Search results for: engineering materials and applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13723

Search results for: engineering materials and applications

13663 Fabrication and Characterization of Ceramic Matrix Composite

Authors: Yahya Asanoglu, Celaletdin Ergun

Abstract:

Ceramic-matrix composites (CMC) have significant prominence in various engineering applications because of their heat resistance associated with an ability to withstand the brittle type of catastrophic failure. In this study, specific raw materials have been chosen for the purpose of having suitable CMC material for high-temperature dielectric applications. CMC material will be manufactured through the polymer infiltration and pyrolysis (PIP) method. During the manufacturing process, vacuum infiltration and autoclave will be applied so as to decrease porosity and obtain higher mechanical properties, although this advantage leads to a decrease in the electrical performance of the material. Time and temperature adjustment in pyrolysis parameters provide a significant difference in the properties of the resulting material. The mechanical and thermal properties will be investigated in addition to the measurement of dielectric constant and tangent loss values within the spectrum of Ku-band (12 to 18 GHz). Also, XRD, TGA/PTA analyses will be employed to prove the transition of precursor to ceramic phases and to detect critical transition temperatures. Additionally, SEM analysis on the fracture surfaces will be performed to see failure mechanism whether there is fiber pull-out, crack deflection and others which lead to ductility and toughness in the material. In this research, the cost-effectiveness and applicability of the PIP method will be proven in the manufacture of CMC materials while optimization of pyrolysis time, temperature and cycle for specific materials is detected by experiment. Also, several resins will be shown to be a potential raw material for CMC radome and antenna applications. This research will be distinguished from previous related papers due to the fact that in this research, the combination of different precursors and fabrics will be experimented with to specify the unique cons and pros of each combination. In this way, this is an experimental sum of previous works with unique PIP parameters and a guide to the manufacture of CMC radome and antenna.

Keywords: CMC, PIP, precursor, quartz

Procedia PDF Downloads 136
13662 Elastomeric Nanocomposites for Space Applications

Authors: Adriana Stefan, Cristina-Elisabeta Pelin, George Pelin, Maria Daniela Stelescu, Elena Manaila

Abstract:

Elastomeric composites have been known for a long time, but, to our knowledge, space and the aeronautic community has been directing a special attention to them only in the last decade. The required properties of advanced elastomeric materials used in space applications (such as O-rings) are sealing, abrasion, low-temperature flexibility, the long-term compression set properties, impact resistance and low-temperature thermal stability in different environments, such as ionized radiations. Basically, the elastomeric nanocomposites are composed of a rubber matrix and a wide and varied range of nanofillers, added with the aim of improving the physico-mechanical and elasticity modulus properties of the materials as well as their stability in different environments. The paper presents a partial synthesis of the research regarding the use of silicon carbide in nanometric form and/or organophylized montmorillonite as fillers in butyl rubber matrix. The need of composite materials arose from the fact that stand-alone polymers are ineffective in providing all the superior properties required by different applications. These drawbacks can be diminished or even eliminated by incorporating a new range of additives into the organic matrix, fillers that have important roles in modifying properties of various polymers. A composite material can provide superior and unique mechanical and physical properties because it combines the most desirable properties of its constituents while suppressing their least desirable properties. The commercial importance of polymers and the continuous increase of their use results in the continuous demand for improvement in their properties to meet the necessary conditions. To study the performance of the elastomeric nanocomposites were mechanically tested, it will be tested the qualities of tensile at low temperatures and RT and the behavior at the compression at cryogenic to room temperatures and under different environments. The morphology of specimens will be investigated by optical and scanning electronic microscopy.

Keywords: elastomeric nanocomposites, O-rings, space applications, mechanical properties

Procedia PDF Downloads 259
13661 Corrosion and Tribocorrosion Behaviour of Potential Coatings Applied in High-Strength Low-Alloy Steel for Offshore Applications

Authors: Ainara Lopez-Ortega, Raquel Bayon, Elena Rodriguez, Amaya Igartua

Abstract:

The materials used in offshore structural applications are continuously subjected to aggressive environmental conditions that accelerate their degradation, thus shortening their useful life. Wear, corrosion and the effect of marine microorganisms are the main processes taking place in marine environments, and whenever they occur simultaneously the durability of materials is strongly reduced. In the present work, the tribocorrosion behaviour of a High-Strength Low-Alloy (HSLA) steel and three coatings commonly used for protecting offshore components has been studied by means of unidirectional tribological tests in synthetic seawater. The coatings were found to enhance the tribological response of the uncoated steel and provide the system with improved corrosion resistance, in terms of smaller material losses and reduction of friction coefficients. The tests were repeated after ageing the materials in a salt-fog cabinet, and the aging process was found to slightly affect the performance of two of the coatings, in terms of higher material losses, meanwhile the third coating was not affected.

