Search results for: error minimization
2169 Improved Acoustic Source Sensing and Localization Based On Robot Locomotion
Authors: V. Ramu Reddy, Parijat Deshpande, Ranjan Dasgupta
Abstract:
This paper presents different methodology for an acoustic source sensing and localization in an unknown environment. The developed methodology includes an acoustic based sensing and localization system, a converging target localization based on the recursive direction of arrival (DOA) error minimization, and a regressive obstacle avoidance function. Our method is able to augment the existing proven localization techniques and improve results incrementally by utilizing robot locomotion and is capable of converging to a position estimate with greater accuracy using fewer measurements. The results also evinced the DOA error minimization at each iteration, improvement in time for reaching the destination and the efficiency of this target localization method as gradually converging to the real target position. Initially, the system is tested using Kinect mounted on turntable with DOA markings which serve as a ground truth and then our approach is validated using a FireBird VI (FBVI) mobile robot on which Kinect is used to obtain bearing information.Keywords: acoustic source localization, acoustic sensing, recursive direction of arrival, robot locomotion
Procedia PDF Downloads 4932168 Effects of Manufacture and Assembly Errors on the Output Error of Globoidal Cam Mechanisms
Authors: Shuting Ji, Yueming Zhang, Jing Zhao
Abstract:
The output error of the globoidal cam mechanism can be considered as a relevant indicator of mechanism performance, because it determines kinematic and dynamical behavior of mechanical transmission. Based on the differential geometry and the rigid body transformations, the mathematical model of surface geometry of the globoidal cam is established. Then we present the analytical expression of the output error (including the transmission error and the displacement error along the output axis) by considering different manufacture and assembly errors. The effects of the center distance error, the perpendicular error between input and output axes and the rotational angle error of the globoidal cam on the output error are systematically analyzed. A globoidal cam mechanism which is widely used in automatic tool changer of CNC machines is applied for illustration. Our results show that the perpendicular error and the rotational angle error have little effects on the transmission error but have great effects on the displacement error along the output axis. This study plays an important role in the design, manufacture and assembly of the globoidal cam mechanism.Keywords: globoidal cam mechanism, manufacture error, transmission error, automatic tool changer
Procedia PDF Downloads 5742167 Discrete Swarm with Passive Congregation for Cost Minimization of the Multiple Vehicle Routing Problem
Authors: Tarek Aboueldahab, Hanan Farag
Abstract:
Cost minimization of Multiple Vehicle Routing Problem becomes a critical issue in the field of transportation because it is NP-hard optimization problem and the search space is complex. Many researches use the hybridization of artificial intelligence (AI) models to solve this problem; however, it can not guarantee to reach the best solution due to the difficulty of searching the whole search space. To overcome this problem, we introduce the hybrid model of Discrete Particle Swarm Optimization (DPSO) with a passive congregation which enable searching the whole search space to compromise between both local and global search. The practical experiment shows that our model obviously outperforms other hybrid models in cost minimization.Keywords: cost minimization, multi-vehicle routing problem, passive congregation, discrete swarm, passive congregation
Procedia PDF Downloads 992166 Minimization Entropic Applied to Rotary Dryers to Reduce the Energy Consumption
Authors: I. O. Nascimento, J. T. Manzi
Abstract:
The drying process is an important operation in the chemical industry and it is widely used in the food, grain industry and fertilizer industry. However, for demanding a considerable consumption of energy, such a process requires a deep energetic analysis in order to reduce operating costs. This paper deals with thermodynamic optimization applied to rotary dryers based on the entropy production minimization, aiming at to reduce the energy consumption. To do this, the mass, energy and entropy balance was used for developing a relationship that represents the rate of entropy production. The use of the Second Law of Thermodynamics is essential because it takes into account constraints of nature. Since the entropy production rate is minimized, optimals conditions of operations can be established and the process can obtain a substantial gain in energy saving. The minimization strategy had been led using classical methods such as Lagrange multipliers and implemented in the MATLAB platform. As expected, the preliminary results reveal a significant energy saving by the application of the optimal parameters found by the procedure of the entropy minimization It is important to say that this method has shown easy implementation and low cost.Keywords: thermodynamic optimization, drying, entropy minimization, modeling dryers
