Search results for: equivalent salinity concentration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5904

Search results for: equivalent salinity concentration

5874 Application of Water Soluble Polymers in Chemical Enhanced Oil Recovery

Authors: M. Shahzad Kamal, Abdullah S. Sultan, Usamah A. Al-Mubaiyedh, Ibnelwaleed A. Hussein

Abstract:

Oil recovery from reservoirs using conventional oil recovery techniques like water flooding is less than 20%. Enhanced oil recovery (EOR) techniques are applied to recover additional oil. Surfactant-polymer flooding is a promising EOR technique used to recover residual oil from reservoirs. Water soluble polymers are used to increase the viscosity of displacing fluids. Surfactants increase the capillary number by reducing the interfacial tension between oil and displacing fluid. Hydrolyzed polyacrylamide (HPAM) is widely used in polymer flooding applications due to its low cost and other desirable properties. HPAM works well in low-temperature and low salinity-environment. In the presence of salts HPAM viscosity decrease due to charge screening effect and it can precipitate at high temperatures in the presence of salts. Various strategies have been adopted to extend the application of water soluble polymers to high-temperature high-salinity (HTHS) reservoir. These include addition of monomers to acrylamide chain that can protect it against thermal hydrolysis. In this work, rheological properties of various water soluble polymers were investigated to find out suitable polymer and surfactant-polymer systems for HTHS reservoirs. Polymer concentration ranged from 0.1 to 1 % (w/v). Effect of temperature, salinity and polymer concentration was investigated using both steady shear and dynamic measurements. Acrylamido tertiary butyl sulfonate based copolymer showed better performance under HTHS conditions compared to HPAM. Moreover, thermoviscosifying polymer showed excellent rheological properties and increase in the viscosity was observed with increase temperature. This property is highly desirable for EOR application.

Keywords: rheology, polyacrylamide, salinity, enhanced oil recovery, polymer flooding

Procedia PDF Downloads 376
5873 Depression of Copper-Activated Pyrite by Potassium Ferrate in Copper Ore Flotation Using High Salinity Process Water

Authors: Yufan Mu

Abstract:

High salinity process water (HSPW) is often applied in copper ore flotation to alleviate freshwater shortage; however, it is detrimental to copper flotation as it strongly enhances copper activation of pyrite. In this study, the depression effect of a strong oxidiser, potassium ferrate (𝐾₂𝐹₄), on the flotation of copper-activated pyrite was tested to realise the selective separation of pyrite from copper minerals (e.g., chalcopyrite) in flotation using HSPW. The flotation results show that when (𝐾₂𝐹₄) was added in the flotation cell during conditioning, (𝐾₂𝐹₄) could selectively depress copper-activated pyrite while improving chalcopyrite flotation. The depression mechanism of (𝐾₂𝐹₄) on pyrite was ascribed to the significant increase in the pulp potential (Eₕ), dissolved oxygen (DO) concentration and the amount of ferric oxyhydroxides as a result of ferrate decomposition. In the flotation cell, the high Eh and DO concentration promoted the oxidation of low valency metal species (𝐶⁺𝐹e²⁺) released from mineral surfaces and forged steel grinding media, and the resultant high valency metal oxyhydroxides 𝐶u(𝑂H)₂⁄Fe(OH)₃ together with the ferric oxyhydroxides from ferrate decomposition preferentially precipitated on pyrite surface due to its more cathodic nature compared with chalcopyrite, which increased pyrite surface hydrophilicity and reduced its floatability. This study reveals that (𝐾₂𝐹₄) is a highly efficient depressant for pyrite when separating copper minerals from pyrite in flotation using HSPW if dosed properly.

Keywords: copper flotation, pyrite depression, copper-activated pyrite, potassium ferrate, high salinity process water

Procedia PDF Downloads 45
5872 Evaluation of Genetic Diversity for Salt Stress in Maize Hybrids (Zea Mays L.) at Seedling Stage

Authors: Abdu Qayyum, Hafiz Muhammad Saeed, Mamoona Hanif, Etrat Noor, Waqas Malik, Shoaib Liaqat

Abstract:

Salinity is extremely serious problem that has a drastic effect on maize crop, environment and causes economic losses of country. An advance technique to overcome salinity is to develop salt tolerant geno types which require screening of huge germ plasm to start a breeding program. Therefore, present study was undertaken to screen out 25 maize hybrids of different origin for salinity tolerance at seedling stage under three levels of salt stress 250 and 300 mM NaCl including one control. The existence of variation for tolerance to enhanced NaCl salinity levels at seedling stage in maize proved that hybrids had differing ability to grow under saline environment and potential variability within specie. Almost all the twenty five maize hybrids behaved varyingly in response to different salinity levels. However, the maize hybrids H6, H13, H21, H23 and H24 expressed better performance under salt stress in terms of all six characters and proved to be as highly tolerant while H22, H17 H20, H18, H4, H9, and H8 were identified as moderately tolerant. Hybrids H14, H5, H11 and H3 H12, H2, were expressed as most sensitive to salinity suggesting that screening is an effective tool to exploit genetic variation among maize hybrids and salt tolerance in maize can be enhanced through selection and breeding procedure.

Keywords: salinity, hybrids, maize, variation

Procedia PDF Downloads 684
5871 Radioactivity Assessment of Sediments in Negombo Lagoon Sri Lanka

Authors: H. M. N. L. Handagiripathira

Abstract:

