verified immunohistochemically using beta-actin monoclonal antibody and secondary antibody conjugated with AlexaFluor®488. Differentiation of cells was evaluated using alkaline phosphatase assay. Additionally, gene expression of collagen I was measured by qRT-PCR. Porcine mesenchymal stem cells adhered and spread well on beta titanium alloy Ti36Nb6Ta on day 1. During the 14 days’ time period the cells were spread confluently on the surface of the beta titanium alloy Ti36Nb6Ta. The metabolic activity of cells increased during the whole cultivation period. In comparison to standard medical titanium alloy Ti6A14V, we did not observe any differences. Moreover, the expression of collagen I gene revealed no statistical differences between both titanium alloys. Therefore, a beta titanium alloy Ti36Nb6Ta promotes cell adhesion, metabolic activity, proliferation and collagen I expression equally to standard medical titanium alloy Ti6A14V. Thus, beta titanium is a suitable material that provides sufficient biocompatible properties. This project was supported by the Czech Science Foundation: grant No. 16-14758S.

Keywords: beta titanium alloy, biocompatibility, differentiation, mesenchymal stem cells

Procedia PDF Downloads 465
267 Regulation of Apoptosis in Human Lung Cancer NCI-H226 Cells through Caspase – Dependent Mechanism by Benjakul Extract

Authors: Pintusorn Hansakul, Ruchilak Rattarom, Arunporn Itharat

Abstract:

Background: Benjakul, a Thai traditional herbal formulation, comprises of five plants: Piper chaba, Piper sarmentosum, Piper interruptum, Plumbago indica, and Zingiber officinale. It has been widely used to treat cancer patients in the context of folk medicine in Thailand. This study aimed to investigate the cytotoxic effect of the ethanol extract of Benjakul against three non-small cell lung cancer (NSCLC) cell lines (NCI-H226, A549, COR-L23), small cell lung cancer (SCLC) cell line NCI-H1688 and normal lung fibroblast cell line MRC-5. The study further examined the molecular mechanisms underlying its cytotoxicity via induction of apoptosis in NCI-H226 cells. Methods: The cytotoxic effect of Benjakul was determined by SRB assay. The effect of Benjakul on cell cycle distribution was assessed by flow cytometric analysis. The apoptotic effects of Benjakul were determined by sub-G1 quantitation and Annexin V-FITC/PI flow cytometric analyses as well as by changes in caspase-3 activity. Results: Benjakul exerted potent cytotoxicity on NCI-H226 and A549 cells but lower cytotoxicity on COR-L23 and NCI-H1688 cells without any cytotoxic effect on normal cells. Molecular studies showed that Benjakul extract induced G2/M phase arrest in human NCI-H226 cells in a dose-dependent manner. The highest concentration of Benjakul (150 μg/ml) led to the highest increase in the G2/M population at 12 h, followed by the highest increase in the sub-G1 population (apoptotic cells) at 60 h. Benjakul extract also induced early apoptosis (AnnexinV +/PI−) in NCI-H226 cells in a dose- and time- dependent manner. Moreover, treatment with 150 μg/ml Benjakul extract for 36 h markedly increased caspase-3 activity by 3.5-fold, and pretreatment with the general caspase inhibitor z-VAD-fmk completely abolished such activity. Conclusions: This study reveals for the first time the regulation of apoptosis in human lung cancer NCI-H226 cells through caspase-dependent mechanism by Benjakul extract.

Keywords: apoptosis, Benjakul, caspase activation, cytotoxicity

Procedia PDF Downloads 413
266 Mechanical and Microstructural Study of Photo-Aged Low Density Polyethylene (LDPE) Films

Authors: Meryem Imane Babaghayou, Abdelhafidi Asma

Abstract:

This study deals with the ageing of Blown extruded films of low-density polyethylene (LDPE), used for greenhouse covering. The LDPE have been subjected to climatic ageing in a sub-Saharan facility at Laghouat (Algeria) with direct exposure to sun. The microstructural changes in the films were analyzed by IRFT for different states of ageing. The mechanical characterization was performed on a uniaxial tensile apparatus. The mechanical properties such as Young's modulus, strain at break, and stress at break have been followed for different states of exposure time (0 to 6 months). The Climatic ageing of LDPE films shows the effect of ageing on the microstructural Plan which leads to: i) To an oxidation of the molecular chains. ii) To the formation of cross-linkings and breaking chains, which both of them are responsible for the mechanical behavior’s modifications of the material. Cross-links are in favor of strengthening of the mechanical properties at break (the increase of σr and εr). In other side, the chains breaking leads to a decrease of these properties. The increase in the Young's modulus also seems to be related to those structural changes since the cross-links increase the average molecular weight. Branchings and tangles are favorable pairs for the ductile nature of the material. And in other side, the chains breaking reduces the average molecular weight and therefore promotes the stiffening (following to morphological changes) so the material becomes fragile. The post-mortem analysis of the samples shows that the mechanical stress has an effect on the molecular structure of the material. Although if quantitatively the concentrations of different chemical species exchanges, from a quantitative point of view only the unsaturations raises the polemics of a possible microstructural modification induced by mechanical stress applied during the tensile test. Also, we recommend a more rigorous analysis with other means of investigation.

Keywords: low-density polyethylene, ageing, mechanical properties, IRTF

Procedia PDF Downloads 337
265 Structure and Mechanics Patterns in the Assembly of Type V Intermediate-Filament Protein-Based Fibers

Authors: Mark Bezner, Shani Deri, Tom Trigano, Kfir Ben-Harush

Abstract:

Intermediate filament (IF) proteins-based fibers are among the toughest fibers in nature, as was shown by native hagfish slime threads and by synthetic fibers that are based on type V IF-proteins, the nuclear lamins. It is assumed that their mechanical performance stems from two major factors: (1) the transition from elastic -helices to stiff-sheets during tensile load; and (2) the specific organization of the coiled-coil proteins into a hierarchical network of nano-filaments. Here, we investigated the interrelationship between these two factors by using wet-spun fibers based on C. elegans (Ce) lamin. We found that Ce-lamin fibers, whether assembled in aqueous or alcoholic solutions, had the same nonlinear mechanical behavior, with the elastic region ending at ~5%. The pattern of the transition was, however, different: the ratio between -helices and -sheets/random coils was relatively constant until a 20% strain for fibers assembled in an aqueous solution, whereas for fibers assembled in 70% ethanol, the transition ended at a 6% strain. This structural phenomenon in alcoholic solution probably occurred through the transition between compacted and extended conformation of the random coil, and not between -helix and -sheets, as cycle analyses had suggested. The different transition pattern can also be explained by the different higher order organization of Ce-lamins in aqueous or alcoholic solutions, as demonstrated by introducing a point mutation in conserved residue in Ce-lamin gene that alter the structure of the Ce-lamins’ nano-fibrils. In addition, biomimicking the layered structure of silk and hair fibers by coating the Ce-lamin fiber with a hydrophobic layer enhanced fiber toughness and lead to a reversible transition between -helix and the extended conformation. This work suggests that different hierarchical structures, which are formed by specific assembly conditions, lead to diverse secondary structure transitions patterns, which in turn affect the fibers’ mechanical properties.