Keywords: coatings, corrosion, high-strength low-alloy steel, seawater, tribocorrosion

Procedia PDF Downloads 393
13660 Synthesis and Characterization of Carboxymethyl Cellulose-Chitosan Based Composite Hydrogels for Biomedical and Non-Biomedical Applications

Authors: K. Uyanga, W. Daoud

Abstract:

Hydrogels have attracted much academic and industrial attention due to their unique properties and potential biomedical and non-biomedical applications. Limitations on extending their applications have resulted from the synthesis of hydrogels using toxic materials and complex irreproducible processing techniques. In order to promote environmental sustainability, hydrogel efficiency, and wider application, this study focused on the synthesis of composite hydrogels matrices from an edible non-toxic crosslinker-citric acid (CA) using a simple low energy processing method based on carboxymethyl cellulose (CMC) and chitosan (CSN) natural polymers. Composite hydrogels were developed by chemical crosslinking. The results demonstrated that CMC:2CSN:CA exhibited good performance properties and super-absorbency 21× its original weight. This makes it promising for biomedical applications such as chronic wound healing and regeneration, next generation skin substitute, in situ bone regeneration and cell delivery. On the other hand, CMC:CSN:CA exhibited durable well-structured internal network with minimum swelling degrees, water absorbency, excellent gel fraction, and infra-red reflectance. These properties make it a suitable composite hydrogel matrix for warming effect and controlled and efficient release of loaded materials. CMC:2CSN:CA and CMC:CSN:CA composite hydrogels developed also exhibited excellent chemical, morphological, and thermal properties.

Keywords: citric acid, fumaric acid, tartaric acid, zinc nitrate hexahydrate

Procedia PDF Downloads 114
13659 Investigation on Reducing the Bandgap in Nanocomposite Polymers by Doping

Authors: Sharvare Palwai, Padmaja Guggilla

Abstract:

Smart materials, also called as responsive materials, undergo reversible physical or chemical changes in their properties as a consequence of small environmental variations. They can respond to a single or multiple stimuli such as stress, temperature, moist, electric or magnetic fields, light, or chemical compounds. Hence smart materials are the basis of many applications, including biosensors and transducers, particularly electroactive polymers. As the polymers exhibit good flexibility, high transparency, easy processing, and low cost, they would be promising for the sensor material. Polyvinylidene Fluoride (PVDF), being a ferroelectric polymer, exhibits piezoelectric and pyro electric properties. Pyroelectric materials convert heat directly into electricity, while piezoelectric materials convert mechanical energy into electricity. These characteristics of PVDF make it useful in biosensor devices and batteries. However, the influence of nanoparticle fillers such as Lithium Tantalate (LiTaO₃/LT), Potassium Niobate (KNbO₃/PN), and Zinc Titanate (ZnTiO₃/ZT) in polymer films will be studied comprehensively. Developing advanced and cost-effective biosensors is pivotal to foresee the fullest potential of polymer based wireless sensor networks, which will further enable new types of self-powered applications. Finally, nanocomposites films with best set of properties; the sensory elements will be designed and tested for their performance as electric generators under laboratory conditions. By characterizing the materials for their optical properties and investigate the effects of doping on the bandgap energies, the science in the next-generation biosensor technologies can be advanced.

Keywords: polyvinylidene fluoride, PVDF, lithium tantalate, potassium niobate, zinc titanate

Procedia PDF Downloads 105
13658 Study of Li-Rich Layered Cathode Materials for High-Energy Li-ion Batteries

Authors: Liu Li, Kim Seng Lee, Li Lu

Abstract:

The high-energy-density Li-rich layered materials are promising cathode materials for the next-generation high-performance lithium-ion batteries. They have attracted a lot of attentions due mainly to their high reversible capacity of more than 250 mAh•g-1 at low charge-discharge current. However several drawbacks still hinder their applications, such as voltage decay caused by an undesired phase transformation during cycling and poor rate capability. To conquer these issues, the authors applied F modification methods on the pristine Li1.2Mn0.54Ni0.13Co0.13O2 to enhance its electrochemical performance.

Keywords: Li-ion battery, Li-rich layered cathode material, phase transformation, cycling stability, rate capability

Procedia PDF Downloads 307
13657 A Resource Optimization Strategy for CPU (Central Processing Unit) Intensive Applications

Authors: Junjie Peng, Jinbao Chen, Shuai Kong, Danxu Liu

Abstract:

On the basis of traditional resource allocation strategies, the usage of resources on physical servers in cloud data center is great uncertain. It will cause waste of resources if the assignment of tasks is not enough. On the contrary, it will cause overload if the assignment of tasks is too much. This is especially obvious when the applications are the same type because of its resource preferences. Considering CPU intensive application is one of the most common types of application in the cloud, we studied the optimization strategy for CPU intensive applications on the same server. We used resource preferences to analyze the case that multiple CPU intensive applications run simultaneously, and put forward a model which can predict the execution time for CPU intensive applications which run simultaneously. Based on the prediction model, we proposed the method to select the appropriate number of applications for a machine. Experiments show that the model can predict the execution time accurately for CPU intensive applications. To improve the execution efficiency of applications, we propose a scheduling model based on priority for CPU intensive applications. Extensive experiments verify the validity of the scheduling model.

Keywords: cloud computing, CPU intensive applications, resource optimization, strategy

Procedia PDF Downloads 257
13656 Design and Synthesis of Gradient Nanocomposite Materials

Authors: Pu Ying-Chih, Yang Yin-Ju, Hang Jian-Yi, Jang Guang-Way

Abstract:

Organic-Inorganic hybrid materials consisting of graded distributions of inorganic nano particles in organic polymer matrices were successfully prepared by the sol-gel process. Optical and surface properties of the resulting nano composites can be manipulated by changing their compositions and nano particle distribution gradients. Applications of gradient nano composite materials include sealants for LED packaging and screen lenses for smartphones. Optical transparency, prism coupler, TEM, SEM, Energy Dispersive X-ray Spectrometer (EDX), Izod impact strength, conductivity, pencil hardness, and thermogravimetric characterizations of the nano composites were performed and the results will be presented.