The distributions of naturally occurring and anthropogenic radioactive materials were determined in surface sediments taken at 27 different locations along the bank of Negombo Lagoon in Sri Lanka. Hydrographic parameters of lagoon water and the grain size analyses of the sediment samples were also carried out for this study. The conductivity of the adjacent water was varied from 13.6 mS/cm to 55.4 mS/cm near to the southern end and the northern end of the lagoon, respectively, and equally salinity levels varied from 7.2 psu to 32.1 psu. The average pH in the water was 7.6 and average water temperature was 28.7 °C. The grain size analysis emphasized the mass fractions of the samples as sand (60.9%), fine sand (30.6%) and fine silt+clay (1.3%) in the sampling locations. The surface sediment samples of wet weight, 1 kg each from upper 5-10 cm layer, were oven dried at 105 °C for 24 hours to get a constant weight, homogenized and sieved through a 2 mm sieve (IAEA technical series no. 295). The radioactivity concentrations were determined using gamma spectrometry technique. Ultra Low Background Broad Energy High Purity Ge Detector, BEGe (Model BE5030, Canberra) was used for radioactivity measurement with Canberra Industries' Laboratory Source-less Calibration Software (LabSOCS) mathematical efficiency calibration approach and Geometry composer software. The mean activity concentration was found to be 24 ± 4, 67 ± 9, 181 ± 10, 59 ± 8, 3.5 ± 0.4 and 0.47 ± 0.08 Bq/kg for 238U, 232Th, 40K, 210Pb, 235U and 137Cs respectively. The mean absorbed dose rate in air, radium equivalent activity, external hazard index, annual gonadal dose equivalent and annual effective dose equivalent were 60.8 nGy/h, 137.3 Bq/kg, 0.4, 425.3 mSv/year and 74.6 mSv/year, respectively. The results of this study will provide baseline information on the natural and artificial radioactive isotopes and environmental pollution associated with information on radiological risk.

Keywords: gamma spectrometry, lagoon, radioactivity, sediments

Procedia PDF Downloads 113
5870 Wheat (Triticum Aestivum) Yield Improved with Irrigation Scheduling under Salinity

Authors: Taramani Yadav, Gajender Kumar, R.K. Yadav, H.S. Jat

Abstract:

Soil Salinity and irrigation water salinity is critical threat to enhance agricultural food production to full fill the demand of billion plus people worldwide. Salt affected soils covers 6.73 Mha in India and ~1000 Mha area around the world. Irrigation scheduling of saline water is the way to ensure food security in salt affected areas. Research experiment was conducted at ICAR-Central Soil Salinity Research Institute, Experimental Farm, Nain, Haryana, India with 36 treatment combinations in double split plot design. Three sets of treatments consisted of (i) three regimes of irrigation viz., 60, 80 and 100% (I1, I2 and I3, respectively) of crop ETc (crop evapotranspiration at identified respective stages) in main plot; (ii) four levels of irrigation water salinity (sub plot treatments) viz., 2, 4, 8 and 12 dS m-1 (iii) applications of two PBRs along with control (without PBRs) i.e. salicylic acid (G1; 1 mM) and thiourea (G2; 500 ppm) as sub-sub plot treatments. Grain yield of wheat (Triticum aestivum) was increased with less amount of high salt loaded irrigation water at the same level of salinity (2 dS m-1), the trend was I3>I2>I1 at 2 dS m-1 with 8.10 and 17.07% increase at 80 and 100% ETc, respectively compared to 60% ETc. But contrary results were obtained by increasing amount of irrigation water at same level of highest salinity (12 dS m-1) showing following trend; I1>I2>I3 at 12 dS m-1 with 9.35 and 12.26% increase at 80 and 60% ETc compared to 100% ETc. Enhancement in grain yield of wheat (Triticum aestivum) is not need to increase amount of irrigation water under saline condition, with salty irrigation water less amount of irrigation water gave the maximum wheat (Triticum aestivum) grain yield.

Keywords: Irrigation, Salinity, Wheat, Yield

Procedia PDF Downloads 131
5869 Contribution of Remote Sensing and GIS to the Study of the Impact of the Salinity of Sebkhas on the Quality of Groundwater: Case of Sebkhet Halk El Menjel (Sousse)

Authors: Gannouni Sonia, Hammami Asma, Saidi Salwa, Rebai Noamen

Abstract:

Water resources in Tunisia have experienced quantitative and qualitative degradation, especially when talking about wetlands and Sbekhas. Indeed, the objective of this work is to study the spatio-temporal evolution of salinity for 29 years (from 1987 to 2016). A study of the connection between surface water and groundwater is necessary to know the degree of influence of the Sebkha brines on the water table. The evolution of surface salinity is determined by remote sensing based on Landsat TM and OLI/TIRS satellite images of the years 1987, 2007, 2010, and 2016. The processing of these images allowed us to determine the NDVI(Normalized Difference Vegetation Index), the salinity index, and the surface temperature around Sebkha. In addition, through a geographic information system(GIS), we could establish a map of the distribution of salinity in the subsurface of the water table of Chott Mariem and Hergla/SidiBouAli/Kondar. The results of image processing and the calculation of the index and surface temperature show an increase in salinity downstream of in addition to the sebkha and the development of vegetation cover upstream and the western part of the sebkha. This richness may be due both to contamination by seawater infiltration from the barrier beach of Hergla as well as the passage of groundwater to the sebkha.

Keywords: spatio-temporal monitoring, salinity, satellite images, NDVI, sebkha

Procedia PDF Downloads 93
5868 Foliar Feeding of Methyl Jasmonate Induces Resistance in Normal and Salinity Stressed Tomato Plants, at Different Stages

Authors: Abdul Manan, Choudhary Muhammad Ayyub, Rashid Ahmad, Muhammad Adnan Bukhari

Abstract:

A project was designed to investigate the effect of foliar application of methyl jasmonate (MeJA) on physiological, biochemical and ionic attributes of salinity stressed and normal tomato plants at different stages. Salinity stress at every stage markedly reduced the net photosynthetic rate, stomatal conductance, transpiration rate, water relations parameters, protein contents, total free aminoacids and potassium (K+) contents. While, antioxidant enzymes (peroxidase (POX) and catalase (CAT)), sodium (Na+) contents and proline contents were increased substantially. Foliar application of MeJA ameliorated the drastic effects of salinity regime by recovery of physiological and biochemical attributes by enhanced production of antioxidant enzymes and osmoprotectants. The efficacy of MeJA at very initial stage (15 days after sowing (15 DAS)).proved effective for attenuating the deleterious effects of salinity stress than other stages (15 days after transplanting (15 DAT) and 30 days after transplanting (30 DAT)). To the best of our knowledge, different times of foliar feeding of MeJA was observed first time for amelioration of salinity stress in tomato plants that would be of pivotal significance for scientist to better understand the dynamics of physiological and biochemical processes in tomato.