Procedia PDF Downloads 2592165 Discrete Breeding Swarm for Cost Minimization of Parallel Job Shop Scheduling Problem
Authors: Tarek Aboueldahab, Hanan Farag
Abstract:
Parallel Job Shop Scheduling Problem (JSP) is a multi-objective and multi constrains NP- optimization problem. Traditional Artificial Intelligence techniques have been widely used; however, they could be trapped into the local minimum without reaching the optimum solution, so we propose a hybrid Artificial Intelligence model (AI) with Discrete Breeding Swarm (DBS) added to traditional Artificial Intelligence to avoid this trapping. This model is applied in the cost minimization of the Car Sequencing and Operator Allocation (CSOA) problem. The practical experiment shows that our model outperforms other techniques in cost minimization.Keywords: parallel job shop scheduling problem, artificial intelligence, discrete breeding swarm, car sequencing and operator allocation, cost minimization
Procedia PDF Downloads 1902164 Synthesis of Balanced 3-RRR Planar Parallel Manipulators
Authors: Arakelian Vigen, Geng Jing, Le Baron Jean-Paul
Abstract:
The paper deals with the design of parallel manipulators with balanced inertia forces and moments. The balancing of the resultant of the inertia forces of 3-RRR planar parallel manipulators is carried out through mass redistribution and centre of mass acceleration minimization. The proposed balancing technique is achieved in two steps: at first, optimal redistribution of the masses of input links is accomplished, which ensures the similarity of the end-effector trajectory and the manipulator’s common centre of mass trajectory, then, optimal trajectory planning of the end-effector by 'bang-bang' profile is reached. In such a way, the minimization of the magnitude of the acceleration of the centre of mass of the manipulator brings about a minimization of shaking force. To minimize the resultant of the inertia moments (shaking moment), the active balancing via inertia flywheel is applied. However, in this case, the active balancing is quite different from previous applications because it provides only a partial cancellation of the shaking moment due to the incomplete balancing of shaking force.Keywords: dynamic balancing, inertia force minimization, inertia moment minimization, 3-RRR planar parallel manipulator
Procedia PDF Downloads 4672163 Evaluation of Minimization of Moment Ratio Method by Physical Modeling
Authors: Amin Eslami, Jafar Bolouri Bazaz
Abstract:
Under active stress conditions, a rigid cantilever retaining wall tends to rotate about a pivot point located within the embedded depth of the wall. For purely granular and cohesive soils, a methodology was previously reported called minimization of moment ratio to determine the location of the pivot point of rotation. The usage of this new methodology is to estimate the rotational stability safety factor. Moreover, the degree of improvement required in a backfill to get a desired safety factor can be estimated by the concept of the shear strength demand. In this article, the accuracy of this method for another type of cantilever walls called Contiguous Bored Pile (CBP) retaining wall is evaluated by using physical modeling technique. Based on observations, the results of moment ratio minimization method are in good agreement with the results of the carried out physical modeling.Keywords: cantilever retaining wall, physical modeling, minimization of moment ratio method, pivot point
Procedia PDF Downloads 3322162 Using of Particle Swarm Optimization for Loss Minimization of Vector-Controlled Induction Motors
Authors: V. Rashtchi, H. Bizhani, F. R. Tatari
Abstract:
This paper presents a new online loss minimization for an induction motor drive. Among the many loss minimization algorithms (LMAs) for an induction motor, a particle swarm optimization (PSO) has the advantages of fast response and high accuracy. However, the performance of the PSO and other optimization algorithms depend on the accuracy of the modeling of the motor drive and losses. In the development of the loss model, there is always a trade off between accuracy and complexity. This paper presents a new online optimization to determine an optimum flux level for the efficiency optimization of the vector-controlled induction motor drive. An induction motor (IM) model in d-q coordinates is referenced to the rotor magnetizing current. This transformation results in no leakage inductance on the rotor side, thus the decomposition into d-q components in the steady-state motor model can be utilized in deriving the motor loss model. The suggested algorithm is simple for implementation.Keywords: induction machine, loss minimization, magnetizing current, particle swarm optimization