Keywords: Gradient, Hybrid, Nanocomposite, Organic-Inorganic

Procedia PDF Downloads 478
13655 The Role of Nano-Science in Construction of Civil Engineering and Environment

Authors: Mehrdad Abkenari, Naghmeh Pournayeb, Mohsen Ramezan Shirazi

Abstract:

Nano-science has been widely used in different engineering sciences. Generally, materials’ application can be determined through their chemical and physical properties. Nano-science has introduced as a new way in production systems that not only turns the materials into very small particles but also, gives them new and considerable properties. Like other fields of study, civil engineering has not been ignorant of benefits and characteristics of new nanotechnology and has used it in the construction industry and environmental engineering. Therefore, considering such chemical properties as elemental analysis and molecular or atomic structure, the present article is aimed at studying the effects of Nano-materials on different branches of civil engineering. Finally, by identifying new Nano-materials, this study attempts to introduce advantages of using these materials for increasing the strength of materials during construction as well as finding new approaches to prevent or reduce the entrance of chemical pollutants during or after construction to the environment.

Keywords: civil, nano-science, construction, environment

Procedia PDF Downloads 384
13654 Traditional Ceramics Value in the Middle East

Authors: Abdelmessih Malak Sadek Labib

Abstract:

The Stability in harsh environments thanks to excellent electrical, mechanical and thermal properties is what ceramics are all about selected materials for many applications despite advent of new materials such as plastics and composites. However, ceramic materials have disadvantages, including brittleness. Fragility is often attributed to pottery strong covalent and ionic bonds in the ceramic body. There is still much to learn about brittle cracks in a attention to detail, hence the fragility of the ceramic and its catastrophic failure of a frequently studied topic, particularly in charging applications. One of the most commonly used ceramics for load-bearing applications such as veneers is porcelain. Porcelain is a type of traditional pottery. Traditional pottery consists mainly of three basic ingredients: clay, which gives plasticity; silica which maintains the shape and stability of the ceramic body over temperature high temperature; and feldspar affecting glazing. In traditional pottery, the inversion of quartz during cooling the process can create microcracks that act as a stress concentration centers. Consequently, subcritical crack growth is caused due to quartz inversion origins unpredictable catastrophic failure of the work of ceramic bodies when reloading. In the case of porcelain, however, this is what the mullite hypothesis says the strength of porcelain can be significantly increased with felt Interlocking of mullite needles in the ceramic body.in this way realistic assessment of the role of quartz and mullite Porcelain with a strength of is needed to grow stronger and smaller fragile porcelain. Currently,the lack of reports on Young's moduli in the literature leads to erroneous conclusions in this regard mechanical behavior of porcelain. Therefore, the current project uses the Young's modulus approach for the investigation the role of quartz and mullite on the mechanical strength of various porcelains, in addition to reducing particle size, flexural strength fractographic forces and techniques.

Keywords: materials, technical, ceramics, properties, thermal, stability, advantages

Procedia PDF Downloads 59
13653 Reducing Friction Associated with Commercial Use of Biomimetics While Increasing the Potential for Using Eco Materials and Design in Industry

Authors: John P. Ulhøi

Abstract:

Firms are faced with pressure to stay innovative and entrepreneurial while at the same time leaving lighter ecological footprints. Traditionally inspiration for new product development (NPD) has come from the creative in-house staff and from the marketplace. Often NPD offered by this approach has proven to be (far from) optimal for its purpose or highly (resource and energy) efficient. More recently, a bio-inspired NPD approach has surfaced under the banner of biomimetics. Biomimetics refers to inspiration from and translations of designs, systems, processes, and or specific properties that exist in nature. The principles and structures working in nature have evolved over a long period of time enable them to be optimized for the purpose and resource and energy-efficient. These characteristics reflect the raison d'être behind the field of biomimetics. While biological expertise is required to understand and explain such natural and biological principles and structures, engineers are needed to translate biological design and processes into synthetic applications. It can, therefore, hardly be surprising, biomimetics long has gained a solid foothold in both biology and engineering. The commercial adoption of biomimetic applications in new production development (NDP) in industry, however, does not quite reflect a similar growth. Differently put, this situation suggests that something is missing in the biomimetic-NPD-equation, thus acting as a brake towards the wider commercial application of biomimetics and thus the use of eco-materials and design in the industry. This paper closes some of that gap. Before concluding, avenues for future research and implications for practice will be briefly sketched out.

Keywords: biomimetics, eco-materials, NPD, commercialization

Procedia PDF Downloads 140
13652 Functionalized Ultra-Soft Rubber for Soft Robotics Application

Authors: Shib Shankar Banerjeea, Andreas Ferya, Gert Heinricha, Amit Das

Abstract:

Recently, the growing need for the development of soft robots consisting of highly deformable and compliance materials emerge from the serious limitations of conventional service robots. However, one of the main challenges of soft robotics is to develop such compliance materials, which facilitates the design of soft robotic structures and, simultaneously, controls the soft-body systems, like soft artificial muscles. Generally, silicone or acrylic-based elastomer composites are used for soft robotics. However, mechanical performance and long-term reliabilities of the functional parts (sensors, actuators, main body) of the robot made from these composite materials are inferior. This work will present the development and characterization of robust super-soft programmable elastomeric materials from crosslinked natural rubber that can serve as touch and strain sensors for soft robotic arms with very high elastic properties and strain, while the modulus is altered in the kilopascal range. Our results suggest that such soft natural programmable elastomers can be promising materials and can replace conventional silicone-based elastomer for soft robotics applications.