Keywords: methyl jasmonate, osmoregulation, salinity stress, stress tolerance, tomato

Procedia PDF Downloads 281
5867 The Effect of Temperature and Salinity on the Growth and Carotenogenesis of Three Dunaliella Species (Dunaliella sp. Lake Isolate, D. salina CCAP 19/18, and D. bardawil LB 2538) Cultivated under Laboratory Conditions

Authors: Imen Hamed, Burcu Ak, Oya Işık, Leyla Uslu, Kubilay Kazım Vursavuş

Abstract:

In this study, 3 species of Dunaliella (Dunaliella sp. Salt Lake isoalte (Tuz Gölü), Dunaliella salina CCAP19/18, and Dunaliella bardawil LB 2538) and their optical density, dry matter, chlorophyll a, total carotenoids, and β-carotene production were investigated in a batch system. The aim of this research was to compare carotenoids, and β-carotene production were investigated in a batch those 3 species. Therefore 2 stress factors were used: 2 different temperatures (20°C and 30°C) and 2 different salinities (30‰, and 60‰) were tested over a 17-day study. The highest growth and chlorophyll a was reported for Dunaliella sp. under 20°C/30‰ and 20°C/60‰ conditions respectively followed by D. bardawil and D. salina. Significant differences were noticed (p<0.05) for the other 3 species. The growth decreased as temperature and salinity increased since the lowest growth was noticed for the 30°C/60‰ group. The chlorophyll a content decreased also as temperature increased however when the NaCl concentration increased an augmentation of the content was noticed . In the 17th day of experiment the highest carotenoids concentration was reported for D. bardawil 20°C/30‰ (65,639±0,400 μg.mL1) and the most important β carotene concentration was for D. salina 20°C/60‰ (8,98E-07±0,013 mol/L).

Keywords: Dunaliella sp., Dunaliella salina, Dunaliella bardawil, growth, pigments, stress factors

Procedia PDF Downloads 288
5866 Detailed Analysis of Mechanism of Crude Oil and Surfactant Emulsion

Authors: Riddhiman Sherlekar, Umang Paladia, Rachit Desai, Yash Patel

Abstract:

A number of surfactants which exhibit ultra-low interfacial tension and an excellent microemulsion phase behavior with crude oils of low to medium gravity are not sufficiently soluble at optimum salinity to produce stable aqueous solutions. Such solutions often show phase separation after a few days at reservoir temperature, which does not suffice the purpose and the time is short when compared to the residence time in a reservoir for a surfactant flood. The addition of polymer often exacerbates the problem although the poor stability of the surfactant at high salinity remains a pivotal issue. Surfactants such as SDS, Ctab with large hydrophobes produce lowest IFT, but are often not sufficiently water soluble at desired salinity. Hydrophilic co-solvents and/or co-surfactants are needed to make the surfactant-polymer solution stable at the desired salinity. This study focuses on contrasting the effect of addition of a co-solvent in stability of a surfactant –oil emulsion. The idea is to use a co-surfactant to increase stability of an emulsion. Stability of the emulsion is enhanced because of creation of micro-emulsion which is verified both visually and with the help of particle size analyzer at varying concentration of salinity, surfactant and co-surfactant. A lab-experimental method description is provided and the method is described in detail to permit readers to emulate all results. The stability of the oil-water emulsion is visualized with respect to time, temperature, salinity of the brine and concentration of the surfactant. Nonionic surfactant TX-100 when used as a co-surfactant increases the stability of the oil-water emulsion. The stability of the prepared emulsion is checked by observing the particle size distribution. For stable emulsion in volume% vs particle size curve, the peak should be obtained for particle size of 5-50 nm while for the unstable emulsion a bigger sized particles are observed. The UV-Visible spectroscopy is also used to visualize the fraction of oil that plays important role in the formation of micelles in stable emulsion. This is important as the study will help us to decide applicability of the surfactant based EOR method for a reservoir that contains a specific type of crude. The use of nonionic surfactant as a co-surfactant would also increase the efficiency of surfactant EOR. With the decline in oil discoveries during the last decades it is believed that EOR technologies will play a key role to meet the energy demand in years to come. Taking this into consideration, the work focuses on the optimization of the secondary recovery(Water flooding) with the help of surfactant and/or co-surfactants by creating desired conditions in the reservoir.

Keywords: co-surfactant, enhanced oil recovery, micro-emulsion, surfactant flooding

Procedia PDF Downloads 220
5865 A Study of Indoor Radon, Thoron, Their Progeny Concentration Levels and Inhalation Dose in Dwellings of Different Districts of Punjab State, India

Authors: Komal Saini, B. K. Sahoo, B.S. Bajwa

Abstract:

In the present study, indoor radon and thoron concentrations have been estimated using newly developed twin cup based pin hole dosimeter with single entry face in some areas of Punjab state, India. The equilibrium equivalent concentration (EEC) of radon and thoron has also been estimated directly by using progeny sensors, fabricated by BARC, India. Observed radon and thoron concentrations varied from 38.7±5.79 to 98.7±13.11 Bq/m3 and 25.38±6.56 to 126.56±14.23 Bq/m3 with an average value of 61.59±8.11 & 70.89±9.52 Bq/m3 respectively. Average equilibrium equivalent concentration of radon and thoron was 27.98±4.66 & 2.24±0.61 Bq/m3. Calculated equilibrium factor for radon and thoron was 0.467 and 0.034 in the present study. Annual inhalation dose calculated from the present observed concentrations, varied from 1.80 to 3.60 mSv/year with an average value of 2.52 mSv/year, which is well within reference level. It has been observed from the present study that thoron is a significant contributor to the inhalation dose which is about 25% of the total inhalation dose.