Procedia PDF Downloads 6342161 An Improved Approach to Solve Two-Level Hierarchical Time Minimization Transportation Problem
Authors: Kalpana Dahiya
Abstract:
This paper discusses a two-level hierarchical time minimization transportation problem, which is an important class of transportation problems arising in industries. This problem has been studied by various researchers, and a number of polynomial time iterative algorithms are available to find its solution. All the existing algorithms, though efficient, have some shortcomings. The current study proposes an alternate solution algorithm for the problem that is more efficient in terms of computational time than the existing algorithms. The results justifying the underlying theory of the proposed algorithm are given. Further, a detailed comparison of the computational behaviour of all the algorithms for randomly generated instances of this problem of different sizes validates the efficiency of the proposed algorithm.Keywords: global optimization, hierarchical optimization, transportation problem, concave minimization
Procedia PDF Downloads 1622160 Online Robust Model Predictive Control for Linear Fractional Transformation Systems Using Linear Matrix Inequalities
Authors: Peyman Sindareh Esfahani, Jeffery Kurt Pieper
Abstract:
In this paper, the problem of robust model predictive control (MPC) for discrete-time linear systems in linear fractional transformation form with structured uncertainty and norm-bounded disturbance is investigated. The problem of minimization of the cost function for MPC design is converted to minimization of the worst case of the cost function. Then, this problem is reduced to minimization of an upper bound of the cost function subject to a terminal inequality satisfying the l2-norm of the closed loop system. The characteristic of the linear fractional transformation system is taken into account, and by using some mathematical tools, the robust predictive controller design problem is turned into a linear matrix inequality minimization problem. Afterwards, a formulation which includes an integrator to improve the performance of the proposed robust model predictive controller in steady state condition is studied. The validity of the approaches is illustrated through a robust control benchmark problem.Keywords: linear fractional transformation, linear matrix inequality, robust model predictive control, state feedback control
Procedia PDF Downloads 3952159 Proximal Method of Solving Split System of Minimization Problem
Authors: Anteneh Getachew Gebrie, Rabian Wangkeeree
Abstract:
The purpose of this paper is to introduce iterative algorithm solving split system of minimization problem given as a task of finding a common minimizer point of finite family of proper, lower semicontinuous convex functions and whose image under a bounded linear operator is also common minimizer point of another finite family of proper, lower semicontinuous convex functions. We obtain strong convergence of the sequence generated by our algorithm under some suitable conditions on the parameters. The iterative schemes are developed with a way of selecting the step sizes such that the information of operator norm is not necessary. Some applications and numerical experiment is given to analyse the efficiency of our algorithm.Keywords: Hilbert Space, minimization problems, Moreau-Yosida approximate, split feasibility problem
Procedia PDF Downloads 1442158 Relevancy Measures of Errors in Displacements of Finite Elements Analysis Results
Authors: A. B. Bolkhir, A. Elshafie, T. K. Yousif
Abstract:
This paper highlights the methods of error estimation in finite element analysis (FEA) results. It indicates that the modeling error could be eliminated by performing finite element analysis with successively finer meshes or by extrapolating response predictions from an orderly sequence of relatively low degree of freedom analysis results. In addition, the paper eliminates the round-off error by running the code at a higher precision. The paper provides application in finite element analysis results. It draws a conclusion based on results of application of methods of error estimation.Keywords: finite element analysis (FEA), discretization error, round-off error, mesh refinement, richardson extrapolation, monotonic convergence
Procedia PDF Downloads 4972157 Multi-Objective Multi-Mode Resource-Constrained Project Scheduling Problem by Preemptive Fuzzy Goal Programming
Authors: Busaba Phurksaphanrat
Abstract:
This research proposes a pre-emptive fuzzy goal programming model for multi-objective multi-mode resource constrained project scheduling problem. The objectives of the problem are minimization of the total time and the total cost of the project. Objective in a multi-mode resource-constrained project scheduling problem is often a minimization of make-span. However, both time and cost should be considered at the same time with different level of important priorities. Moreover, all elements of cost functions in a project are not included in the conventional cost objective function. Incomplete total project cost causes an error in finding the project scheduling time. In this research, pre-emptive fuzzy goal programming is presented to solve the multi-objective multi-mode resource constrained project scheduling problem. It can find the compromise solution of the problem. Moreover, it is also flexible in adjusting to find a variety of alternative solutions.Keywords: multi-mode resource constrained project scheduling problem, fuzzy set, goal programming, pre-emptive fuzzy goal programming
Procedia PDF Downloads 4372156 Calibration of the Radical Installation Limit Error of the Accelerometer in the Gravity Gradient Instrument
Authors: Danni Cong, Meiping Wu, Xiaofeng He, Junxiang Lian, Juliang Cao, Shaokuncai, Hao Qin
Abstract:
Gravity gradient instrument (GGI) is the core of the gravity gradiometer, so the structural error of the sensor has a great impact on the measurement results. In order not to affect the aimed measurement accuracy, limit error is required in the installation of the accelerometer. In this paper, based on the established measuring principle model, the radial installation limit error is calibrated, which is taken as an example to provide a method to calculate the other limit error of the installation under the premise of ensuring the accuracy of the measurement result. This method provides the idea for deriving the limit error of the geometry structure of the sensor, laying the foundation for the mechanical precision design and physical design.Keywords: gravity gradient sensor, radial installation limit error, accelerometer, uniaxial rotational modulation
Procedia PDF Downloads 4222155 A Priority Based Imbalanced Time Minimization Assignment Problem: An Iterative Approach
Authors: Ekta Jain, Kalpana Dahiya, Vanita Verma
Abstract:
This paper discusses a priority based imbalanced time minimization assignment problem dealing with the allocation of n jobs to m < n persons in which the project is carried out in two stages, viz. Stage-I and Stage-II. Stage-I consists of n1 ( < m) primary jobs and Stage-II consists of remaining (n-n1) secondary jobs which are commenced only after primary jobs are finished. Each job is to be allocated to exactly one person, and each person has to do at least one job. It is assumed that nature of the Stage-I jobs is such that one person can do exactly one primary job whereas a person can do more than one secondary job in Stage-II. In a particular stage, all persons start doing the jobs simultaneously, but if a person is doing more than one job, he does them one after the other in any order. The aim of the proposed study is to find the feasible assignment which minimizes the total time for the two stage execution of the project. For this, an iterative algorithm is proposed, which at each iteration, solves a constrained imbalanced time minimization assignment problem to generate a pair of Stage-I and Stage-II times. For solving this constrained problem, an algorithm is developed in the current paper. Later, alternate combinations based method to solve the priority based imbalanced problem is also discussed and a comparative study is carried out. Numerical illustrations are provided in support of the theory.Keywords: assignment, imbalanced, priority, time minimization
Procedia PDF Downloads 2352154 High Capacity Reversible Watermarking through Interpolated Error Shifting
Authors: Hae-Yeoun Lee
Abstract:
Reversible watermarking that not only protects the copyright but also preserve the original quality of the digital content have been intensively studied. In particular, the demand for reversible watermarking has increased. In this paper, we propose a reversible watermarking scheme based on interpolation-error shifting and error precompensation. The intensity of a pixel is interpolated from the intensities of neighbouring pixels, and the difference histogram between the interpolated and the original intensities is obtained and modified to embed the watermark message. By restoring the difference histogram, the embedded watermark is extracted and the original image is recovered by compensating for the interpolation error. The overflow and underflow are prevented by error precompensation. To show the performance of the method, the proposed algorithm is compared with other methods using various test images.Keywords: reversible watermarking, high capacity, high quality, interpolated error shifting, error precompensation