Keywords: elastomers, soft materials, natural rubber, sensors

Procedia PDF Downloads 127
13651 Rational Design and Synthesis of 2D/3D Conjugated Porous Polymers via Facile and 'Greener' Direct Arylation Polycondensation

Authors: Hassan Bohra, Mingfeng Wang

Abstract:

Conjugated porous polymers (CPPs) are amorphous, insoluble and highly robust organic semiconductors that have been largely synthesized by traditional transition-metal catalyzed reactions. The distinguishing feature of CPP materials is that they combine microporosity and high surface areas with extended conjugation, making them ideal for versatile applications such as separation, catalysis and energy storage. By applying a modular approach to synthesis, chemical and electronic properties of CPPs can be tailored for specific applications making these materials economical alternatives to inorganic semiconductors. Direct arylation - an environmentally benign alternative to traditional polymerization reactions – is one such reaction that extensively over the last decade for the synthesis of linear p-conjugated polymers. In this report, we present the synthesis and characterization of a new series of robust conjugated porous polymers synthesized by facile direct arylation polymerization of thiophene-flanked acceptor building blocks with multi-brominated aryls with different geometries. We observed that the porosities and morphologies of the polymers are determined by the chemical structure of the aryl bromide used. Moreover, good control of the optical bandgap in the range 2.53 - 1.3 eV could be obtained by using different building blocks. Structure-property relationships demonstrated in this study suggest that direct arylation polymerization is an attractive synthetic tool for the rational design of porous organic materials with tunable photo-physical properties for applications in photocatalysis, energy storage and conversion.

Keywords: direct arylation, conjugated porous polymers, triazine, photocatalysis

Procedia PDF Downloads 268
13650 Biodegradable Magnesium Alloys with Addition of Rare Earth Elements for Biomedical Applications

Authors: Yuncang Li, Cuie Wen

Abstract:

Biodegradable metallic materials such as magnesium (Mg)-based alloys have attracted extensive interest for use as bone implant materials. However, the high biodegradation rate of existing Mg alloys in the physiological environment of human body leads to losing mechanical integrity before adequate bone healing and producing a large volume of hydrogen gas. Therefore, slowing down the biodegradation rate of Mg alloys is a critical task in developing new biodegradable Mg alloy implant materials. One of the most effective approaches to achieve this is to strategically design new Mg alloys with low biodegradation rate, excellent biocompatibility, and enhanced mechanical properties. Our research selected biocompatible and biofunctional alloying elements such as zirconium (Zr), strontium (Sr), and rare earth elements (REEs) to alloy Mg and has developed a new series of Mg-Zr-Sr-REEs alloys for biodegradable implant applications. Research results indicated that Sr and Zr additions could refine the grain size, decrease the biodegradation rate, and enhance the biological behaviors of the Mg alloys. The REE addition, such as holmium (Ho) and dysprosium (Dy) to Mg-Zr-Sr alloys resulted in enhanced mechanical strength and decreased biodegradation rate. In addition, Ho and Dy additions (≤ 5 wt.%) to Mg-Zr-Sr alloys led to enhancement of cell adhesion and proliferation of osteoblast cells on the Mg-Zr-Sr-Ho/Dy alloys.

Keywords: biocompatibility, magnesium, mechanical and biodegrade properties, rare earth elements

Procedia PDF Downloads 95
13649 Synthesis and Characterization of Chitosan Microparticles for Scaffold Structure and Bioprinting

Authors: J. E. Mendes, T. T. de Barros, O. B. G. de Assis, J. D. C. Pessoa

Abstract:

Chitosan, a natural polysaccharide of β-1,4-linked glucosamine residues, is a biopolymer obtained primarily from the exoskeletons of crustaceans. Interest in polymeric materials increases year by year. Chitosan is one of the most plentiful biomaterials, with a wide range of pharmaceutical, biomedical, industrial and agricultural applications. Chitosan nanoparticles were synthesized via the ionotropic gelation of chitosan with sodium tripolyphosphate (TPP). Two concentrations of chitosan microparticles (0.1 and 0.2%) were synthesized. In this study, it was possible to synthesize and characterize microparticles of chitosan biomaterial and this will be used for future applications in cell anchorage for 3D bioprinting.