Keywords: radon, thoron, pin hole cup dosimeter, DTPS/DRPS, annual inhalation dose

Procedia PDF Downloads 222
5864 Comparison of Potato Varieties under Different Water Conditions

Authors: Ali Assalmi

Abstract:

This study aimed to compare the yield of two varieties of potato seeds under different water conditions. In the first part of the study, we conducted a literature review to gather academic research published on the two varieties. Based on the literature review, we optimized the water conditions for one variety and tested the other variety under high salinity water conditions. Our findings indicate that the optimized water conditions resulted in a very good yield for one variety of potato seeds. However, under high salinity water conditions, the other variety produced a higher yield in water that was not used due to the high salinity. Overall, our results suggest that the yield of potato seeds can vary significantly based on the water conditions and variety.

Keywords: potatoes, seed varieties, water optimization, high salinity, yield comparison

Procedia PDF Downloads 34
5863 The Nature of Mineralizing Fluids in the Hammam Zriba Deposit (F-Ba-Sr-Pb-Zn) in North-eastern Tunisia

Authors: Miladi Yasmine, Bouhlel Salah, David Banks

Abstract:

The Hammam Zriba (F-Ba-Sr-Pb-Zn) ore deposits of the Zaghouan district are located in northeast Tunisia, 60 Km south of Tunis. The host rocks belong to the Ressas Formation (Tithonian age) and lower Cretaceous layers. Mineralization occurs as stratiform replacement heaps and lenses. The mineral assemblage is composed of fluorite, barite, sphalerite, and galena. Primary fluid inclusions in sphalerite have homogenization temperatures ranging from 83 to 140°C, final melting temperature range from −18 to −7.0, corresponding to salinities of 5 to 21 wt % NaCl equivalent. Fluid inclusions in fluorite homogenize to the liquid phase between 132 and 178°C. Final ice melting temperatures range from −25 to −6.8 °C, corresponding to salinities between 17 and 24 wt% NaCl Equivalent. The LA-ICP-MS analyses of the fluid inclusions in fluorite show that these fluids are dominated by Na>Ca>K>Mg, with the concentration of Fe being equivalent to that of Mg. Microthermometric analyses of the fluid inclusions observed in fluorite and sphalerite show that two distinct fluids were involved in the mineralization deposition: a warmer saline fluid (132-178°C, 17-24 wt % NaCl equivalent) and cooler saline fluid (83°C-140, 5-21 wt %NaCl equivalent). The ore fluid result from highly saline and Na-Ca dominated with lower Mg concentrations come from the leaching of the dolomitic host rocks by the fluids.

Keywords: Hammam Zriba , fluid inclusions, LA-ICP-MS, Zaghouan district

Procedia PDF Downloads 58
5862 Mapping QTLs Associated with Salinity Tolerance in Maize at Seedling Stage

Authors: Mohammad Muhebbullah Ibne Hoque, Zheng Jun, Wang Guoying

Abstract:

Salinity stress is one of the most important abiotic factors contributing to crop growth and yield loss. Exploring the genetic basis is necessary to develop maize varieties with salinity tolerance. In order to discover the inherent basis for salinity tolerance traits in maize, 121 polymorphic SSR markers were used to analyze 163 F2 individuals derived from a single cross of inbred line B73 (a salt susceptible inbred line) and CZ-7 (a salt tolerant inbred line). A linkage map was constructed and the map covered 1195.2 cM of maize genome with an average distance of 9.88 cM between marker loci. Ten salt tolerance traits at seedling stage were evaluated for QTL analysis in maize seedlings. A total of 41 QTLs associated with seedling shoot and root traits were detected, with 16 and 25 QTLs under non-salinity and salinity condition, respectively. And only 4 major stable QTLs were detected in two environments. The detected QTLs were distributed on chromosomes 1, 2, 4, 5, 6, 7, 8, 9, and chromosome 10. Phenotypic variability for the identified QTLs for all the traits was in the range from 6.27 to 21.97%. Fourteen QTLs with more than 10% contributions were observed. Our results and the markers associated with the major QTL detected in this study have the potential application for genetic improvement of salt tolerance in maize through marker-assisted selection.

Keywords: salt tolerance, seedling stage, root shoot traits, quantitative trait loci, simple sequence repeat, maize

Procedia PDF Downloads 275
5861 Amelioration of Salinity Stress in Spinach (Spinace oleracae) by Exogenous Application of Triacontanol

Authors: Ameer Khan, Iffat Jamal, Ambreen Azam

Abstract:

An experiment was conducted in the Department of Botany, University of Sargodha to observe the amelioration of salinity stress in spinach (Spinacia oleracea) by exogenous application of Triacontanol. Two spinach cultivars (Spinacea oleracea and Rumax dentatus) were obtained from the Agriculture Research institute, Faisalabad. This experiment was conducted in pots. Each pot was filled with 9kg mixture of (sand + soil). Different salinity levels (0mM, 60mM, and 120mM) were created with NaCl according to the saturation percentage of soil after two weeks of seed germination. After the two weeks of salinity treatment, different levels of Triacontanol (0µM, 10µM, 20µM) were applied as foliar spray. Triacontanol was applied along with Tween 80 as surfactant. After the two weeks of Triacontanol application different growth, physiological and biochemical parameters were collected from the experimental study. Both treatments of Triacontanol (10µM, 20µM) were effective to ameliorate the effect of salinity, but 20µM Triacontanol was more effective to increase the shoot length, shoot, root fresh and dry weight. Chlorophyll contents were (chl a, chl b, total chl). Different biochemical parameters were also collected from experimental study. Saline growth medium increased the accumulation of protein and decreased the total free amino acids, and total soluble sugar under salt stress. Application of Triacontanol increased the protein contents. Overall, Application of triacontanol mitigated the effect of salinity.

Keywords: salinity, triacontanol, spinach, biochemical, physiological

Procedia PDF Downloads 256
5860 A Study of Some Water Relations and Soil Salinity Using Geotextile Mat under Sprinkler System

Authors: Al-Molhem, Y.

Abstract:

This work aimed to study the influence of a geotextile material under sprinkler irrigation on the availability of soil moisture content and salinity of 40 cm top soil profile. Field experiment was carried out to measure soil moisture content, soil salinity and water application efficiency under sprinkler irrigation system. The results indicated that, the mats placed at 20 cm depth leads to increasing of the availability of soil moisture content in the root zone. The results further showed increases in water application efficiency because of using the geotextile material. In addition, soil salinity in the root zone decreased because of increasing soil moisture content.