Procedia PDF Downloads 3242153 Curvature Based-Methods for Automatic Coarse and Fine Registration in Dimensional Metrology
Authors: Rindra Rantoson, Hichem Nouira, Nabil Anwer, Charyar Mehdi-Souzani
Abstract:
Multiple measurements by means of various data acquisition systems are generally required to measure the shape of freeform workpieces for accuracy, reliability and holisticity. The obtained data are aligned and fused into a common coordinate system within a registration technique involving coarse and fine registrations. Standardized iterative methods have been established for fine registration such as Iterative Closest Points (ICP) and its variants. For coarse registration, no conventional method has been adopted yet despite a significant number of techniques which have been developed in the literature to supply an automatic rough matching between data sets. Two main issues are addressed in this paper: the coarse registration and the fine registration. For coarse registration, two novel automated methods based on the exploitation of discrete curvatures are presented: an enhanced Hough Transformation (HT) and an improved Ransac Transformation. The use of curvature features in both methods aims to reduce computational cost. For fine registration, a new variant of ICP method is proposed in order to reduce registration error using curvature parameters. A specific distance considering the curvature similarity has been combined with Euclidean distance to define the distance criterion used for correspondences searching. Additionally, the objective function has been improved by combining the point-to-point (P-P) minimization and the point-to-plane (P-Pl) minimization with automatic weights. These ones are determined from the preliminary calculated curvature features at each point of the workpiece surface. The algorithms are applied on simulated and real data performed by a computer tomography (CT) system. The obtained results reveal the benefit of the proposed novel curvature-based registration methods.Keywords: discrete curvature, RANSAC transformation, hough transformation, coarse registration, ICP variant, point-to-point and point-to-plane minimization combination, computer tomography
Procedia PDF Downloads 4242152 Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection
Authors: Wenlong Feng, Zhenchun Du, Jianguo Yang
Abstract:
To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detections is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15um/10m and the accuracy of the machine tool is significant improved.Keywords: thermal expansion error of grating scale, error compensation, machine tools, integral method
Procedia PDF Downloads 3682151 Using Derivative Free Method to Improve the Error Estimation of Numerical Quadrature
Authors: Chin-Yun Chen
Abstract:
Numerical integration is an essential tool for deriving different physical quantities in engineering and science. The effectiveness of a numerical integrator depends on different factors, where the crucial one is the error estimation. This work presents an error estimator that combines a derivative free method to improve the performance of verified numerical quadrature.Keywords: numerical quadrature, error estimation, derivative free method, interval computation
Procedia PDF Downloads 4642150 Medical Error: Concept and Description According to Brazilian Physicians
Authors: Vitor S. Mendonca, Maria Luisa S. Schmidt
Abstract:
The Brazilian medical profession is viewed as being error-free, so healthcare professionals who commit an error are condemned there. Medical errors occur frequently in the Brazilian healthcare system, so identifying better options for handling this issue has become of interest primarily for physicians. The purpose of this study is to better understand the tensions involved in the fear of making an error due to the harm and risk this would represent for those involved. A qualitative study was performed by means of the narratives of the lived experiences of ten acting physicians in the State of Sao Paulo. The concept and characterization of errors were discussed, together with the fear of making an error, the near misses or error in itself, how to deal with errors and what to do to avoid them. The analysis indicates an excessive pressure in the medical profession for error-free practices, with a well-established physician-patient relationship to facilitate the management of medical errors. The error occurs, but a lack of information and discussion often leads to its concealment due to fear or possible judgment by society or peers. The establishment of programs that encourage appropriate medical conduct in the event of an error requires coherent answers for humanization in Brazilian medical science. It is necessary to improve the discussion about medical errors and disseminate models of communication and notification of errors in Brazil.Keywords: medical error, narrative, physician-patient relationship, qualitative research