Keywords: chitosan microparticles, biomaterial, scaffold, bioprinting

Procedia PDF Downloads 285
13648 Investigation of the Mechanical Performance of Carbon Nanomembranes for Water Separation Technologies

Authors: Marinos Dimitropoulos, George Trakakis, Nikolaus Meyerbröker, Raphael Dalpke, Polina Angelova, Albert Schnieders, Christos Pavlou, Christos Kostaras, Costas Galiotis, Konstantinos Dassios

Abstract:

Intended for purifying water, water separation technologies are widely employed in a variety of contemporary household and industrial applications. Ultrathin Carbon Nanomembranes (CNMs) offer a highly selective, fast-flow, energy-efficient water separation technology intended for demanding water treatment applications as a technological replacement for biological filtration membranes. The membranes are two-dimensional (2D) materials with sub-nm functional pores and a thickness of roughly 1 nm; they may be generated in large quantities on porous supporting substrates and have customizable properties. The purpose of this work was to investigate and analyze the mechanical characteristics of CNMs and their substrates in order to ensure the structural stability of the membrane during operation. Contrary to macro-materials, it is difficult to measure the mechanical properties of membranes that are only a few nanometers thick. The membranes were supported on atomically flat substrates as well as suspended over patterned substrates, and their inherent mechanical properties were tested with atomic force microscopy. Quantitative experiments under nanomechanical loading, nanoindentation, and nano fatigue demonstrated the membranes' potential for usage in water separation applications.

Keywords: carbon nanomembranes, mechanical properties, AFM

Procedia PDF Downloads 59
13647 Preparation and Characterization of Bioplastic from Sorghum Husks

Authors: Hannatu Abubakar Sani, Abubakar Umar Birnin Yauri, Aliyu Muhammad, Mujahid Salau, Aminu Musa, Hadiza Adamu Kwazo

Abstract:

The increase in the global population and advances in technology have made plastic materials to have wide applications in every aspect of life. However, the non-biodegradability of these petrochemical-based materials and their increasing accumulation in the environment has been a threat to the planet and has been a source of environmental concerns and hence, the driving force in the search for ‘green’ alternatives for which agricultural waste remains the front liner. Sorghum husk, an agricultural waste with potentials as a raw material in the production of bioplastic, was used in this research to prepare bioplastic using sulphuric acid-catalyzed acetylation process. The prepared bioplastic was characterized by X-ray diffraction and Fourier transform infrared spectroscopy (FTIR), and the structure of the prepared bioplastic was confirmed. The Fourier transform infrared spectroscopy (FTIR) spectra of the product displayed the presence of OH, C-H, C=O, and C-O absorption peaks. The bioplastic obtained is biodegradable and is affected by acid, salt, and alkali to a lesser extent. Other tests like solubility and swelling studies were carried out to ensure the commercial properties of these bioplastic materials. Therefore, this revealed that new bioplastics with better environmental and sustainable properties could be produced from agricultural waste, which may have applications in many industries.

Keywords: agricultural waste, bioplastic, characterization, Sorghum Husk

Procedia PDF Downloads 124
13646 Aircraft Components, Manufacturing and Design: Opportunities, Bottlenecks, and Challenges

Authors: Ionel Botef

Abstract:

Aerospace products operate in very aggressive environments characterized by high temperature, high pressure, large stresses on individual components, the presence of oxidizing and corroding atmosphere, as well as internally created or externally ingested particulate materials that induce erosion and impact damage. Consequently, during operation, the materials of individual components degrade. In addition, the impact of maintenance costs for both civil and military aircraft was estimated at least two to three times greater than initial purchase values, and this trend is expected to increase. As a result, for viable product realisation and maintenance, a spectrum of issues regarding novel processing technologies, innovation of new materials, performance, costs, and environmental impact must constantly be addressed. One of these technologies, namely the cold-gas dynamic-spray process has enabled a broad range of coatings and applications, including many that have not been previously possible or commercially practical, hence its potential for new aerospace applications. Therefore, the purpose of this paper is to summarise the state of the art of this technology alongside its theoretical and experimental studies, and explore how the cold-gas dynamic-spray process could be integrated within a framework that finally could lead to more efficient aircraft maintenance. Based on the paper's qualitative findings supported by authorities, evidence, and logic essentially it is argued that the cold-gas dynamic-spray manufacturing process should not be viewed in isolation, but should be viewed as a component of a broad framework that finally leads to more efficient aerospace operations.

Keywords: aerospace, aging aircraft, cold spray, materials

Procedia PDF Downloads 98
13645 Enhancement of Interface Properties of Thermoplastic Composite Materials

Authors: Reyhan Ozbask, Emek Moroydor Derin, Mustafa Dogu

Abstract:

There are a limited number of global companies in the world that manufacture and commercially offer thermoplastic composite prepregs in accordance with aerospace requirements. High-performance thermoplastic materials supplied for aerospace structural applications are PEEK (polyetheretherketone), PPS (polyphenylsulfite), PEI (polyetherimide), and PEKK (polyetherketoneketone). Among these, PEEK is the raw material used in the first applications and has started to become widespread. However, the use of these thermoplastic raw materials in composite production is very difficult due to their high processing temperatures and impregnation difficulties. This study, it is aimed to develop carbon fiber-reinforced thermoplastic PEEK composites that comply with the requirements of the aviation industry that are superior mechanical properties as well as being lightweight. Therefore, it is aimed to obtain high-performance thermoplastic composite materials with improved interface properties by using the sizing method (suspension development through chemical synthesis and functionalization), to optimize the production process. The use of boron nitride nanotube as a bonding agent by modifying its surface constitutes the original aspect of the study as it has not been used in composite production with high-performance thermoplastic materials yet. For this purpose, laboratory-scale studies on the application of thermoplastic compatible sizing will be carried out in order to increase the fiber-matrix interfacial adhesion. The method respectively consists of the selection of appropriate sizing type, laboratory-scale carbon fiber (CF) / poly ether ether ketone (PEEK) polymer interface enhancement studies, manufacturing of laboratory-scale BNNT coated CF/PEEK woven prepreg composites and their tests.