Keywords: protein-based fibers, intermediate filaments (IF) assembly, toughness, structure-property relationships

Procedia PDF Downloads 82
264 Vanadium (V) Complexes of a Tripodal Ligand, Their Characterization and Biological Implications

Authors: Mannar R. Maurya, Bhawna Uprety, Fernando Avecilla, Pedro Adão, J. Costa Pessoa

Abstract:

The reaction of the tripodal tetradentate dibasic ligand 6,6'–(2–(pyridin–2–yl)ethylazanediyl)bis(methylene)bis(2,4–di–tert–butylphenol), H2L1 I, with [VIVO(acac)2] in CH3CN gives the VVO–complex, [VVO(acac)(L1)] 1. Crystallization of 1 in CH3CN at ~0 ºC, gives dark blue crystals of 1, while at room temperature it affords dark green crystals of [{VVO(L1)}2µ–O] 3. Upon prolonged treatment of 1 in MeOH [VVO(OMe)(MeOH)(L1)] 2 is obtained. All three complexes are analyzed by single–crystal X–ray diffraction, depicting distorted octahedral geometry around vanadium. In the reaction of H2L1 with VIVOSO4 partial hydrolysis of the tripodal ligand results in elimination of the pyridyl fragment of L1 and the formation of H[VVO2(L2)] 4, containing the ONO tridentate ligand 6,6'–azanediylbis(methylene)bis(2,4–di–tert–butylphenol), H2L2 II. Compound 4, which was not fully characterized, undergoes dimerization in acetone yielding the hydroxido–bridged [{VVO(L2)}2µ–(HO)2] 5, having distorted octahedral geometry around each vanadium. In contrast, from a solution of 4 in acetonitrile, the dinuclear compound [{VVO(L2)}2µ–O] 6 is obtained, with trigonal bipyramidal geometry around each vanadium. The methoxido complex 2 is successfully employed as a functional catechol–oxidase mimic in the oxidation of catechol to o–quinone under air. The process is confirmed to follow a Michaelis–Menten type kinetics with respect to catechol, the Vmax and KM values obtained being 7.66×10–6 M min -1 and 0.0557 M, respectively, and the turnover frequency is 0.0541 min–1. Complex 2 is also used as a catalyst precursor for the oxidative bromination of thymol in aqueous medium. The selectivity shows quite interesting trends, namely when not using excess of primary oxidizing agent, H2O2 the para mono–brominated product corresponds to ~93 % of the products and no dibromo derivative is formed.

Keywords: oxidovanadium (V) complexes, tripodal ligand, crystal structure, catechol oxidase mimetic activity

Procedia PDF Downloads 312
263 Kinetics and Mechanism Study of Photocatalytic Degradation Using Heterojunction Semiconductors

Authors: Ksenija Milošević, Davor Lončarević, Tihana Mudrinić, Jasmina Dostanić

Abstract:

Heterogeneous photocatalytic processes have gained growing interest as an efficient method to generate hydrogen by using clean energy sources and degrading various organic pollutants. The main obstacles that restrict efficient photoactivity are narrow light-response range and high rates of charge carrier recombination. The formation of heterojunction by combining a semiconductor with low VB and a semiconductor with high CB and a suitable band gap was found to be an efficient method to prepare more sensible materials with improved charge separation, appropriate oxidation and reduction ability, and enhanced visible-light harvesting. In our research, various binary heterojunction systems based on the wide-band gap (TiO₂) and narrow bandgap (g-C₃N₄, CuO, and Co₂O₃) photocatalyst were studied. The morphology, optical, and electrochemical properties of the photocatalysts were analyzed by X-ray diffraction (XRD), scanning electron microscopy (FE-SEM), N₂ physisorption, diffuse reflectance measurements (DRS), and Mott-Schottky analysis. The photocatalytic performance of the synthesized catalysts was tested in single and simultaneous systems. The synthesized photocatalysts displayed good adsorption capacity and enhanced visible-light photocatalytic performance. The mutual interactions of pollutants on their adsorption and degradation efficiency were investigated. The interfacial connection between photocatalyst constituents and the mechanism of the transport pathway of photogenerated charge species was discussed. A radical scavenger study revealed the interaction mechanisms of the photocatalyst constituents in single and multiple pollutant systems under solar and visible light irradiation, indicating the type of heterojunction system (Z scheme or type II).

Keywords: bandgap alignment, heterojunction, photocatalysis, reaction mechanism

Procedia PDF Downloads 80
262 Ligandless Extraction and Determination of Trace Amounts of Lead in Pomegranate, Zucchini and Lettuce Samples after Dispersive Liquid-Liquid Microextraction with Ultrasonic Bath and Optimization of Extraction Condition with RSM Design

Authors: Fariba Tadayon, Elmira Hassanlou, Hasan Bagheri, Mostafa Jafarian

Abstract:

Heavy metals are released into water, plants, soil, and food by natural and human activities. Lead has toxic roles in the human body and may cause serious problems even in low concentrations, since it may have several adverse effects on human. Therefore, determination of lead in different samples is an important procedure in the studies of environmental pollution. In this work, an ultrasonic assisted-ionic liquid based-liquid-liquid microextraction (UA-IL-DLLME) procedure for the determination of lead in zucchini, pomegranate, and lettuce has been established and developed by using flame atomic absorption spectrometer (FAAS). For UA-IL-DLLME procedure, 10 mL of the sample solution containing Pb2+ was adjusted to pH=5 in a glass test tube with a conical bottom; then, 120 μL of 1-Hexyl-3-methylimidazolium hexafluoro phosphate (CMIM)(PF6) was rapidly injected into the sample solution with a microsyringe. After that, the resulting cloudy mixture was treated by ultrasonic for 5 min, then the separation of two phases was obtained by centrifugation for 5 min at 3000 rpm and IL-phase diluted with 1 cc ethanol, and the analytes were determined by FAAS. The effect of different experimental parameters in the extraction step including: ionic liquid volume, sonication time and pH was studied and optimized simultaneously by using Response Surface Methodology (RSM) employing a central composite design (CCD). The optimal conditions were determined to be an ionic liquid volume of 120 μL, sonication time of 5 min, and pH=5. The linear ranges of the calibration curve for the determination by FAAS of lead were 0.1-4 ppm with R2=0.992. Under optimized conditions, the limit of detection (LOD) for lead was 0.062 μg.mL-1, the enrichment factor (EF) was 93, and the relative standard deviation (RSD) for lead was calculated as 2.29%. The levels of lead for pomegranate, zucchini, and lettuce were calculated as 2.88 μg.g-1, 1.54 μg.g-1, 2.18 μg.g-1, respectively. Therefore, this method has been successfully applied for the analysis of the content of lead in different food samples by FAAS.

Keywords: Dispersive liquid-liquid microextraction, Central composite design, Food samples, Flame atomic absorption spectrometry.

Procedia PDF Downloads 257
261 Role of Microplastics on Reducing Heavy Metal Pollution from Wastewater

Authors: Derin Ureten

Abstract:

Plastic pollution does not disappear, it gets smaller and smaller through photolysis which are caused mainly by sun’s radiation, thermal oxidation, thermal degradation, and biodegradation which is the action of organisms digesting larger plastics. All plastic pollutants have exceedingly harmful effects on the environment. Together with the COVID-19 pandemic, the number of plastic products such as masks and gloves flowing into the environment has increased more than ever. However, microplastics are not the only pollutants in water, one of the most tenacious and toxic pollutants are heavy metals. Heavy metal solutions are also capable of causing varieties of health problems in organisms such as cancer, organ damage, nervous system damage, and even death. The aim of this research is to prove that microplastics can be used in wastewater treatment systems by proving that they could adsorb heavy metals in solutions. Experiment for this research will include two heavy metal solutions; one including microplastics in a heavy metal contaminated water solution, and one that just includes heavy metal solution. After being sieved, absorbance of both mediums will be measured with the help of a spectrometer. Iron (III) chloride (FeCl3) will be used as the heavy metal solution since the solution becomes darker as the presence of this substance increases. The experiment will be supported by Pure Nile Red powder in order to observe if there are any visible differences under the microscope. Pure Nile Red powder is a chemical that binds to hydrophobic materials such as plastics and lipids. If proof of adsorbance could be observed by the rates of the solutions' final absorbance rates and visuals ensured by the Pure Nile Red powder, the experiment will be conducted with different temperature levels in order to analyze the most accurate temperature level to proceed with removal of heavy metals from water. New wastewater treatment systems could be generated with the help of microplastics, for water contaminated with heavy metals.