Procedia PDF Downloads 1792149 Variation of Refractive Errors among Right and Left Eyes in Jos, Plateau State, Nigeria
Authors: F. B. Masok, S. S Songdeg, R. R. Dawam
Abstract:
Vision is an important process for learning and communication as man depends greatly on vision to sense his environment. Prevalence and variation of refractive errors conducted between December 2010 and May 2011 in Jos, revealed that 735 (77.50%) out 950 subjects examined for refractive error had various refractive errors. Myopia was observed in 373 (49.79%) of the subjects, the error in the right eyes was 263 (55.60%) while the error in the left was 210(44.39%). The mean myopic error was found to be -1.54± 3.32. Hyperopia was observed in 385 (40.53%) of the sampled population comprising 203(52.73%) of the right eyes and 182(47.27%). The mean hyperopic error was found to be +1.74± 3.13. Astigmatism accounted for 359 (38.84%) of the subjects, out of which 193(53.76%) were in the right eyes while 168(46.79%) were in the left eyes. Presbyopia was found in 404(42.53%) of the subjects, of this figure, 164(40.59%) were in the right eyes while 240(59.41%) were in left eyes. The number of right eyes and left eyes with refractive errors was observed in some age groups to increase with age and later had its peak within 60 – 69 age groups. This pattern of refractive errors could be attributed to exposure to various forms of light particularly the ultraviolet rays (e.g rays from television and computer screen). There was no remarkable differences between the mean Myopic error and mean Hyperopic error in the right eyes and in the left eyes which suggest the right eye and the left eye are similar.Keywords: left eye, refractive errors, right eye, variation
Procedia PDF Downloads 4332148 Error Correction Method for 2D Ultra-Wideband Indoor Wireless Positioning System Using Logarithmic Error Model
Authors: Phornpat Chewasoonthorn, Surat Kwanmuang
Abstract:
Indoor positioning technologies have been evolved rapidly. They augment the Global Positioning System (GPS) which requires line-of-sight to the sky to track the location of people or objects. This study developed an error correction method for an indoor real-time location system (RTLS) based on an ultra-wideband (UWB) sensor from Decawave. Multiple stationary nodes (anchor) were installed throughout the workspace. The distance between stationary and moving nodes (tag) can be measured using a two-way-ranging (TWR) scheme. The result has shown that the uncorrected ranging error from the sensor system can be as large as 1 m. To reduce ranging error and thus increase positioning accuracy, This study purposes an online correction algorithm using the Kalman filter. The results from experiments have shown that the system can reduce ranging error down to 5 cm.Keywords: indoor positioning, ultra-wideband, error correction, Kalman filter
Procedia PDF Downloads 1602147 Exploring Error-Minimization Protocols for Upper-Limb Function During Activities of Daily Life in Chronic Stroke Patients
Authors: M. A. Riurean, S. Heijnen, C. A. Knott, J. Makinde, D. Gotti, J. VD. Kamp
Abstract:
Objectives: The current study is done in preparation for a randomized controlled study investigating the effects of an implicit motor learning protocol implemented using an extension-supporting glove. It will explore different protocols to find out which is preferred when studying motor learn-ing in the chronic stroke population that struggles with hand spasticity. Design: This exploratory study will follow 24 individuals who have a chronic stroke (> 6 months) during their usual care journey. We will record the results of two 9-Hole Peg Tests (9HPT) done during their therapy ses-sions with a physiotherapist or in their home before and after 4 weeks of them wearing an exten-sion-supporting glove used to employ the to-be-studied protocols. The participants will wear the glove 3 times/week for one hour while performing their activities of daily living and record the times they wore it in a diary. Their experience will be monitored through telecommunication once every week. Subjects: Individuals that have had a stroke at least 6 months prior to participation, hand spasticity measured on the modified Ashworth Scale of maximum 3, and finger flexion motor control measured on the Motricity Index of at least 19/33. Exclusion criteria: extreme hemi-neglect. Methods: The participants will be randomly divided into 3 groups: one group using the glove in a pre-set way of decreasing support (implicit motor learning), one group using the glove in a self-controlled way of decreasing support (autonomous motor learning), and the third using the glove with constant support (as control). Before and after the 4-week period, there will be an intake session and a post-assessment session. Analysis: We will compare the results of the two 9HPTs to check whether the protocols were effective. Furthermore, we will compare the results between the three groups to find the preferred one. A qualitative analysis will be run of the experience of participants throughout the 4-week period. Expected results: We expect that the group using the implicit learning protocol will show superior results.Keywords: implicit learning, hand spasticity, stroke, error minimization, motor task
