Search results for: employing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1051

Search results for: employing

841 High Efficiency Electrolyte Lithium Battery and RF Characterization

Authors: Wei Quan, Liu Chao, Mohammed N. Afsar

Abstract:

The dielectric properties and ionic conductivity of novel "ceramic state" polymer electrolytes for high capacity lithium battery are characterized by radio-frequency and Microwave methods in two broad frequency ranges from 50 Hz to 20 KHz and 4 GHz to 40 GHz. This innovative solid polymer electrolyte which is highly ionic conductive (10-3 S/cm at room temperature) from -40 oC to +150 oC and can be used in any battery application. Such polymer exhibits properties more like a ceramic rather than polymer. The various applied measurement methods produced accurate dielectric results for comprehensive analysis of electrochemical properties and ion transportation mechanism of this newly invented polymer electrolyte. Two techniques and instruments employing air gap measurement by capacitance bridge and inwave guide measurement by vector network analyzer are applied to measure the complex dielectric spectra. The complex dielectric spectra are used to determine the complex alternating current electrical conductivity and thus the ionic conductivity.

Keywords: polymer electrolyte, dielectric permittivity, lithium battery, ionic relaxation, microwave measurement

Procedia PDF Downloads 450
840 Enhancement of Light Out Efficiency of PLED Device Employing Designed Substrate Combined with Nano-Line Patterns

Authors: Ting-Ting Wen, H. C. Lin

Abstract:

This paper reports a study for the light outcoupling efficiency of the PLED device. In use of a designed substrate combined with nano-line patterns in PLED device, the light outcoupling efficiency can be significantly enhanced. The designed substrate was made by UV imprinting technology, such as triangular microlens arrays on the front and periodic corrugated patterns on the back surface. The nano-line patterns in PLED device was fabricated by advanced microstamping and ink-jet printing techniques. For high angles of observation with respect to the substrate surface normal, the light out intensity of the developed PLED device is increased from 0.05 (a.u.) up to 0.69 (a.u.) at the view angle 85 degree. The designed integration leads to 64% increase of the light out intensity compared with the conventional PLED device.

Keywords: triangular microlens, corrugation patterns, nano-line patterns, PLED device, UV imprinting technology, microstamping

Procedia PDF Downloads 447
839 Microstructure and Mechanical Evaluation of PMMA/Al₂O₃ Nanocomposite Fabricated via Friction Stir Processing

Authors: Reham K. El Sawah, N. S. M. El-Tayeb

Abstract:

This study aims to produce a polymer matrix composite reinforced with Al₂O₃ nanoparticles in order to enhance the mechanical properties of PMMA. The composite was fabricated via Friction stir processing to ensure homogenous dispersion of Al₂O₃ nanoparticles in the polymer, and the processing was submerged to prevent the sputtering of nanoparticles. The surface quality, microstructure, impact energy and hardness of the prepared samples were investigated. Good surface quality and dispersion of nanoparticles were attained through employing sufficient processing conditions. The experimental results indicated that as the percentage of nanoparticles increased, the impact energy and hardness increased, reaching 2 kJ/m2 and 14.7 HV at a nanoparticle concentration of 25%, which means that the toughness and the hardness of the polymer-ceramic produced composite is higher than unprocessed PMMA by 66% and 33% respectively.

Keywords: friction stir processing, polymer matrix nanocomposite, mechanical properties, microstructure

Procedia PDF Downloads 142
838 Thin-Layer Drying Characteristics and Modelling of Instant Coffee Solution

Authors: Apolinar Picado, Ronald Solís, Rafael Gamero

Abstract:

The thin-layer drying characteristics of instant coffee solution were investigated in a laboratory tunnel dryer. Drying experiments were carried out at three temperatures (80, 100 and 120 °C) and an air velocity of 1.2 m/s. Drying experimental data obtained are fitted to six (6) thin-layer drying models using the non-linear least squares regression analysis. The acceptability of the thin-layer drying model has been based on a value of the correlation coefficient that should be close to one, and low values for root mean square error (RMSE) and chi-square (x²). According to this evaluation, the most suitable model for describing drying process of thin-layer instant coffee solution is the Page model. Further, the effective moisture diffusivity and the activation energy were computed employing the drying experimental data. The effective moisture diffusivity values varied from 1.6133 × 10⁻⁹ to 1.6224 × 10⁻⁹ m²/s over the temperature range studied and the activation energy was estimated to be 162.62 J/mol.