Keywords: carbon fiber reinforced composite, interface enhancement, boron nitride nanotube, thermoplastic composite

Procedia PDF Downloads 195
13644 Wear Map for Cu-Based Friction Materials with Different Contents of Fe Reinforcement

Authors: Haibin Zhou, Pingping Yao, Kunyang Fan

Abstract:

Copper-based sintered friction materials are widely used in the brake system of different applications such as engineering machinery or high-speed train, due to the excellent mechanical, thermal and tribological performance. Considering the diversity of the working conditions of brake system, it is necessary to identify well and understand the tribological performance and wear mechanisms of friction materials for different conditions. Fe has been a preferred reinforcement for copper-based friction materials, due to its ability to improve the wear resistance and mechanical properties of material. Wear map is well accepted as a useful research method for evaluation of wear performances and wear mechanisms over a wider range of working conditions. Therefore, it is significantly important to construct a wear map which can give out the effects of work condition and Fe reinforcement on tribological performance of Cu-based friction materials. In this study, the copper-based sintered friction materials with the different addition of Fe reinforcement (0-20 vol. %) were studied. The tribological tests were performed against stainless steel in a ring-on-ring braking tester with varying braking energy density (0-5000 J/cm2). The linear wear and friction coefficient were measured. The worn surface, cross section and debris were analyzed to determine the dominant wear mechanisms for different testing conditions. On the basis of experimental results, the wear map and wear mechanism map were established, in terms of braking energy density and the addition of Fe. It was found that with low contents of Fe and low braking energy density, adhesive wear was the dominant wear mechanism of friction materials. Oxidative wear and abrasive wear mainly occurred under moderate braking energy density. In the condition of high braking energy density, with both high and low addition of Fe, delamination appeared as the main wear mechanism.

Keywords: Cu-based friction materials, Fe reinforcement, wear map, wear mechanism

Procedia PDF Downloads 247
13643 Analysis of Trends and Challenges of Using Renewable Biomass for Bioplastics

Authors: Namasivayam Navaranjan, Eric Dimla

Abstract:

The world needs more quality food, shelter and transportation to meet the demands of growing population and improving living standard of those who currently live below the poverty line. Materials are essential commodities for various applications including food and pharmaceutical packaging, building and automobile. Petroleum based plastics are widely used materials amongst others for these applications and their demand is expected to increase. Use of plastics has environment related issues because considerable amount of plastic used worldwide is disposed in landfills, where its resources are wasted, the material takes up valuable space and blights communities. Some countries have been implementing regulations and/or legislations to increase reuse, recycle, renew and remanufacture materials as well as to minimise the use of non-environmentally friendly materials such as petroleum plastics. However, issue of material waste is still a concern in the countries who have low environmental regulations. Development of materials, mostly bioplastics from renewable biomass resources has become popular in the last decade. It is widely believed that the potential for up to 90% substitution of total plastics consumption by bioplastics is technically possible. The global demand for bioplastics is estimated to be approximately six times larger than in 2010. Recently, standard polymers like polyethylene (PE), polypropylene (PP), Polyvinyl Chloride (PVC) or Polyethylene terephthalate (PET), but also high-performance polymers such as polyamides or polyesters have been totally or partially substituted by their renewable equivalents. An example is Polylactide (PLA) being used as a substitute in films and injection moulded products made of petroleum plastics, e.g. PET. The starting raw materials for bio-based materials are usually sugars or starches that are mostly derived from food resources, partially also recycled materials from food or wood processing. The risk in lower food availability by increasing price of basic grains as a result of competition with biomass-based product sectors for feedstock also needs to be considered for the future bioplastic production. Manufacturing of bioplastic materials is often still reliant upon petroleum as an energy and materials source. Life Cycle Assessment (LCA) of bioplastic products has being conducted to determine the sustainability of a production route. However, the accuracy of LCA depends on several factors and needs improvement. Low oil price and high production cost may also limit the technically possible growth of these plastics in the coming years.

Keywords: bioplastics, plastics, renewable resources, biomass

Procedia PDF Downloads 288
13642 Sol-Gel Synthesis and Photoluminescent Properties of YPO4: Pr3+ Nanophosphors

Authors: Badis Kahouadji, Lakhdar Guerbous, Lyes Lamiri

Abstract:

For many years, the luminescent materials were investigated principally in the infrared and visible areas, because the ultraviolet (UV) and especially in vacuum Ultraviolet (VUV) are technically more difficult to explore, especially absence of applications requiring of materials suitable to short wavelengths.Recent necessary, related to the development of certain technologies, encouraged research in these spectra domains. It is in this context that the 4Fn-4Fn-1 5d transitions of rare earth in insulating materials, lying in the UV and VUV, are the aim of large number of studies. These studies relate in particular to search for new scintillator materials used for spectroscopy and X-ray, ɤ, as well as medical imaging. The 4Fn- 4Fn-15d transitions of the rare earth dependent to the host-matrix, several matrices ions were used to study these transitions, in this work we are suggeting to study on a very specific class of inorganic scintillators that are orthophosphate doped with rare earth ions, this study focused on the Pr3+ concentration on the structural and optical properties of Pr3+ doped YPO4 (yttriumorthophosphate) with powder form prepared by the Sol Gel method.