Procedia PDF Downloads 592146 Generalization of Tau Approximant and Error Estimate of Integral Form of Tau Methods for Some Class of Ordinary Differential Equations
Authors: A. I. Ma’ali, R. B. Adeniyi, A. Y. Badeggi, U. Mohammed
Abstract:
An error estimation of the integrated formulation of the Lanczos tau method for some class of ordinary differential equations was reported. This paper is concern with the generalization of tau approximants and their corresponding error estimates for some class of ordinary differential equations (ODEs) characterized by m + s =3 (i.e for m =1, s=2; m=2, s=1; and m=3, s=0) where m and s are the order of differential equations and number of overdetermination, respectively. The general result obtained were validated with some numerical examples.Keywords: approximant, error estimate, tau method, overdetermination
Procedia PDF Downloads 6072145 A Study on the Influence of Planet Pin Parallelism Error to Load Sharing Factor
Authors: Kyung Min Kang, Peng Mou, Dong Xiang, Yong Yang, Gang Shen
Abstract:
In this paper, planet pin parallelism error, which is one of manufacturing error of planet carrier, is employed as a main variable to influence planet load sharing factor. This error is categorize two group: (i) pin parallelism error with rotation on the axis perpendicular to the tangent of base circle of gear(x axis rotation in this paper) (ii) pin parallelism error with rotation on the tangent axis of base circle of gear(y axis rotation in this paper). For this study, the planetary gear system in 1.5MW wind turbine is applied and pure torsional rigid body model of this planetary gear is built using Solidworks and MSC.ADAMS. Based on quantified parallelism error and simulation model, dynamics simulation of planetary gear is carried out to obtain dynamic mesh load results with each type of error and load sharing factor is calculated with mesh load results. Load sharing factor formula and the suggestion for planetary reliability design is proposed with the conclusion of this study.Keywords: planetary gears, planet load sharing, MSC. ADAMS, parallelism error
Procedia PDF Downloads 4002144 Unequal Error Protection of VQ Image Transmission System
Authors: Khelifi Mustapha, A. Moulay lakhdar, I. Elawady
Abstract:
We will study the unequal error protection for VQ image. We have used the Reed Solomon (RS) Codes as Channel coding because they offer better performance in terms of channel error correction over a binary output channel. One such channel (binary input and output) should be considered if it is the case of the application layer, because it includes all the features of the layers located below and on the what it is usually not feasible to make changes.Keywords: vector quantization, channel error correction, Reed-Solomon channel coding, application
Procedia PDF Downloads 3652143 Comparison of the Effectiveness of Tree Algorithms in Classification of Spongy Tissue Texture
Authors: Roza Dzierzak, Waldemar Wojcik, Piotr Kacejko
Abstract:
Analysis of the texture of medical images consists of determining the parameters and characteristics of the examined tissue. The main goal is to assign the analyzed area to one of two basic groups: as a healthy tissue or a tissue with pathological changes. The CT images of the thoracic lumbar spine from 15 healthy patients and 15 with confirmed osteoporosis were used for the analysis. As a result, 120 samples with dimensions of 50x50 pixels were obtained. The set of features has been obtained based on the histogram, gradient, run-length matrix, co-occurrence matrix, autoregressive model, and Haar wavelet. As a result of the image analysis, 290 descriptors of textural features were obtained. The dimension of the space of features was reduced by the use of three selection methods: Fisher coefficient (FC), mutual information (MI), minimization of the classification error probability and average correlation coefficients between the chosen features minimization of classification error probability (POE) and average correlation coefficients (ACC). Each of them returned ten features occupying the initial place in the ranking devised according to its own coefficient. As a result of the Fisher coefficient and mutual information selections, the same features arranged in a different order were obtained. In both rankings, the 50% percentile (Perc.50%) was found in the first place. The next selected features come from the co-occurrence