Keywords: geotextile, moisture content, sprinkler irrigation

Procedia PDF Downloads 366
5859 Salinity Effects on Germination of Malaysian Rice Varieties and Weedy Rice Biotypes

Authors: M. Kamal Uddin, H. Mohd Dandan, Ame H. Alidin

Abstract:

Germination and seedling growth of plant species are reduced in saline due to an external osmotic potential. An experiment was conducted at the laboratory, Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, to compare the salt effect on seed germination and growth of weedy rice and cultivated rice. Seeds (10 in each) were placed in petri dishes. Five salinity levels 0 (distilled water), 4, 8, 12 and 16 dSm-1 (NaCl) were applied. The number of germinated seeds was recorded daily. The final germination percentage, germination index (GI), seedling vigour index (SVI) mean germination time (MGT), shoot and root dry weight were estimated. At highest salinity (16 dSm-1) germination percentage was higher (100%) in weedy rice awn and weedy rice compact. Lowest germination percentage was in MR219 and TQR-8 (50-60%). Mean germination time (MGT) was found higher in all weedy rice biotypes compared to cultivated rice. At highest salinity (16dSm-1) weedy rice open produced the highest MGT (9.92) followed by weedy rice compact (9.73) while lowest MGT was in MR219 (9.48). At highest salinity (16dSm-1) germination index was higher in weedy rice awn (11.71) and compact type (9.62). Lowest germination index was in MR219 (5.90) and TQR-8 (8.94). At the highest salinity (16 dSm−1), seedling vigor index was highest in weedy rice awn (6.06) followed by weedy rice compact (5.26); while lowest was in MR219 (2.11) followed by MR269 (3.82).On the basis of Germination index, seedling vigor index and growth related results it could be concluded that weedy rice awn, compact and open biotypes were more salt tolerant compared to other cultivated rice MR219, MR269, and TQR-8.

Keywords: germination, salinity, rice and weedy rice, sustainable agriculture

Procedia PDF Downloads 458
5858 Genetic Diversity of Tiger Groupers (Epinephelus fuscoguttatus) Challenged with Vibrio Parahaemolyticus and Exposed to Extreme Low Salinities

Authors: Hidayah Triana, Mahir S. Gani, Asmi Citra Malina, Hamka

Abstract:

This study was conducted to determine genetic diversity of tiger groupers that are resistant to V. parahaemolyticus and tolerant to low extreme salinities. This research is useful to obtain superior broodstock of fish. Tiger grouper used were 6 to 8 cm obtained from Brackish Water Aquaculture Research Center Gondol (Bali). This study consists of four stages: preliminary stage was adaptation of fish exposed to several concentrations of V. parahaemolyticus (103, 104, 105, 106, and 107 CFU / ml); second stage was test of Lethal Concentration (LC50) of bacteria to fish; third stage was salinity tolerance test (low salinity 12, 14 and 16 ppt) and fourth stage was analysis of DNA profiles. For DNA profiles analysis, genomic DNA of fish were extracted for PCR using primers YNZ-22 and UBC-122 and visualized by electrophoresis method. The results showed that Lethal concentration of bacteria (LC50) to fish was 1,56x106 CFU/ml. Furthermore, survival rate of groupers exposed with low salinities (12, 14, 16 ppt) survival rates were found to be 54,17 %, 66,67 % and 79,16 % respectively. Average of DNA fragment (5 fragments) generated from primer UBC-122 in the group of fish resistant to V.parahaemolyticus and tolerant to low salinities was similar to group of susceptible to low salinities. Primer YNZ-22 generated more diverse of DNA fragments (8,0 and 5,8 fragments) both in the group of fish tolerant and susceptible to low salinities compared to primer UBC-122 (5,0 fragments). Size of DNA 1.5 kb resulted from primer YNZ-22. Primer YNZ-22 generated 4 (50 %) and 3 (42,8 %) polymorfic fragments in the group of fish tolerant and susceptible to low salinities, respectively. Four (4) monomorfic fragments were found both in the group of fish tolerant and susceptible to low salinities. Primer UBC-122 generated 6 (85,7 %) and 9 (90,0 %) polymorfic fragments in the fish tolerant and susceptible to low salinities, respectively.

Keywords: genetic diversity, epinephelus fuscoguttatus, V. parahaemolyticus, PCR-RAPD, low extreme salinity

Procedia PDF Downloads 267
5857 Impacts Of Salinity on Co2 Turnover in Some Gefara Soils of Libya

Authors: Fathi Elyaagubi

Abstract:

Salinization is a major threat to the productivity of agricultural land. The Gefara Plain located in the northwest of Libya; comprises about 80% of the total agricultural activity. The high water requirements for the populations and agriculture are depleting the groundwater aquifer, resulting in intrusion of seawater in the first few kilometers along the coast. Due to increasing salinity in the groundwater used for irrigation, the soils of the Gefara Plain are becoming increasingly saline. This research paper investigated the sensitivity of these soils to increased salinity using Co2 evolution as an integrating measure of soil function. Soil was collected from four sites located in the Gefara Plain, Almaya, Janzur, Gargaresh and Tajura. Soil collected from Tajura had the highest background salinity, and Janzur had the highest organic matter content. All of the soils had relatively low organic matter content, ranging between 0.49-%1.25. The cumulative rate of 14CO2 of added 14C-labelled Lolium shoots (Lolium perenne L.) to soils was decreased under effects of water containing different concentrations of NaCl at 20, 50, 70, 90, 150, and 200 mM compared to the control at any time of incubation in four sites.

Keywords: soil salinity, gefara plain, organic matter, 14C-labelled lolium shoots

Procedia PDF Downloads 192
5856 Equivalent Circuit Modelling of Active Reflectarray Antenna

Authors: M. Y. Ismail, M. Inam

Abstract:

This paper presents equivalent circuit modeling of active planar reflectors which can be used for the detailed analysis and characterization of reflector performance in terms of lumped components. Equivalent circuit representation has been proposed for PIN diodes and liquid crystal based active planar reflectors designed within X-band frequency range. A very close agreement has been demonstrated between equivalent circuit results, 3D EM simulated results as well as measured scattering parameter results. In the case of measured results, a maximum discrepancy of 1.05dB was observed in the reflection loss performance, which can be attributed to the losses occurred during measurement process.