Keywords: activation energy, diffusivity, instant coffee, thin-layer models

Procedia PDF Downloads 228
837 Exploring the Impact of Body Shape on Bra Fit: Integrating 3D Body Scanning and Traditional Patternmaking Methods

Authors: Yin-Ching Keung, Kit-Lun Yick

Abstract:

The issue of bra fitting has persisted throughout history despite advancements in molded bra cups. To gain a deeper understanding of the interaction between the breast and bra pattern, this study combines the art of traditional bra patternmaking with 3D body scanning technology. By employing a 2D bra pattern drafting method and analyzing the effect of body shape on the desired bra cup shape, the study focuses on the differentiation of the lower cup among bras designed for flat and round body-shaped breasts. The results shed light on the impact of body shape on bra fit and provide valuable insights for further research and improvements in bra design, pattern drafting, and fit. The integration of 3D body scanning technology enhances the accuracy and precision of measurements, allowing for a more comprehensive analysis of the unique contours and dimensions of the breast and body. Ultimately, the study aims to provide individuals with different body shapes a more comfortable and well-fitted bra-wearing experience, contributing to the ongoing efforts to alleviate the longstanding problem of bra fitting.

Keywords: breast shapes, bra fitting, 3D body scanning, bra patternmaking

Procedia PDF Downloads 18
836 Efficiency of the Slovak Commercial Banks Applying the DEA Window Analysis

Authors: Iveta Řepková

Abstract:

The aim of this paper is to estimate the efficiency of the Slovak commercial banks employing the Data Envelopment Analysis (DEA) window analysis approach during the period 2003-2012. The research is based on unbalanced panel data of the Slovak commercial banks. Undesirable output was included into analysis of banking efficiency. It was found that most efficient banks were Postovabanka, UniCredit Bank and Istrobanka in CCR model and the most efficient banks were Slovenskasporitelna, Istrobanka and UniCredit Bank in BCC model. On contrary, the lowest efficient banks were found Privatbanka and CitiBank. We found that the largest banks in the Slovak banking market were lower efficient than medium-size and small banks. Results of the paper is that during the period 2003-2008 the average efficiency was increasing and then during the period 2010-2011 the average efficiency decreased as a result of financial crisis.

Keywords: data envelopment analysis, efficiency, Slovak banking sector, window analysis

Procedia PDF Downloads 330
835 Extreme Temperature Forecast in Mbonge, Cameroon Through Return Level Analysis of the Generalized Extreme Value (GEV) Distribution

Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph

Abstract:

In this paper, temperature extremes are forecast by employing the block maxima method of the generalized extreme value (GEV) distribution to analyse temperature data from the Cameroon Development Corporation (CDC). By considering two sets of data (raw data and simulated data) and two (stationary and non-stationary) models of the GEV distribution, return levels analysis is carried out and it was found that in the stationary model, the return values are constant over time with the raw data, while in the simulated data the return values show an increasing trend with an upper bound. In the non-stationary model, the return levels of both the raw data and simulated data show an increasing trend with an upper bound. This clearly shows that although temperatures in the tropics show a sign of increase in the future, there is a maximum temperature at which there is no exceedance. The results of this paper are very vital in agricultural and environmental research.

Keywords: forecasting, generalized extreme value (GEV), meteorology, return level

Procedia PDF Downloads 423
834 2D and 3D Unsteady Simulation of the Heat Transfer in the Sample during Heat Treatment by Moving Heat Source

Authors: Zdeněk Veselý, Milan Honner, Jiří Mach

Abstract:

The aim of the performed work is to establish the 2D and 3D model of direct unsteady task of sample heat treatment by moving source employing computer model on the basis of finite element method. The complex boundary condition on heat loaded sample surface is the essential feature of the task. Computer model describes heat treatment of the sample during heat source movement over the sample surface. It is started from the 2D task of sample cross section as a basic model. Possibilities of extension from 2D to 3D task are discussed. The effect of the addition of third model dimension on the temperature distribution in the sample is showed. Comparison of various model parameters on the sample temperatures is observed. Influence of heat source motion on the depth of material heat treatment is shown for several velocities of the movement. Presented computer model is prepared for the utilization in laser treatment of machine parts.