Keywords: microplastics, heavy metal, pollution, adsorbance, wastewater treatment

Procedia PDF Downloads 55
260 Identification of the Most Effective Dosage of Clove Oil Solution as an Alternative for Synthetic Anaesthetics on Zebrafish (Danio rerio)

Authors: D. P. N. De Silva, N. P. P. Liyanage

Abstract:

Zebrafish (Danio rerio) in the family Cyprinidae, is a tropical freshwater fish widely used as a model organism in scientific research. Use of effective and economical anaesthetic is very important when handling fish. Clove oil (active ingredient: eugenol) was identified as a natural product which is safer and economical compared to synthetic chemicals like methanesulfonate (MS-222). Therefore, the aim of this study was to identify the most effective dosage of clove oil solution as an anaesthetic on mature Zebrafish. Clove oil solution was prepared by mixing pure clove oil with 94% ethanol at a ratio of 1:9 respectively. From that solution, different volumes were selected as (0.4 ml, 0.6 ml and 0.8 ml) and dissolved in one liter of conditioned water (dosages : 0.4 ml/L, 0.6 ml/L and 0.8 ml/L). Water quality parameters (pH, temperature and conductivity) were measured before and after adding clove oil solution. Mature Zebrafish with similar standard length (2.76 ± 0.1 cm) and weight (0.524 ± 0.1 g) were selected for this experiment. Time taken for loss of equilibrium (initiation phase) and complete loss of movements including opercular movement (anaesthetic phase) were measured. To detect the efficacy on anaesthetic recovery, time taken to begin opercular movements (initiation of recovery phase) until swimming (post anaesthetic phase) were observed. The results obtained were analyzed according to the analysis of variance (ANOVA) and Tukeys’ method using SPSS version 17.0 at 95% confidence interval (p<0.5). According to the results, there was no significant difference at the initiation phase of anaesthesia in all three doses though the time taken was varied from 0.14 to 0.41 minutes. Mean value of the time taken to complete the anaesthetic phase at 0.4 ml/L dosage was significantly different with 0.6 ml/L and 0.8 ml/L dosages independently (p=0.01). There was no significant difference among recovery times at all dosages but 0.8 ml/L dosage took longer time compared to 0.6 ml/L dosage. The water quality parameters (pH and temperature) were stable throughout the experiment except conductivity, which increased with the higher dosage. In conclusion, the best dosage need to anaesthetize Zebrafish using clove oil solution was 0.6 ml/L due to its fast initiation of anaesthesia and quick recovery compared to the other two dosages. Therefore clove oil can be used as a good substitute for synthetic anaesthetics because of its efficacy at a lower dosage with higher safety at a low cost.

Keywords: anaesthetics, clove oil, zebrafish, Cyprinidae

Procedia PDF Downloads 689
259 Treatment of Acid Mine Lake by Ultrasonically Modified Fly Ash at Different Frequencies

Authors: Burcu Ileri, Deniz Sanliyuksel Yucel, Onder Ayyildiz

Abstract:

The oxidation of pyrite in water results in the formation of acid mine drainage, which typically forms extremely acid mine lake (AML) in the depression areas of abandoned Etili open-pit coal mine site, Northwest Turkey. Nine acid mine lakes of various sizes have been located in the Etili coal mine site. Hayirtepe AML is one of the oldest lake having a mean pH value of 2.9 and conductivity of 4550 μS/cm, and containing elevated concentrations of Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn. The water quality of the lake has been deteriorated due to its high chemical composition, in particular, increasing heavy metal pollution. In this study, fly ash (FA), a coal combustion by-product from fluidized bed thermal power plant in the northwestern part of Turkey, was used as an adsorbent for the treatment of Hayirtepe AML. The FA is a relatively abundant and cost effective material, but its use in adsorption processes usually require excessive adsorbent doses. To increase adsorption efficiency and lower the adsorbent dose, we modified the FA by means of ultrasonic treatment (20 kHz and 40 kHz). The images of scanning electron microscopy (SEM) have demonstrated that ultrasonic treatment not only decreased the size of ash particles but also created pits and cracks on their surfaces which in turn led to a significant increase in the BET surface area. Both FA and modified fly ash were later tested for the removal of heavy metals from the AML. The effect of various operating parameters such as ultrasonic power, pH, ash dose, and adsorption contact time were examined to obtain the optimum conditions for the treatment process. The results have demonstrated that removal of heavy metals by ultrasound-modified fly ash requires much shorter treatment times and lower adsorbent doses than those attained by the unmodified fly ash. This research was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK), (Project no: 116Y510).

Keywords: acid mine lake, heavy metal, modified fly ash, ultrasonic treatment

Procedia PDF Downloads 175
258 A Combinatorial Approach of Treatment for Landfill Leachate

Authors: Anusha Atmakuri, R. D. Tyagi, Patrick Drogui

Abstract:

Landfilling is the most familiar and easy way to dispose solid waste. Landfill is generally received via wastes from municipal near to a landfill. The waste collected is from commercial, industrial, and residential areas and many more. Landfill leachate (LFL) is formed when rainwater passes through the waste placed in landfills and consists of several dissolved organic materials, for instance, aquatic humic substances (AHS), volatile fatty acids (VFAs), heavy metals, inorganic macro components, and xenobiotic organic matters, highly toxic to the environment. These components of LFL put a load on it, hence it necessitates the treatment of LFL prior to its discharge into the environment. Various methods have been used to treat LFL over the years, such as physical, chemical, biological, physicochemical, electrical, and advanced oxidation methods. This study focuses on the combination of biological and electrochemical methods- extracellular polymeric substances and electrocoagulation(EC). The coupling of electro-coagulation process with extracellular polymeric substances (EPS) (as flocculant) as pre and\or post treatment strategy provides efficient and economical process for the decontamination of landfill leachate contaminated with suspended matter, metals (e.g., Fe, Mn) and ammonical nitrogen. Electro-coagulation and EPS mediated coagulation approach could be an economically viable for the treatment of landfill leachate, along with possessing several other advantages over several other methods. This study utilised waste substrates such as activated sludge, crude glycerol and waste cooking oil for the production of EPS using fermentation technology. A comparison of different scenarios for the treatment of landfill leachate is presented- such as using EPS alone as bioflocculant, EPS and EC with EPS being the 1st stage, and EPS and EC with EC being the 1st stage. The work establishes the use of crude EPS as a bioflocculant for the treatment of landfill leachate and wastewater from a site near a landfill, along with EC being successful in removal of some major pollutants such as COD, turbidity, total suspended solids. A combination of these two methods is to be explored more for the complete removal of all pollutants from landfill leachate.

Keywords: landfill leachate, extracellular polymeric substances, electrocoagulation, bioflocculant.

Procedia PDF Downloads 58
257 Ammonia Sensing Properties of Nanostructured Hybrid Halide Perovskite Thin Film

Authors: Nidhi Gupta, Omita Nanda, Rakhi Grover, Kanchan Saxena

Abstract:

Hybrid perovskite is new class of material which has gained much attention due to their different crystal structure and interesting optical and electrical properties. Easy fabrication, high absorption coefficient, and photoluminescence properties make them a strong candidate for various applications such as sensors, photovoltaics, photodetectors, etc. In perovskites, ions arrange themselves in a special type of crystal structure with chemical formula ABX3, where A is organic species like CH3NH3+, B is metal ion (e.g., Pb, Sn, etc.) and X is halide (Cl-, Br-, I-). In crystal structure, A is present at corner position, B at center of the crystal lattice and halide ions at the face centers. High stability and sensitivity of nanostructured perovskite make them suitable for chemical sensors. Researchers have studied sensing properties of perovskites for number of analytes such as 2,4,6-trinitrophenol, ethanol and other hazardous chemical compounds. Ammonia being highly toxic agent makes it a reason of concern for the environment. Thus the detection of ammonia is extremely important. Our present investigation deals with organic inorganic hybrid perovskite based ammonia sensor. Various methods like sol-gel, solid state synthesis, thermal vapor deposition etc can be used to synthesize Different hybrid perovskites. In the present work, a novel hybrid perovskite has been synthesized by a single step method. Ethylenediammnedihalide and lead halide were used as precursor. Formation of hybrid perovskite was confirmed by FT-IR and XRD. Morphological characterization of the synthesized material was performed using scanning electron microscopy (SEM). SEM analysis revealed the formation of one dimensional nanowire perovskite with mean diameter of 200 nm. Measurements for sensing properties of halide perovskite for ammonia vapor were carried out. Perovskite thin films showed a color change from yellow to orange on exposure of ammonia vapor. Electro-optical measurements show that sensor based on lead halide perovskite has high sensitivity towards ammonia with effective selectivity and reversibility. Sensor exhibited rapid response time of less than 20 seconds.