Keywords: Equivalent circuit modelling, planar reflectors, reflectarray antenna, PIN diode, liquid crystal

Procedia PDF Downloads 255
5855 Comparison between Conventional Bacterial and Algal-Bacterial Aerobic Granular Sludge Systems in the Treatment of Saline Wastewater

Authors: Philip Semaha, Zhongfang Lei, Ziwen Zhao, Sen Liu, Zhenya Zhang, Kazuya Shimizu

Abstract:

The increasing generation of saline wastewater through various industrial activities is becoming a global concern for activated sludge (AS) based biological treatment which is widely applied in wastewater treatment plants (WWTPs). As for the AS process, an increase in wastewater salinity has negative impact on its overall performance. The advent of conventional aerobic granular sludge (AGS) or bacterial AGS biotechnology has gained much attention because of its superior performance. The development of algal-bacterial AGS could enhance better nutrients removal, potentially reduce aeration cost through symbiotic algae-bacterial activity, and thus, can also reduce overall treatment cost. Nonetheless, the potential of salt stress to decrease biomass growth, microbial activity and nutrient removal exist. Up to the present, little information is available on saline wastewater treatment by algal-bacterial AGS. To the authors’ best knowledge, a comparison of the two AGS systems has not been done to evaluate nutrients removal capacity in the context of salinity increase. This study sought to figure out the impact of salinity on the algal-bacterial AGS system in comparison to bacterial AGS one, contributing to the application of AGS technology in the real world of saline wastewater treatment. In this study, the salt concentrations tested were 0 g/L, 1 g/L, 5 g/L, 10 g/L and 15 g/L of NaCl with 24-hr artificial illuminance of approximately 97.2 µmol m¯²s¯¹, and mature bacterial and algal-bacterial AGS were used for the operation of two identical sequencing batch reactors (SBRs) with a working volume of 0.9 L each, respectively. The results showed that salinity increase caused no apparent change in the color of bacterial AGS; while for algal-bacterial AGS, its color was progressively changed from green to dark green. A consequent increase in granule diameter and fluffiness was observed in the bacterial AGS reactor with the increase of salinity in comparison to a decrease in algal-bacterial AGS diameter. However, nitrite accumulation peaked from 1.0 mg/L and 0.4 mg/L at 1 g/L NaCl in the bacterial and algal-bacterial AGS systems, respectively to 9.8 mg/L in both systems when NaCl concentration varied from 5 g/L to 15 g/L. Almost no ammonia nitrogen was detected in the effluent except at 10 g/L NaCl concentration, where it averaged 4.2 mg/L and 2.4 mg/L, respectively, in the bacterial and algal-bacterial AGS systems. Nutrients removal in the algal-bacterial system was relatively higher than the bacterial AGS in terms of nitrogen and phosphorus removals. Nonetheless, the nutrient removal rate was almost 50% or lower. Results show that algal-bacterial AGS is more adaptable to salinity increase and could be more suitable for saline wastewater treatment. Optimization of operation conditions for algal-bacterial AGS system would be important to ensure its stably high efficiency in practice.

Keywords: algal-bacterial aerobic granular sludge, bacterial aerobic granular sludge, Nutrients removal, saline wastewater, sequencing batch reactor

Procedia PDF Downloads 117
5854 Saline Water Transgression into Fresh Coastal Groundwater in the Confined Aquifer of Lagos, Nigeria

Authors: Babatunde Adebo, Adedeji Adetoyinbo

Abstract:

Groundwater is an important constituent of the hydrological cycle and plays a vital role in augmenting water supply to meet the ever-increasing needs of people for domestic, agricultural and industrial purposes. Unfortunately, this important resource has in most cases been contaminated due to the advancement of seawater into the fresh groundwater. This is due to the high volume of water being abstracted in these areas as a result of a high population of coastal dwellers. The knowledge of salinity level and intrusion of saltwater into the freshwater aquifer is, therefore, necessary for groundwater monitoring and prediction in the coastal areas. In this work, an advection-dispersion saltwater intrusion model is used to study and simulate saltwater intrusion in a typical coastal aquifer. The aquifer portion was divided into a grid with elements and nodes. Map of the study area indicating well locations were overlain on the grid system such that these locations coincide with the nodes. Chlorides at these well were considered as initial nodal salinities. Results showed a highest and lowest increase in simulated chloride of 37.89 mg/L and 0.8 mg/L respectively. It also revealed that the chloride concentration of most of the considered well might climb unacceptable level in the next few years, if the current abstraction rate continues unabated.

Keywords: saltwater intrusion, coastal aquifer, nodal salinity, chloride concentration

Procedia PDF Downloads 216
5853 A Simple Heat and Mass Transfer Model for Salt Gradient Solar Ponds

Authors: Safwan Kanan, Jonathan Dewsbury, Gregory Lane-Serff

Abstract:

A salinity gradient solar pond is a free energy source system for collecting, converting and storing solar energy as heat. In this paper, the principles of solar pond are explained. A mathematical model is developed to describe and simulate heat and mass transfer behavior of salinity gradient solar pond. Matlab codes are programmed to solve the one dimensional finite difference method for heat and mass transfer equations. Temperature profiles and concentration distributions are calculated. The numerical results are validated with experimental data and the results are found to be in good agreement.