matrix. The sets of features selected in the selection process were evaluated using six classification tree methods. These were: decision stump (DS), Hoeffding tree (HT), logistic model trees (LMT), random forest (RF), random tree (RT) and reduced error pruning tree (REPT). In order to assess the accuracy of classifiers, the following parameters were used: overall classification accuracy (ACC), true positive rate (TPR, classification sensitivity), true negative rate (TNR, classification specificity), positive predictive value (PPV) and negative predictive value (NPV). Taking into account the classification results, it should be stated that the best results were obtained for the Hoeffding tree and logistic model trees classifiers, using the set of features selected by the POE + ACC method. In the case of the Hoeffding tree classifier, the highest values of three parameters were obtained: ACC = 90%, TPR = 93.3% and PPV = 93.3%. Additionally, the values of the other two parameters, i.e., TNR = 86.7% and NPV = 86.6% were close to the maximum values obtained for the LMT classifier. In the case of logistic model trees classifier, the same ACC value was obtained ACC=90% and the highest values for TNR=88.3% and NPV= 88.3%. The values of the other two parameters remained at a level close to the highest TPR = 91.7% and PPV = 91.6%. The results obtained in the experiment show that the use of classification trees is an effective method of classification of texture features. This allows identifying the conditions of the spongy tissue for healthy cases and those with the porosis.Keywords: classification, feature selection, texture analysis, tree algorithms
Procedia PDF Downloads 1802142 Design of a Fuzzy Luenberger Observer for Fault Nonlinear System
Authors: Mounir Bekaik, Messaoud Ramdani
Abstract:
We present in this work a new technique of stabilization for fault nonlinear systems. The approach we adopt focus on a fuzzy Luenverger observer. The T-S approximation of the nonlinear observer is based on fuzzy C-Means clustering algorithm to find local linear subsystems. The MOESP identification approach was applied to design an empirical model describing the subsystems state variables. The gain of the observer is given by the minimization of the estimation error through Lyapunov-krasovskii functional and LMI approach. We consider a three tank hydraulic system for an illustrative example.Keywords: nonlinear system, fuzzy, faults, TS, Lyapunov-Krasovskii, observer
Procedia PDF Downloads 3392141 MapReduce Logistic Regression Algorithms with RHadoop
Authors: Byung Ho Jung, Dong Hoon Lim
Abstract:
Logistic regression is a statistical method for analyzing a dataset in which there are one or more independent variables that determine an outcome. Logistic regression is used extensively in numerous disciplines, including the medical and social science fields. In this paper, we address the problem of estimating parameters in the logistic regression based on MapReduce framework with RHadoop that integrates R and Hadoop environment applicable to large scale data. There exist three learning algorithms for logistic regression, namely Gradient descent method, Cost minimization method and Newton-Rhapson's method. The Newton-Rhapson's method does not require a learning rate, while gradient descent and cost minimization methods need to manually pick a learning rate. The experimental results demonstrated that our learning algorithms using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also compared the performance of our Newton-Rhapson's method with gradient descent and cost minimization methods. The results showed that our newton's method appeared to be the most robust to all data tested.Keywords: big data, logistic regression, MapReduce, RHadoop
Procedia PDF Downloads 2852140 A Study on the Influence of Pin-Hole Position Error of Carrier on Mesh Load and Planet Load Sharing of Planetary Gear
Authors: Kyung Min Kang, Peng Mou, Dong Xiang, Gang Shen
Abstract:
For planetary gear system, Planet pin-hole position accuracy is one of most influential factor to efficiency and reliability of planetary gear system. This study considers planet pin-hole position error as a main input error for model and build multi body dynamic simulation model of planetary gear including planet pin-hole position error using MSC. ADAMS. From this model, the mesh load results between meshing gears in each pin-hole position error cases are obtained and based on these results, planet load sharing factor which reflect equilibrium state of mesh load sharing between whole meshing gear pair is calculated. Analysis result indicates that the pin-hole position error of tangential direction cause profound influence to mesh load and load sharing factor between meshing gear pair.Keywords: planetary gear, load sharing factor, multibody dynamics, pin-hole position error
Procedia PDF Downloads 582