Keywords: hybrid perovskite, ammonia, sensor, nanostructure, thin film

Procedia PDF Downloads 242
256 Formulation and In vivo Evaluation of Venlafaxine Hydrochloride Long Acting Tablet

Authors: Abdulwahhab Khedr, Tamer Shehata, Hanaa El-Ghamry

Abstract:

Venlafaxine HCl is a novel antidepressant drug used in the treatment of major depressive disorder, generalized anxiety disorder, social anxiety disorder and panic disorder. Conventional therapeutic regimens with venlafaxine HCl immediate-release dosage forms require frequent dosing due to short elimination half-life of the drug and reduced bioavailability. Hence, this study was carried out to develop sustained-release dosage forms of venlafaxine HCl to reduce its dosing frequency, to improve patient compliance and to reduce side effects of the drug. The polymers used were hydroxypropylmethyl cellulose, xanthan gum, sodium alginate, sodium carboxymethyl cellulose, Carbopol 940 and ethyl cellulose. The physical properties of the prepared tablets including tablet thickness, diameter, weight uniformity, content uniformity, hardness and friability were evaluated. Also, the in-vitro release of venlafaxine HCl from different matrix tablets was studied. Based on physical characters and in-vitro release profiles, certain formulae showing promising sustained-release profiles were subjected to film coating with 15% w/v EC in dichloromethane/ethanol mixture (1:1 ratio) using 1% w/v HPMC as pore former and 30% w/w dibutyl phthalate as plasticizer. The optimized formulations were investigated for drug-excipient compatibility using FTIR and DSC studies. Physical evaluation of the prepared tablets fulfilled the pharmacopoeial requirements for tablet friability test, where the weight loss of the prepared formulae did not exceed 1% of the weight of the tested tablets. Moderate release was obtained from tablets containing HPMC. FTIR and DSC studies for such formulae revealed the absence of any type of chemical interaction between venlafaxine HCl and the used polymers or excipients. Forced swimming test in rats was used to evaluate the antidepressant activity of the selected matrix tablets of venlafaxine HCl. Results showed that formulations significantly decreased the duration of animals’ immobility during the 24 hr-period of the test compared to non-treated group.

Keywords: antidepressant, sustained-release, matrix tablet, venlafaxine hydrochloride

Procedia PDF Downloads 208
255 Nanoprofiling of GaAs Surface in a Combined Low-Temperature Plasma for Microwave Devices

Authors: Victor S. Klimin, Alexey A. Rezvan, Maxim S. Solodovnik, Oleg A. Ageev

Abstract:

In this paper, the problems of existing methods of profiling and surface modification of nanoscale arsenide-gallium structures are analyzed. The use of a combination of methods of local anodic oxidation and plasma chemical etching to solve this problem is considered. The main features that make this technology one of the promising areas of modification and profiling of near-surface layers of solids are demonstrated. In this paper, we studied the effect of formation stress and etching time on the geometrical parameters of the etched layer and the roughness of the etched surface. Experimental dependences of the thickness of the etched layer on the time and stress of formation were obtained. The surface analysis was carried out using atomic force microscopy methods, the corresponding profilograms were constructed from the obtained images, and the roughness of the etched surface was studied accordingly. It was shown that at high formation voltage, the depth of the etched surface increased, this is due to an increase in the number of active particles (oxygen ions and hydroxyl groups) formed as a result of the decomposition of water molecules in an electric field, during the formation of oxide nanostructures on the surface of gallium arsenide. Oxide layers were used as negative masks for subsequent plasma chemical etching by the STE ICPe68 unit. BCl₃ was chosen as the chlorine-containing gas, which differs from analogs in some parameters for the effect of etching of nanostructures based on gallium arsenide in the low-temperature plasma. The gas mixture of reaction chamber consisted of a buffer gas NAr = 100 cm³/min and a chlorine-containing gas NBCl₃ = 15 cm³/min at a pressure P = 2 Pa. The influence of these methods modes, which are formation voltage and etching time, on the roughness and geometric parameters, and corresponding dependences are demonstrated. Probe nanotechnology was used for surface analysis.

Keywords: nanostructures, GaAs, plasma chemical etching, modification structures

Procedia PDF Downloads 123
254 Improving the Corrosion Resistance of Magnesium by Application of TiO₂-MgO Coatings

Authors: Eric Noe Hernandez Rodriguez, Cristian Esneider Penuela Cruz

Abstract:

Magnesium is a biocompatible and biodegradable material that has gained increased interest for application in resorbable orthopedic implants. However, to date, much research is being conducted to overcome the main disadvantage: its low corrosion resistance. In this work, we report our findings on the development and application of TiO₂-MgO coatings to improve and modulate the corrosion resistance of magnesium pieces. The plasma electrolytic oxidation (PEO) technique was employed to obtain the TiO₂-MgO coatings. The effect of the experimental parameters on the modulation of the TiO₂:MgO ratio was investigated. The most critical parameters were the chemical composition of the precursor electrolytic solution and the current density. According to scanning electron microscopy (SEM) observations, the coatings were porous; however, they become more compact as the current density increases. XRD measurements showed that the coatings are formed by a composite consisting of TiO₂ and MgO oxides, whose ratio can be changed by the experimental conditions. TiO₂ had the anatase crystalline structure, while the MgO had the FCC crystalline structure. The corrosion resistance was evaluated through the corrosion current (Icorr) measured at room temperature by the polarization technique (Tafel). For doing it, Hank's solution was used in order to simulate the body fluids. Also, immersion tests were conducted. Tafel curves showed an improvement of the corrosion resistance at some coated magnesium pieces in contrast to control pieces (uncoated). Corrosion currents were lower, and the corrosion potential changed to positive values. It was observed that the experimental parameters allowed to modulate the protective capacity of the coatings by changing the TiO₂:MgO ratio. Coatings with a higher content of TiO₂ (measured by energy dispersive spectroscopy) showed higher corrosion resistance. Results showed that TiO₂-MgO coatings can be successfully applied to improve the corrosion resistance of Mg pieces in simulated body fluid; even more, the corrosion resistance can be tuned by changing the TiO₂:MgO ratio.

Keywords: biomaterials, PEO, corrosion resistance, magnesium

Procedia PDF Downloads 80
253 Application of Neutron Activation Analysis Technique for the Analysis of Soil Samples from Farmlands of Yebrage Hawariat, East Gojjam, Ethiopia

Authors: Yihunie Hibstie Asres, Manny Mathuthu

Abstract:

Farmers may not be conscious for their farmland’s nutrients, soil organic matter, water and air because they simply concerned only for their labor availability and soil fertility losses. The composition and proportion of these components greatly influence soil physical properties, including texture, structure, and porosity, the fraction of pore space in a soil. The soil of this farmland must be able to supply adequate amount of plant nutrients, in forms which can be absorbed by the crop, within its lifespan. Deficiencies or imbalances in the supply of any of essential elements can compromise growth, affecting root development, cell division, crop quality, crop yield and resistance to disease and drought. This study was conducted to fill this knowledge gap in order to develop economically vital and environmentally accepted nutrient management strategies for the use of soils in agricultural lands. The objective of this study is to assess the elemental contents and concentration of soil samples collected from farmlands of ‘Yebrage’ using Neutron Activation Analysis (NAA) techniques regardless of oxidation state, chemical form or physical locations. NAA is used to determine the elemental composition and concentrations present in a soil. The macro/micronutrient and organic matter deficiencies have been verified in agricultural soils through increased use of soil testing and plant analysis. The challenge for agriculture over the coming decades will meet the world’s increasing demands for food in a sustainable way. Current issues and future challenges point out that as long as agriculture remains a soil-based industry, major decreases in productivity likely to be attained ensuring that plants do not have adequate and balanced supply of nutrients.