Keywords: rare earth, scintillator, YPO4:Pr3+ nanophosphors, sol gel, 4Fn-4Fn-15d transitions

Procedia PDF Downloads 570
13641 Determination of Steel Cleanliness of Non-Grain Oriented Electrical Steels

Authors: Emre Alan, Zafer Cetin

Abstract:

Electrical steels are widely used as a magnetic core materials in many electrical applications such as transformers, electric motors, and generators. Core loss property of these magnetic materials refers to dissipation of electrical energy during magnetization in service conditions. Therefore, in order to minimize the magnetic core loss, certain precautions are taken from steel producers; “Steel Cleanliness” is one of the major points among them. For obtaining lower core loss values, increasing proper elements in chemical composition such as silicon is a must. Therefore, impurities of these alloys are a key value for producing a cleaner steel. In this study, effects of impurity levels of different FeSi alloying materials to the steel cleanliness will be investigated. One of the important element content in FeSi alloy materials is Calcium. A SEM investigation will be done in order to present if Ca content in FeSi alloy is enough for proper inclusion modification or an additional Ca-treatment is required.

Keywords: electrical steels, FeSi alloy, impurities, steel cleanliness

Procedia PDF Downloads 308
13640 Stress Analysis of Laminated Cylinders Subject to the Thermomechanical Loads

Authors: Şafak Aksoy, Ali Kurşun, Erhan Çetin, Mustafa Reşit Haboğlu

Abstract:

In this study, thermo elastic stress analysis is performed on a cylinder made of laminated isotropic materials under thermomechanical loads. Laminated cylinders have many applications such as aerospace, automotive and nuclear plant in the industry. These cylinders generally performed under thermomechanical loads. Stress and displacement distribution of the laminated cylinders are determined using by analytical method both thermal and mechanical loads. Based on the results, materials combination plays an important role on the stresses distribution along the radius. Variation of the stresses and displacements along the radius are presented as graphs. Calculations program are prepared using MATLAB® by authors.

Keywords: isotropic materials, laminated cylinders, thermoelastic stress, thermomechanical load

Procedia PDF Downloads 383
13639 Bio Composites for Substituting Synthetic Packaging Materials

Authors: Menonjyoti Kalita, Pradip Baishya

Abstract:

In recent times, the world has been facing serious environmental concerns and issues, such as sustainability and cost, due to the overproduction of synthetic materials and their participation in degrading the environment by means of industrial waste and non-biodegradable characteristics. As such, biocomposites come in handy to ease such troubles. Bio-based composites are promising materials for future applications for substituting synthetic packaging materials. The challenge of making packaging materials lighter, safer and cheaper leads to investigating advanced materials with desired properties. Also, awareness of environmental issues forces researchers and manufacturers to spend effort on composite and bio-composite materials fields. This paper explores and tests some nature-friendly materials has been done which can replace low-density plastics. The materials selected included sugarcane bagasse, areca palm, and bamboo leaves. Sugarcane bagasse bamboo leaves and areca palm sheath are the primary material or natural fibre for testing. These products were processed, and the tensile strength of the processed parts was tested in Micro UTM; it was found that areca palm can be used as a good building material in replacement to polypropylene and even could be used in the production of furniture with the help of epoxy resin. And for bamboo leaves, it was found that bamboo and cotton, when blended in a 50:50 ratio, it has great tensile strength. For areca, it was found that areca fibres can be a good substitute for polypropylene, which can be used in building construction as binding material and also other products.

Keywords: biodegradable characteristics, bio-composites, areca palm sheath, polypropylene, micro UTM

Procedia PDF Downloads 66
13638 A Functional Thermochemical Energy Storage System for Mobile Applications: Design and Performance Analysis

Authors: Jure Galović, Peter Hofmann

Abstract:

Thermochemical energy storage (TCES), as a long-term and lossless energy storage principle, provides a contribution for the reduction of greenhouse emissions of mobile applications, such as passenger vehicles with an internal combustion engine. A prototype of a TCES system, based on reversible sorption reactions of LiBr composite and methanol has been designed at Vienna University of Technology. In this paper, the selection of reactive and inert carrier materials as well as the design of heat exchangers (reactor vessel and evapo-condenser) was reviewed and the cycle stability under real operating conditions was investigated. The performance of the developed system strongly depends on the environmental temperatures, to which the reactor vessel and evapo-condenser are exposed during the phases of thermal conversion. For an integration of the system into mobile applications, the functionality of the designed prototype was proved in numerous conducted cycles whereby no adverse reactions were observed.

Keywords: dynamic applications, LiBr composite, methanol, performance of TCES system, sorption process, thermochemical energy storage

Procedia PDF Downloads 136
13637 Electrophoretic Deposition of p-Type Bi2Te3 for Thermoelectric Applications

Authors: Tahereh Talebi, Reza Ghomashchi, Pejman Talemi, Sima Aminorroaya

Abstract:

Electrophoretic deposition (EPD) of p-type Bi2Te3 material has been accomplished, and a high quality crack-free thick film has been achieved for thermoelectric (TE) applications. TE generators (TEG) can convert waste heat into electricity, which can potentially solve global warming problems. However, TEG is expensive due to the high cost of materials, as well as the complex and expensive manufacturing process. EPD is a simple and cost-effective method which has been used recently for advanced applications. In EPD, when a DC electric field is applied to the charged powder particles suspended in a suspension, they are attracted and deposited on the substrate with the opposite charge. In this study, it has been shown that it is possible to prepare a TE film using the EPD method and potentially achieve high TE properties at low cost. The relationship between the deposition weight and the EPD-related process parameters, such as applied voltage and time, has been investigated and a linear dependence has been observed, which is in good agreement with the theoretical principles of EPD. A stable EPD suspension of p-type Bi2Te3 was prepared in a mixture of acetone-ethanol with triethanolamine as a stabilizer. To achieve a high quality homogenous film on a copper substrate, the optimum voltage and time of the EPD process was investigated. The morphology and microstructures of the green deposited films have been investigated using a scanning electron microscope (SEM). The green Bi2Te3 films have shown good adhesion to the substrate. In summary, this study has shown that not only EPD of p-type Bi2Te3 material is possible, but its thick film is of high quality for TE applications.

Keywords: electrical conductivity, electrophoretic deposition, mechanical property, p-type Bi2Te3, Seebeck coefficient, thermoelectric materials, thick films

Procedia PDF Downloads 138
13636 Development and Characterization of Hydroxyapatite Based Nanocomposites for Local Drug Delivery to Periodontal Pockets

Authors: Indu Lata Kanwar, Preeti K. Suresh

Abstract:

The aim of this study is to fabricate hydroxyapatite based nanocomposites for local drug delivery in periodontal pockets. Hydroxyapatite is chemically similar to the mineral component of bones and hard tissues in mammals. Synthetic biocompatibility and bioactivity with human teeth and bone, making it very attractive for biomedical applications. Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometres (nm), or structures having nano­scale repeat distances between the different phases that make up the material. Nanostructured calcium phosphate materials play an important role in the formation of hard tissues in nature. It is reported that calcium phosphates materials in nano-size can mimic the dimensions of constituent components of calcified tissues. Nano-sized materials offer improved performances compared with conventional materials due to their large surface-to-volume ratios. The specific biological properties of the nanocomposites, as well as their interaction with cells, include the use of bioactive molecules. The approach of periodontal tissue engineering is considered promising to restore bone defect through the use of engineered materials with the aim that they will prohibit the invasion of fibrous connective tissue and help repair the function during bone regeneration.

Keywords: bioactive, hydroxyapatite, nanocomposities, periondontal

Procedia PDF Downloads 304
13635 State of Play of Mobile Government Apps on Google Play Store

Authors: Abdelbaset Rabaiah

Abstract:

e-Government mobile applications provide an extension for effective e-government services in today’s omniconnected world. They constitute part of m-government platforms. This study explores the usefulness, availability, discoverability and maturity of such applications. While this study impacts theory by addressing a relatively lacking area, it impacts practice more. The outcomes of this study suggest valuable recommendations for practitioners-developers of e-government applications. The methodology followed is to examine a large number of e-government smartphone applications. The focus is on applications available at the Google Play Store. Moreover, the study investigates applications published on government portals of a number of countries. A sample of 15 countries is researched. The results show a diversity in the level of discoverability, development, maturity, and usage of smartphone apps dedicated for use of e-government services. It was found that there are major issues in discovering e-government applications on both the Google Play Store and as-well-as on local government portals. The study found that only a fraction of mobile government applications was published on the Play Store. Only 19% of apps were multilingual, and 43% were developed by third parties including private individuals. Further analysis was made, and important recommendations are suggested in this paper for a better utilization of e-government smartphone applications. These recommendations will result in better discoverability, maturity, and usefulness of e-government applications.

Keywords: mobile applications, e-government, m-government, Google Play Store

Procedia PDF Downloads 127
13634 Wood Decay Fungal Strains Useful for Bio-Composite Material Production

Authors: C. Girometta, S. Babbini, R. M. Baiguera, D. S. Branciforti, M. Cartabia, D. Dondi, M. Pellegrini, A. M. Picco, E. Savino

Abstract:

Interest on wood decay fungi (WDF) has been increasing in the last year's thanks to the potentiality of this kind of fungi; research on new WDF strains has increased as well thus pointing out the key role of the culture collections. One of the most recent biotechnological application of WDF is the development of novel materials from natural or recycled resources. Based on different combinations of fungal species, substrate, and processing treatment involved (e.g. heat pressing), it is possible to achieve a wide variety of materials with different features useful for many industrial applications: from packaging to thermal and acoustic insulation. In comparison with the conventional ones, these materials represent a 100% natural and compostable alternative involving low amounts of energy in the production process. The purpose of the present work was to isolate and select WDF strains able to colonize and degrade different plant wastes thus producing a fungal biomass shapeable to achieve bio-composite materials. Strains were selected within the mycological culture collection of Pavia University (MicUNIPV, over 300 strains of WDF). The selected strains have been investigated with regards their ability to colonize and degrade plant residues from the local major cultivations (e.g. poplar, alfalfa, maize, rice, and wheat) and produce the fungal biomass. The degradation of the substrate was assessed by Thermogravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FTIR). Chemical characterization confirmed that TGA and FTIR are complementary techniques able to provide quality-quantitative information on compositional and structural variation that occurs during the transformation from the substrate to the bio-composite material. This pilot study provides a fundamental step to tune further applications in fungus-residues composite biomaterials.

Keywords: bio-composite material, lignocellulosic residues, sustainable materials, wood decay fungi

Procedia PDF Downloads 114