Keywords: finite difference method, salt-gradient solar-pond, solar energy, transient heat and mass transfer

Procedia PDF Downloads 340
5852 Desalination Performance of a Passive Solar-Driven Membrane Distiller: Effect of Middle Layer Material and Thickness

Authors: Glebert C. Dadol, Pamela Mae L. Ucab, Camila Flor Y. Lobarbio, Noel Peter B. Tan

Abstract:

Water scarcity is a global problem and membrane-based desalination technologies are one of the promising solutions to this problem. In this study, a passive solar-driven membrane distiller was fabricated and tested for its desalination performance. The distiller was composed of a TiNOX plate solar absorber, cellulose-based upper and lower hydrophilic layers, a hydrophobic middle layer, and aluminum heatsinks. The effect of the middle layer material and thickness on the desalination performance was investigated in terms of distillate productivity and salinity. The materials used for the middle layer were a screen mesh (2 mm, 4 mm, 6 mm thickness) to generate an air gap, a PTFE membrane (0.3 mm thickness)), and a combination of the screen mesh and the PTFE membrane (2.3 mm total thickness). Salt water (35 g/L NaCl) was desalinated using the distiller at a rooftop setting at the University of San Carlos, Cebu City, Philippines. The highest distillate productivity of 1.08 L/m2-h was achieved using a 2-mm screen mesh (air gap) but it also resulted in a high distillate salinity of 25.20 g/L. Increasing the thickness of the air gap lowered the distillate salinity but also decreased the distillate productivity. The lowest salinity of 1.07 g/L was achieved using a 6-mm air gap but the productivity was reduced to 0.08 L/m2-h. The use of the hydrophobic PTFE membrane increased the productivity (0.44 L/m2-h) compared to a 6-mm air gap but produced a distillate with high salinity (16.68 g/L). When using a combination of the screen mesh and the PTFE membrane, the productivity was 0.13 L/m2-h and a distillate salinity of 1.61 g/L. The distiller with a thick air gap as the middle layer can deliver a distillate with low salinity and is preferred over a thin hydrophobic PTFE membrane. The use of a combination of the air gap and PTFE membrane slightly increased the productivity with comparable distillate salinity. Modifications and optimizations to the distiller can be done to improve further its performance.

Keywords: desalination, membrane distillation, passive solar-driven membrane distiller, solar distillation

Procedia PDF Downloads 84
5851 Triticum Aestivum Yield Enhanced with Irrigation Scheduling Strategy under Salinity

Authors: Taramani Yadav, Gajender Kumar, R. K. Yadav, H. S. Jat

Abstract:

Soil Salinity and irrigation water salinity is critical threat to enhance agricultural food production to full fill the demand of billion plus people worldwide. Salt affected soils covers 6.73 Mha in India and ~1000 Mha area around the world. Irrigation scheduling of saline water is the way to ensure food security in salt affected areas. Research experiment was conducted at ICAR-Central Soil Salinity Research Institute, Experimental Farm, Nain, Haryana, India with 36 treatment combinations in double split plot design. Three sets of treatments consisted of (i) three regimes of irrigation viz., 60, 80 and 100% (I1, I2 and I3, respectively) of crop ETc (crop evapotranspiration at identified respective stages) in main plot; (ii) four levels of irrigation water salinity (sub plot treatments) viz., 2, 4, 8 and 12 dS m-1 (iii) applications of two PBRs along with control (without PBRs) i.e. salicylic acid (G1; 1 mM) and thiourea (G2; 500 ppm) as sub-sub plot treatments. Grain yield of wheat (Triticum aestivum) was increased with less amount of high salt loaded irrigation water at the same level of salinity (2 dS m-1), the trend was I3>I2>I1 at 2 dS m-1 with 8.10 and 17.07% increase at 80 and 100% ETc, respectively compared to 60% ETc. But contrary results were obtained by increasing amount of irrigation water at same level of highest salinity (12 dS m-1) showing following trend; I1>I2>I3 at 12 dS m-1 with 9.35 and 12.26% increase at 80 and 60% ETc compared to 100% ETc. Enhancement in grain yield of wheat (Triticum aestivum) is not need to increase amount of irrigation water under saline condition, with salty irrigation water less amount of irrigation water gave the maximum wheat (Triticum aestivum) grain yield.

Keywords: Irrigation Scheduling, Saline Environment, Triticum aestivum, Yield

Procedia PDF Downloads 116
5850 Alleviation of Adverse Effects of Salt Stress on Soybean (Glycine max. L.) by Using Osmoprotectants and Compost Application

Authors: Ayman El Sabagh, SobhySorour, AbdElhamid Omar, Adel Ragab, Mohammad Sohidul Islam, Celaleddin Barutçular, Akihiro Ueda, Hirofumi Saneoka

Abstract:

Salinity is one of the major factors limiting crop production in an arid environment. What adds to the concern is that all the legume crops are sensitive to increasing soil salinity. So it is implacable to either search for salinity enhancement of legume plants. The exogenous of osmoprotectants has been found effective in reducing the adverse effects of salinity stress on plant growth. Despite its global importance soybean production suffer the problems of salinity stress causing damages at plant development. Therefore, in the current study we try to clarify the mechanism that might be involved in the ameliorating effects of osmo-protectants such as proline and glycine betaine and compost application on soybean plants grown under salinity stress. Experiments were carried out in the greenhouse of the experimental station, plant nutritional physiology, Hiroshima University, Japan in 2011- 2012. The experiment was arranged in a factorial design with 4 replications at NaCl concentrations (0 and 15 mM). The exogenous, proline and glycine betaine concentrations (0 mM and 25 mM) for each. Compost treatments (0 and 24 t ha-1). Results indicated that salinity stress induced reduction in all growth and physiological parameters (dry weights plant-1, chlorophyll content, N and K+ content) likewise, seed and quality traits of soybean plant compared with those of the unstressed plants. In contrast, salinity stress led to increases in the electrolyte leakage ratio, Na and proline contents. Thus tolerance against salt stress was observed, the improvement of salt tolerance resulted from proline, glycine betaine and compost were accompanied with improved membrane stability, K+, and proline accumulation on contrary, decreased Na+ content. These results clearly demonstrate that could be used to reduce the harmful effect of salinity on both physiological aspects and growth parameters of soybean. They are capable of restoring yield potential and quality of seed and may be useful in agronomic situations where saline conditions are diagnosed as a problem. Consequently, exogenous osmo-protectants combine with compost will effectively solve seasonal salinity stress problem and are a good strategy to increase salinity resistance in the drylands.