Keywords: NAA, Yebrage, Chemoga, macro/micronutrient

Procedia PDF Downloads 145
252 Assessment the Infiltration of the Wastewater Ponds and Its Impact on the Water Quality of Pleistocene Aquifer at El Sadat City Using 2-D Electrical Resistivity Tomography and Water Chemistry

Authors: Abeer A. Kenawy, Usama Massoud, El-Said A. Ragab, Heba M. El-Kosery

Abstract:

2-D Electrical Resistivity Tomography (ERT) and hydrochemical study have been conducted at El Sadat industrial city. The study aims to investigate the area around the wastewater ponds to determine the possibility of water percolation from the wastewater ponds to the Pleistocene aquifer and to inspect the effect of this seepage on the groundwater chemistry. Pleistocene aquifer is the main groundwater reservoir in this area, where El Sadat city and its vicinities depend totally on this aquifer for water supplies needed for drinking, agricultural, and industrial activities. In this concern, seven ERT profiles were measured around the wastewater ponds. Besides, 10 water samples were collected from the ponds and the nearby groundwater wells. The water samples have been chemically analyzed for major cations, anions, nutrients, and heavy elements. Also, the physical parameters (pH, Alkalinity, EC, TDS) of the water samples were measured. Inspection of the ERT sections shows that they exhibit lower resistivity values towards the water ponds and higher values in opposite sides. In addition, the water table was detected at shallower depths at the same sides of lower resistivity. This could indicate a wastewater infiltration to the groundwater aquifer near the oxidation ponds. Correlation of the physical parameters and ionic concentrations of the wastewater samples with those of the groundwater samples indicates that; the ionic levels are randomly varying and no specific trend could be obtained. In addition, the wastewater samples shows some ionic levels lower than those detected in other groundwater samples. Besides, the nitrate level is higher in samples taken from the cultivated land than the wastewater samples due to the over using of nitrogen fertilizers. Then, we can say that the infiltrated water from wastewater ponds are not the main controller of the groundwater chemistry in this area, but rather the variable ionic concentrations could be attributed to local, natural, and anthropogenic processes.

Keywords: El Sadat city, ERT, hydrochemistry, percolation, wastewater ponds

Procedia PDF Downloads 317
251 Morphological Interaction of Porcine Oocyte and Cumulus Cells Study on in vitro Oocyte Maturation Using Electron Microscopy

Authors: M. Areekijseree, W. Pongsawat, M. Pumipaiboon, C. Thepsithar, S. Sengsai, T. Chuen-Im

Abstract:

Morphological interaction of porcine cumulus-oocyte complexes (pCOCs) was investigated on in vitro condition using electron microscope (SEM and TEM). The totals of 1,923 oocytes were round in shape, surrounded by zona pellucida with layer of cumulus cells ranging between 59.29-202.14 µm in size. They were classified into intact-, multi-, partial cumulus cell layer oocyte, and completely denuded oocyte, at the percentage composition of 22.80% 32.70%, 18.60%, and 25.90 % respectively. The pCOCs classified as intact- and multi cumulus cell layer oocytes were further culturing at 37°C with 5% CO2, 95% air atmosphere and high humidity for 44 h in M199 with Earle’s salts supplemented with 10% HTFCS, 2.2 mg/mL NaHCO3, 1 M Hepes, 0.25 mM pyruvate, 15 µg/mL porcine follicle-stimulating hormone, 1 µg/mL LH, 1µg/mL estradiol with ethanol, and 50 µg/mL gentamycin sulfate. On electron microscope study, cumulus cells were found to stick their processes to secrete substance from the sac-shape end into zona pellucida of the oocyte and also communicated with the neighboring cells through their microvilli on the beginning of incubation period. It is believed that the cumulus cells communicate with the oocyte by inserting the microvilli through this gap and embedded in the oocyte cytoplasm before secreting substance, through the sac-shape end of the microvilli, to inhibit primary oocyte development at the prophase I. Morphological changes of the complexes were observed after culturing for 24-44 h. One hundred percentages of the cumulus layers were expanded and cumulus cells were peeling off from the oocyte surface. In addition, the round-shape cumulus cells transformed themselves into either an elongate shape or a columnar shape, and no communication between cumulus neighboring cells. After 44 h of incubation time, diameter of oocytes surrounded by cumulus cells was larger than 0 h incubation. The effect of hormones in culture medium is exerted by their receptors present in porcine oocyte. It is likely that all morphological changes of the complexes after hormone treatment were to allow maturation of the oocyte. This study demonstrated that the association of hormones in M199 could promote porcine follicle activation in 44 h in vitro condition. This culture system should be useful for studying the regulation of early follicular growth and development, especially because these follicles represent a large source of oocytes that could be used in vitro for cell technology.

Keywords: cumulus cells, electron microscopy, in vitro, porcine oocyte

Procedia PDF Downloads 360
250 RNA-seq Analysis of Liver from NASH-HCC Model Mouse Treated with Streptozotocin-High Fat Diet

Authors: Bui Phuong Linh, Yuki Sakakibara, Ryuto Tanaka, Elizabeth H. Pigney, Taishi Hashiguchi

Abstract:

Non-alcoholic steatohepatitis (NASH) is a chronic liver disease, often associated with type II diabetes, which sometimes progresses to more serious conditions such as liver fibrosis and hepatocellular carcinoma (HCC). NASH has become an important health problem worldwide, buttherapeutic agents for NASH have not yet been approved, and animal models with high clinical correlation are required. TheSTAM™ mouse shows the same pathological progression as human NASH patients and has been widely used for both drug efficacy and basic research, such as lipid profiling and gut microbiota research. In this study, we analyzed the RNA-seq data of STAM™mice at each pathological stage (steatosis, steatohepatitis, liver fibrosis, and HCC) and examined the clinical correlation at the genetic level. NASH was induced in male mice by a single subcutaneous injection of 200 µg streptozotocin solution 2 days after birth and feeding with high fat dietafter 4 weeks of age. The mice were sacrificed and livers collected at 6, 8, 10, 12, 16, and 20 weeks of age. For liver samples, the left lateral lobe was snap frozen in liquid nitrogen and stored at -80˚C for RNA-seq analysis. Total RNA of the cells was isolated using RNeasy mini kit. The gene expression of the canonical pathways in NASH progression from steatosis to hepatocellular carcinoma were analyzed, such as immune system process, oxidation-reduction process, lipid metabolic process. Moreover, since it has been reported that genetic traits are involved in the development of NASH-HCC, we next analyzed the genetic mutations in the STAM™mice. The number of individuals showing mutations in Mtorinvolved in Insulin signaling increases as the disease progresses, especially in the liver cancer phase. These results indicated a clinical correlation of gene profiles in the STAM™mouse.

Keywords: steatosis, non-alcoholic steatohepatitis, fibrosis, hepatocellular carcinoma, RNA-seq

Procedia PDF Downloads 131
249 Effects of Small Impoundments on Leaf Litter Decomposition and Methane Derived Carbon in the Benthic Foodweb in Streams

Authors: John Gichimu Mbaka, Jan Helmrich Martin von Baumbach, Celia Somlai, Denis Köpfer, Andreas Maeck, Andreas Lorke, Ralf Schäfer

Abstract:

Leaf litter decomposition is an important process providing energy to biotic communities. Additionally, methane gas (CH4) has been identified as an important alternative source of carbon and energy in some freshwater food webs.Flow regulation and dams can strongly alter freshwater ecosystems, but little is known about the effect of small impoundments on leaf litter decomposition and methane derived carbon in streams. In this study, we tested the effect of small water storage impoundments on leaf litter decomposition rates and methane derived carbon. Leaf litter decomposition rates were assessed by comparing treatment sites located close to nine impoundments (Rheinland Pfalz state, Germany) and reference sites located far away from the impoundments.CH4 concentrations were measured in eleven impoundments and correlated with the δ13C values of two subfamilies of chironomid larvae (i.e. Chironomini and Tanypodinae). Leaf litter break down rates were significantly lower in study sites located immediately above the impoundments, especially associated with a reduction in the abundance of shredders. Chironomini larvae had the lower mean δ13C values (‒29.2 to ‒25.5 ‰), than Tanypodinae larvae (‒26.9 to ‒25.3 ‰).No significant relationships were established between CH4 concentrations and δ13C values of chironomids (p> 0.05).Mean δ13C values of chironomid larvae (mean: ‒26.8‰, range: ‒ 29.2‰ to ‒ 25.3‰) were similar to those of sedimentary organic matter (SOM) (mean: ‒28.4‰, range: ‒ 29.3‰ to ‒ 27.1‰) and tree leaf litter (mean: ‒29.8 ‰, range: ‒ 30.5‰ to ‒ 29.1‰). In conclusion, this study demonstrates that small impoundments may have a negative effect on leaf litter decomposition in forest streams and that CH4 has limited influence on the benthic food web in stream impoundments.

Keywords: river functioning, chironomids, Alder tree, stable isotopes, methane oxidation, shredder

Procedia PDF Downloads 705
248 Absorption Behavior of Some Acids During Chemical Aging of HDPE-100 Polyethylene

Authors: Berkas Khaoula

Abstract:

Based on selection characteristics, high-density polyethylene (HDPE) extruded pipes are among the most economical and durable materials as well-designed solutions for water and gas transmission systems. The main reasons for such a choice are the high quality-performance ratio and the long-term service durability under aggressive conditions. Due to inevitable interactions with soils of different chemical compositions and transported fluids, aggressiveness becomes a key factor in studying resilient strength and life prediction limits. This phenomenon is known as environmental stress cracking resistance (ESCR). In this work, the effect of 3 acidic environments (5% acetic, 20% hydrochloric and 20% sulfuric) on HDPE-100 samples (~10x11x24 mm3). The results presented in the form (Δm/m0, %) as a function of √t indicate that the absorption, in the case of strong acids (HCl and H2SO4), evolves towards negative values involving material losses such as antioxidants and some additives. On the other hand, acetic acid and deionized water (DW) give a form of linear Fickean (LF) and B types, respectively. In general, the acids cause a slow but irreversible alteration of the chemical structure, composition and physical integrity of the polymer. The DW absorption is not significant (~0.02%) for an immersion duration of 69 days. Such results are well accepted in actual applications, while changes caused by acidic environments are serious and must be subjected to particular monitoring of the OIT factor (Oxidation Induction Time). After 55 days of aging, the H2SO4 and HCl media showed particular values with a loss of % mass in the interval [0.025-0.038] associated with irreversible chemical reactions as well as physical degradations. This state is usually explained by hydrolysis of the polymer, causing the loss of functions and causing chain scissions. These results are useful for designing and estimating the lifetime of the tube in service and in contact with adverse environments.

Keywords: HDPE, environmental stress cracking, absorption, acid media, chemical aging

Procedia PDF Downloads 59
247 Additional Method for the Purification of Lanthanide-Labeled Peptide Compounds Pre-Purified by Weak Cation Exchange Cartridge

Authors: K. Eryilmaz, G. Mercanoglu

Abstract:

Aim: Purification of the final product, which is the last step in the synthesis of lanthanide-labeled peptide compounds, can be accomplished by different methods. Among these methods, the two most commonly used methods are C18 solid phase extraction (SPE) and weak cation exchanger cartridge elution. SPE C18 solid phase extraction method yields high purity final product, while elution from the weak cation exchanger cartridge is pH dependent and ineffective in removing colloidal impurities. The aim of this work is to develop an additional purification method for the lanthanide-labeled peptide compound in cases where the desired radionuclidic and radiochemical purity of the final product can not be achieved because of pH problem or colloidal impurity. Material and Methods: For colloidal impurity formation, 3 mL of water for injection (WFI) was added to 30 mCi of 177LuCl3 solution and allowed to stand for 1 day. 177Lu-DOTATATE was synthesized using EZAG ML-EAZY module (10 mCi/mL). After synthesis, the final product was mixed with the colloidal impurity solution (total volume:13 mL, total activity: 40 mCi). The resulting mixture was trapped in SPE-C18 cartridge. The cartridge was washed with 10 ml saline to remove impurities to the waste vial. The product trapped in the cartridge was eluted with 2 ml of 50% ethanol and collected to the final product vial via passing through a 0.22μm filter. The final product was diluted with 10 mL of saline. Radiochemical purity before and after purification was analysed by HPLC method. (column: ACE C18-100A. 3µm. 150 x 3.0mm, mobile phase: Water-Acetonitrile-Trifluoro acetic acid (75:25:1), flow rate: 0.6 mL/min). Results: UV and radioactivity detector results in HPLC analysis showed that colloidal impurities were completely removed from the 177Lu-DOTATATE/ colloidal impurity mixture by purification method. Conclusion: The improved purification method can be used as an additional method to remove impurities that may result from the lanthanide-peptide synthesis in which the weak cation exchange purification technique is used as the last step. The purification of the final product and the GMP compliance (the final aseptic filtration and the sterile disposable system components) are two major advantages.

Keywords: lanthanide, peptide, labeling, purification, radionuclide, radiopharmaceutical, synthesis

Procedia PDF Downloads 138
246 Petrologic and Geochemical Characteristics of Marine Sand Strip in the Proterozoic Chuanlinggou Formation of the North China

Authors: Yue Feng, Chun-jiang Wang, Zhi-long Huang

Abstract:

The study of the sedimentary environment of Mesoproterozoic marine deposits in North China has attracted special attention in recent years. It is not clear that the sedimentary environment and the cause of formation of the sandstone strip and its internal carbonate cements and pyrite in the Mesoproterozoic Chuanlinggou Formation in North China. In this study, drilling core samples in North China were identified by microscopy, and their petrological characteristics such as mineral composition and structure were identified. The geochemical data of carbon and oxygen isotopes, total organic carbon (TOC) contents and total sulfur (TS) contents were obtained by processing and analyzing the samples. The samples are mainly quartz particles with low compositional maturity, combined with low value of TOC, it shows that the sedimentary environment of the sandy clastic is a sandy littoral sedimentary environment with relative strong hydrodynamic force, and then the sandstone strip in black shale are formed by the deposition of gravity flow. Analysis of TS values reflect sandstone bands formed in hypoxic environments. The carbonate cements and the pyrite in the sandstone belt are authigenic. The carbon isotope values of authigenic carbonate cements are negatively biased in comparison with the carbonate isotope of carbonate rocks in the same period, but it is more biased than the carbon isotopic values of anaerobic oxidation of methane (AOM) genetic carbonate rocks. Authigenic pyrite may be mainly due to the formation of HS- by the action of bacterial sulfate reduction (BSR) and Fe²⁺, their causes are in contact. This indicates that authigenic carbonate cements are mainly carbonate precipitates formed but are significantly affected by the effects of AOM. Summary, the sedimentary environment of the sandstone zone in the Chuanlinggou Formation in the North China is a shallow sea facies with iron rich and anoxic.