Keywords: compost, glycine betaine, proline, salinity tolerance, soybean

Procedia PDF Downloads 344
5849 Maximum Deformation Estimation for Reinforced Concrete Buildings Using Equivalent Linearization Method

Authors: Chien-Kuo Chiu

Abstract:

In the displacement-based seismic design and evaluation, equivalent linearization method is one of the approximation methods to estimate the maximum inelastic displacement response of a system. In this study, the accuracy of two equivalent linearization methods are investigated. The investigation consists of three soil condition in Taiwan (Taipei Basin 1, 2, and 3) and five different heights of building (H_r= 10, 20, 30, 40, and 50 m). The first method is the Taiwan equivalent linearization method (TELM) which was proposed based on Japanese equivalent linear method considering the modification factor, α_T= 0.85. On the basis of Lin and Miranda study, the second method is proposed with some modification considering Taiwan soil conditions. From this study, it is shown that Taiwanese equivalent linearization method gives better estimation compared to the modified Lin and Miranda method (MLM). The error index for the Taiwanese equivalent linearization method are 16%, 13%, and 12% for Taipei Basin 1, 2, and 3, respectively. Furthermore, a ductility demand spectrum of single-degree-of-freedom (SDOF) system is presented in this study as a guide for engineers to estimate the ductility demand of a structure.

Keywords: displacement-based design, ductility demand spectrum, equivalent linearization method, RC buildings, single-degree-of-freedom

Procedia PDF Downloads 137
5848 Wettability Alter of a Sandstone Rock by Graphene Oxide Adsorption

Authors: J. Gómez, J. Rodriguez, N. Santos, E. Mejía-Ospino

Abstract:

The wettability of the minerals present in a reservoir is a determining property in the recovery factor. One of the strategies proposed to increase recovery is based on altering the wettability of oil reservoir rocks. Approximately 60% of world crude oil reservoirs have sandstone-type host rocks; for that, it is very important to develop efficient methodologies to alter the wettability of these rocks. In this study, the alteration of the wettability of a sandstone rock due to graphene oxide (GO) adsorption was evaluated. The effect of GO concentration, salinity, Ca2+ ions, and pH on interfacial tension and contact angle was determined. The results show that GO adsorption induces significant changes in rock wettability. For high GO concentrations and low salinity, pH proved to be a determining factor in the alteration of wettability. Under certain conditions, surface wettability changes from highly oleophilic (144,8°) to intermediate oil wettability (91,2°).

Keywords: enhanced oil recovery, graphene oxide, interfacial tension, nanofluid, wettability

Procedia PDF Downloads 84
5847 Evaluation of Groundwater Suitability for Irrigation Purposes: A Case Study for an Arid Region

Authors: Mustafa M. Bob, Norhan Rahman, Abdalla Elamin, Saud Taher

Abstract:

The objective of this study was to assess the suitability of Madinah city groundwater for irrigation purposes. Of the twenty three wells that were drilled in different locations in the city for the purposes of this study, twenty wells were sampled for water quality analyses. The United States Department of Agriculture (USDA) classification of irrigation water that is based on Sodium hazard (SAR) and salinity hazard was used for suitability assessment. In addition, the residual sodium carbonate (RSC) was calculated for all samples and also used for irrigation suitability assessment. Results showed that all groundwater samples are in the acceptable quality range for irrigation based on RSC values. When SAR and salinity hazard were assessed, results showed that while all groundwater samples (except one) fell in the acceptable range of SAR, they were either in the high or very high salinity zone which indicates that care should be taken regarding the type of soil and crops in the study area.

Keywords: irrigation suitability, TDS, salinity, SAR

Procedia PDF Downloads 346
5846 Effect of Different Salt Concentrations and Temperatures on Seed Germination and Seedling Characters in Safflower (Carthamus tinctorius L.) Genotypes

Authors: Rahim Ada, Zamari Temory, Hasan Dalgic

Abstract:

Germination and seedling responses of seven safflower seed genotypes (Dinçer, Remzibey, Black Sun2 cultivars and A19, F4, I1, J19 lines) to different salinity concentrations (0, 5, 10, and 20 g l-1) and temperatures (10 and 20 oC) evaluated in Completely Randomized Factorial Designs in Department of Field Crops of Selcuk University, Konya, Turkey. Seeds in the control (distilled water) had at 10 and 20 oC the highest germination percentage (93.88 and 94.32 %), shoot length (4.60 and 8.72 cm), root length (4.27 and 6.54 cm), shoot dry weight (22.37 mg and 25.99 mg), and root dry weight (2.22 and 2.47 mg). As the salt concentration increased, values of all characters were decreased. In this experiment, in 20 g l-1 salt concentration found germination percentage (21.28 and 26.66 %), shoot (1.32 and 1.35 cm) and root length (1.04 and 1.10 cm), shoot (8.05 mg and 7.49 mg) and root dry weight (0.83 and 0.98 mg) at 10, and 20 oC.

Keywords: safflower, NaCl, temperature, shoot and root length, salt concentration

Procedia PDF Downloads 258
5845 The Combined Influences of Salinity, Light and Nitrogen Limitation on the Growth and Biochemical Composition of Nannochloropsis sp. and Tetraselmis sp., Isolated from Penang National Park Coastal Waters, Malaysia

Authors: Mohamed M. Alsull

Abstract:

In the present study, two microalgae species “Nannochloropsis sp. and Tetraselmis sp.” isolated from Penang National Park coastal waters, Malaysia; were cultivated under combined various laboratory conditions “salinity, light, nitrogen limitation and starvation”. Growth rate, dry weight, chlorophyll a content, total lipid and protein contents, were estimated at mid exponential growth phase. Both Nannochloropsis sp. and Tetraselmis sp. showed remarkable decrease in growth rate, chlorophyll a content and protein content companied with increase in lipid content under nitrogen limitation and starvation conditions. Maintaining Nannochloropsis sp. under salinity 15‰ caused only significant decrease in total protein content; while Tetraselmis sp. grown at the same salinity caused decrease in the growth rate, chlorophyll a, dry weight and total protein content only when nitrogen was available.

Keywords: biochemical composition, light, microalgae, nitrogen limitation, salinity

Procedia PDF Downloads 397