Keywords: sandstone strip, sedimentary environment, authigenic carbonate cements, authigenic pyrite, The Chuanlinggou group, North China

Procedia PDF Downloads 121
245 Microencapsulation of Tuna Oil and Mentha Piperita Oil Mixture using Different Combinations of Wall Materials with Whey Protein Isolate

Authors: Amr Mohamed Bakry Ibrahim, Yingzhou Ni, Hao Cheng, Li Liang

Abstract:

Tuna oil (omega-3 oil) has become increasingly popular in the last ten years, because it is considered one of the treasures of food which has many beneficial health effects for the humans. Nevertheless, the susceptibility of omega-3 oils to oxidative deterioration, resulting in the formation of oxidation products, in addition to organoleptic problems including “fishy” flavors, have presented obstacles to the more widespread use of tuna oils in the food industry. This study sought to evaluate the potential impact of Mentha piperita oil on physicochemical characteristics and oxidative stability of tuna oil microcapsules formed by spray drying using the partial substitution to whey protein isolate by carboxymethyl cellulose and pullulan. The emulsions before the drying process were characterized regarding size and ζ-potential, viscosity, surface tension. Confocal laser scanning microscopy showed that all emulsions were sphericity and homogeneous distribution without any visible particle aggregation. The microcapsules obtained after spray drying were characterized regarding microencapsulation efficiency, water activity, color, bulk density, flowability, scanning surface morphology and oxidative stability. The microcapsules were spherical shape had low water activity (0.11-0.23 aw). The microcapsules containing both tuna oil and Mentha piperita oil were smaller than others and addition of pullulan into wall materials improved the morphology of microcapsules. Microencapsulation efficiency of powdered oil ranged from 90% to 94%. Using Mentha piperita oil in the process of microencapsulation tuna oil enhanced the oxidative stability using whey protein isolate only or with carboxymethyl cellulose or pullulan as wall materials, resulting in improved storage stability and mask fishy odor. Therefore, it is foreseen using tuna-Mentha piperita oil mixture microcapsules in the applications of the food industries.

Keywords: Mentha piperita oil, microcapsule, tuna oil, whey protein isolate

Procedia PDF Downloads 322
244 Gossypol Extraction from Cotton Seed and Evaluation of Cotton Seed and Boll-cotton-pol Extract on Treatment of Cutaneous Leishmaniasis Resistant to Drugs

Authors: M. Mirmohammadi, S. Taghdisi, F. Anali

Abstract:

Gossypol is a yellow anti-nutritional compound found in the cotton plant. This substance exists in the cottonseed and other parts of the cotton plant, such as bark, leaves, and stems. Chemically, gossypol is a very active polyphenolic aldehyde compound, and due to this polyphenolic structure, it has antioxidant and therapeutic properties. On the other hand, this compound, especially in free form, has many toxic effects, that its excessive consumption can be very dangerous for humans and animals. In this study, gossypol was extracted as a derivative compound of gossypol acetic acid from cottonseed using the n-hexane solvent with an efficiency of 0.84 ± 0.04, which compared to the Gossypol extracted from cottonseed oil with the same method (cold press) showed a significant difference with its efficiency of 1.14 ± 0.06. Therefore, it can be suggested to use cottonseed oil to extract this valuable compound. In the other part of this research, cottonseed extracts and cotton bolls extracts were obtained by two methods of soaking and Soxhlet with hydroalcoholic solvent taken with a ratio of (25:75), then by using extracts and corn starch powder, four herbal medicine code was created and after receiving the code of ethics (IR.SSU.REC.1398.136) the therapeutic effect of each one on the Cutaneous leishmaniasis resistant to drugs (caused by the leishmaniasis parasite) was investigated in real patients and its results was compared with the common drug glucantime (local ampoule) (n = 36). Statistical studies showed that the use of herbal medicines prepared with cottonseed extract and cotton bolls extract has a significant positive effect on the treatment of the disease’s wounds (p-value > 0.05) compared to the control group (only ethanol). Also, by comparing the average diameter of the wounds after a two-month treatment period, no significant difference was found between the use of ointment containing extracts and local glucantime ampoules (p-value < 0.05). Bolls extract extracted with the Soxhlet method showed the best therapeutic effects, although there was no significant difference between them (p-value < 0.05). Therefore, there is acceptable reliability to recommend this medicine for the treatment of Cutaneous leishmaniasis resistant to drugs without the side effects of the chemical drug glucantime and the pain of injecting the ampoule.

Keywords: cottonseed oil, gossypol, cotton boll, cutaneous leishmaniasis

Procedia PDF Downloads 60
243 Modelling of Exothermic Reactions during Carbon Fibre Manufacturing and Coupling to Surrounding Airflow

Authors: Musa Akdere, Gunnar Seide, Thomas Gries

Abstract:

Carbon fibres are fibrous materials with a carbon atom amount of more than 90%. They combine excellent mechanicals properties with a very low density. Thus carbon fibre reinforced plastics (CFRP) are very often used in lightweight design and construction. The precursor material is usually polyacrylonitrile (PAN) based and wet-spun. During the production of carbon fibre, the precursor has to be stabilized thermally to withstand the high temperatures of up to 1500 °C which occur during carbonization. Even though carbon fibre has been used since the late 1970s in aerospace application, there is still no general method available to find the optimal production parameters and the trial-and-error approach is most often the only resolution. To have a much better insight into the process the chemical reactions during stabilization have to be analyzed particularly. Therefore, a model of the chemical reactions (cyclization, dehydration, and oxidation) based on the research of Dunham and Edie has been developed. With the presented model, it is possible to perform a complete simulation of the fibre undergoing all zones of stabilization. The fiber bundle is modeled as several circular fibers with a layer of air in-between. Two thermal mechanisms are considered to be the most important: the exothermic reactions inside the fiber and the convective heat transfer between the fiber and the air. The exothermic reactions inside the fibers are modeled as a heat source. Differential scanning calorimetry measurements have been performed to estimate the amount of heat of the reactions. To shorten the required time of a simulation, the number of fibers is decreased by similitude theory. Experiments were conducted to validate the simulation results of the fibre temperature during stabilization. The experiments for the validation were conducted on a pilot scale stabilization oven. To measure the fibre bundle temperature, a new measuring method is developed. The comparison of the results shows that the developed simulation model gives good approximations for the temperature profile of the fibre bundle during the stabilization process.

Keywords: carbon fibre, coupled simulation, exothermic reactions, fibre-air-interface

Procedia PDF Downloads 247
242 Active Exopolysaccharides Based Edible Coating Enriched with Red Seaweed (Gracilaria gracilis) Extract for Improved Preservation of Shrimp Quality during Refrigerated Storage

Authors: Rafik Balti, Mohamed Ben Mansour, Abdellah Arhaliass, Anthony Masse

Abstract:

Unfortunately, shrimps are highly perishable and they start deteriorating immediately after death owing to their high water content and nutritional components. Currently, there has been an increasing interest in bioactive edible films and coatings to preserve the freshness and quality of foods. In this study, active edible coatings from microalgal exopolysaccharides (EPS) enriched with different concentrations of Red Seaweed Extract (RSE) (0.5, 1 and 1.5 % (w/v)) were developed and their effects on the quality changes of white shrimp during refrigerated storage (4 ± 1 °C) were examined over a period of 8 days. The control and the coated shrimp samples were analyzed periodically for microbiological (total viable bacteria, psychrotrophic bacteria, and enterobacteriaceae counts), chemical (pH, TVB-N, TMA-N, PV, TBARS), textural and sensory characteristics. The results indicated that the coating with a mixture of EPS and RSE could significantly decrease the total volatile basic nitrogen (TVB-N), trimethylamine (TMA) and thiobarbituric acid reactive substances (TBARS) (p < 0.05). With storage, EPS coatings containing RSE at both levels (1 and 1.5 %) were more effective in inhibiting the microbial species studied, specially psychrotrophic bacteria. Also, EPS + RSE coated samples had lower polyphenol oxidase (PPO) activity and lipid oxidation (p < 0.05) toward the end of storage. Textural and color properties of coated shrimp were generally more acceptable. Sensory scores indicated no significant changes in all samples during storage. The obtained results indicate that the edible EPS coating solutions enriched with RSE have noticeable effects on the quality and shelf life of shrimps when compared to control group. Finally, the present work demonstrates the effectiveness of EPS enriched coatings, offering a promising alternative to preserve more better the quality characteristics and to extend the shelf life of shrimp during the refrigerated storage

Keywords: active coating, exopolysaccharides, red seaweed, refrigerated storage, white shrimp

Procedia PDF Downloads 185
241 Manganese Imidazole Complexes: Electrocatalytic Hydrogen Production

Authors: Vishakha Kaim, Mookan Natarajan, Sandeep Kaur-Ghumaan

Abstract:

Hydrogen is one of the most abundant elements present on earth’s crust and considered to be the simplest element in existence. It is not found naturally as a gas on earth and thus has to be manufactured. Hydrogen can be produced from a variety of sources, i.e., water, fossil fuels, or biomass and it is a byproduct of many chemical processes. It is also considered as a secondary source of energy commonly referred to as an energy carrier. Though hydrogen is not widely used as a fuel, it still has the potential for greater use in the future as a clean and renewable source of energy. Electrocatalysis is one of the important source for the production of hydrogen which could contribute to this prominent challenge. Metals such as platinum and palladium are considered efficient for hydrogen production but with limited applications. As a result, a wide variety of metal complexes with earth abundant elements and varied ligand environments have been explored for the electrochemical production of hydrogen. In nature, [FeFe] hydrogenase enzyme present in DesulfoVibrio desulfuricans and Clostridium pasteurianum catalyses the reversible interconversion of protons and electrons into dihydrogen. Since the first structure for the enzyme was reported in 1990s, a range of iron complexes has been synthesized as structural and functional mimics of the enzyme active site. Mn is one of the most desirable element for sustainable catalytic transformations, immediately behind Fe and Ti. Only limited number manganese complexes have been reported in the last two decades as catalysts for proton reduction. Furthermore, redox reactions could be carried out in a facile manner, due to the capability of manganese complexes to be stable at different oxidation states. Herein are reported, four µ2-thiolate bridged manganese complexes [Mn₂(CO)₆(μ-S₂N₄C₁₄H₁₀)] 1, [Mn₂(CO)7(μ- S₂N₄C₁₄H₁₀)] 2, Mn₂(CO)₆(μ-S₄N₂C₁₄H₁₀)] 3 and [Mn₂(CO)(μ- S₄N₂C₁₄H₁₀)] 4 have been synthesized and characterized. The cyclic voltammograms of the complexes displayed irreversible reduction peaks in the range - 0.9 to -1.3 V (vs. Fc⁺/Fc in acetonitrile at 0.1 Vs⁻¹). The complexes were catalytically active towards proton reduction in the presence of trifluoroacetic acid as seen from electrochemical investigations.

Keywords: earth abundant, electrocatalytic, hydrogen, manganese

Procedia PDF Downloads 143
240 The Effect of Different Extraction Techniques on the Yield and the Composition of Oil (Laurus Nobilis L.) Fruits Widespread in Syria

Authors: Khaled Mawardi

Abstract:

Bay laurel (Laurus nobilis L.) is an evergreen of the Laurus genus of the Lauraceae Family. It is a plant native to the southern Mediterranean and widespread in Syria. It is a plant with enormous industrial applications. For instance, they are used as platform chemicals in food, pharmaceutical and cosmetic applications. Herein, we report an efficient extraction of Bay laurel oil from Bay laurel fruits via a comparative investigation of boiled water conventional extraction technique and microwave-assisted extraction (MAE) by microwave heating at atmospheric pressure. In order to optimize the extraction efficiency, we investigated several extraction parameters, such as extraction time and microwave power. In addition, to demonstrate the feasibility of the method, oil obtained under optimal conditions by method (MAE) was compared quantitatively and qualitatively with that obtained by the conventional method. After 1h of microwave-assisted extraction (power of 600W), an oil yield of 9.8% with identified lauric acid content of 22.7%. In comparison, an extended extraction of up to 4h was required to obtain a 9.7% yield of oil extraction with 21.2% of lauric acid content. The change in microwave power impacts the fatty acids profile and also the quality parameters of Laurel Oil. It was found that the profile of fatty acids changed with the power, where the lauric acid content increased from 22.7% at 600W to 30.5% at 1200W owing to a decrease of oleic acid content from 32.8% at 600W to 28.3% at 1200W and linoleic acid content from 22.3% at 600W to 20.6% at 1200W. In addition, we observed a decrease in oil yield from 9.8% at 600W to 5.1% at 1200W. Summarily, the overall results indicated that the extraction of laurel fruit oils could be successfully performed using (MAE) at a short extraction time and lower energy compared with the fixed oil obtained by conventional processes of extraction. Microwave heating exerted more aggressive effects on the oil. Indeed, microwave heating inflicted changes in the fatty acids profile of oil; the most affected fraction was the unsaturated fatty acids, with higher susceptibility to oxidation.

Keywords: microwaves, extraction, Laurel oil, solvent-free

Procedia PDF Downloads 45
239 Optimization of the Co-Precipitation of Industrial Waste Metals in a Continuous Reactor System

Authors: Thomas S. Abia II, Citlali Garcia-Saucedo

Abstract:

A continuous copper precipitation treatment (CCPT) system was conceived at Intel Chandler Site to serve as a first-of-kind (FOK) facility-scale waste copper (Cu), nickel (Ni), and manganese (Mn) co-precipitation facility. The process was designed to treat highly variable wastewater discharged from a substrate packaging research factory. The paper discusses metals co-precipitation induced by internal changes for manufacturing facilities that lack the capacity for hardware expansion due to real estate restrictions, aggressive schedules, or budgetary constraints. Herein, operating parameters such as pH and oxidation reduction potential (ORP) were examined to analyze the ability of the CCPT System to immobilize various waste metals. Additionally, influential factors such as influent concentrations and retention times were investigated to quantify the environmental variability against system performance. A total of 2,027 samples were analyzed and statistically evaluated to measure the performance of CCPT that was internally retrofitted for Mn abatement to meet environmental regulations. In order to enhance the consistency of the influent, a separate holding tank was cannibalized from another system to collect and slow-feed the segregated Mn wastewater from the factory into CCPT. As a result, the baseline influent Mn decreased from 17.2+18.7 mg1L-1 at pre-pilot to 5.15+8.11 mg1L-1 post-pilot (70.1% reduction). Likewise, the pre-trial and post-trial average influent Cu values to CCPT were 52.0+54.6 mg1L-1 and 33.9+12.7 mg1L-1, respectively (34.8% reduction). However, the raw Ni content of 0.97+0.39 mg1L-1 at pre-pilot increased to 1.06+0.17 mg1L-1 at post-pilot. The average Mn output declined from 10.9+11.7 mg1L-1 at pre-pilot to 0.44+1.33 mg1L-1 at post-pilot (96.0% reduction) as a result of the pH and ORP operating setpoint changes. In similar fashion, the output Cu quality improved from 1.60+5.38 mg1L-1 to 0.55+1.02 mg1L-1 (65.6% reduction) while the Ni output sustained a 50% enhancement during the pilot study (0.22+0.19 mg1L-1 reduced to 0.11+0.06 mg1L-1). pH and ORP were shown to be significantly instrumental to the precipitative versatility of the CCPT System.

Keywords: copper, co-precipitation, industrial wastewater treatment, manganese, optimization, pilot study

Procedia PDF Downloads 250