Keywords: computer simulation, unsteady model, heat treatment, complex boundary condition, moving heat source

Procedia PDF Downloads 360
833 Solid Waste Management through Mushroom Cultivation: An Eco Friendly Approach

Authors: Mary Josephine

Abstract:

Waste of certain process can be the input source of other sectors in order to reduce environmental pollution. Today there are more and more solid wastes are generated, but only very small amount of those are recycled. So, the threatening of environmental pressure to public health is very serious. The methods considered for the treatment of solid waste are biogas tanks or processing to make animal feed and fertilizer, however, they did not perform well. An alternative approach is growing mushrooms on waste residues. This is regarded as an environmental friendly solution with potential economic benefit. The substrate producers do their best to produce quality substrate at low cost. Apart from other methods, this can be achieved by employing biologically degradable wastes used as the resource material component of the substrate. Mushroom growing is a significant tool for the restoration, replenishment and remediation of Earth’s overburdened ecosphere. One of the rational methods of waste utilization involves locally available wastes. The present study aims to find out the yield of mushroom grown on locally available waste for free and to conserve our environment by recycling wastes.

Keywords: biodegradable, environment, mushroom, remediation

Procedia PDF Downloads 368
832 Numerical Analysis of Roughness Effect on Mini and Microchannels: Hydrodynamics and Heat Transfer

Authors: El-Ghalia Filali, Cherif Gadouche, Mohamed Tahar

Abstract:

A three-dimensional numerical simulation of flow through mini and microchannels with designed roughness is conducted here. The effect of the roughness height (surface roughness), geometry, Reynolds number on the friction factor and the Nusselt number is investigated. The study is carried out by employing CFD software, CFX. Our work focuses on a water flow inside a circular mini-channel of 1 mm and microchannels of 500 and 100 μm in diameter. The speed entry varies from 0.1 m/s to 20 m/s. The general trend can be observed that bigger sizes of roughness element lead to higher flow resistance. It is found that the friction factor increases in a nonlinear fashion with the increase in obstruction height. Particularly, the effect of roughness can no longer be ignored at relative roughness height higher than 3%. A significant increase in Poiseuille number is detected for all configurations considered. The same observation can be done for Nusselt number. The transition zone between laminar and turbulent flow depends on the channel diameter.

Keywords: hydrodynamics, heat transfer, minichannel, microchannel, roughness

Procedia PDF Downloads 329
831 Analysis of NFC and Biometrics in the Retail Industry

Authors: Ziwei Xu

Abstract:

The increasing emphasis on mobility has driven the application of innovative communication technologies across various industries. In the retail sector, Near Field Communication (NFC) has emerged as a significant and transformative technology, particularly in the payment and retail supermarket sectors. NFC enables new payment methods, such as electronic wallets, and enhances information management in supermarkets, contributing to the growth of the trade. This report presents a comprehensive analysis of NFC technology, focusing on five key aspects. Firstly, it provides an overview of NFC, including its application methods and development history. Additionally, it incorporates Arthur's work on combinatorial evolution to elucidate the emergence and impact of NFC technology, while acknowledging the limitations of the model in analyzing NFC. The report then summarizes the positive influence of NFC on the retail industry along with its associated constraints. Furthermore, it explores the adoption of NFC from both organizational and individual perspectives, employing the Best Predictors of organizational IT adoption and UTAUT2 models, respectively. Finally, the report discusses the potential future replacement of NFC with biometrics technology, highlighting its advantages over NFC and leveraging Arthur's model to investigate its future development prospects.

Keywords: innovation, NFC, industry, biometrics

Procedia PDF Downloads 43
830 Improved Elastoplastic Bounding Surface Model for the Mathematical Modeling of Geomaterials

Authors: Andres Nieto-Leal, Victor N. Kaliakin, Tania P. Molina

Abstract:

The nature of most engineering materials is quite complex. It is, therefore, difficult to devise a general mathematical model that will cover all possible ranges and types of excitation and behavior of a given material. As a result, the development of mathematical models is based upon simplifying assumptions regarding material behavior. Such simplifications result in some material idealization; for example, one of the simplest material idealization is to assume that the material behavior obeys the elasticity. However, soils are nonhomogeneous, anisotropic, path-dependent materials that exhibit nonlinear stress-strain relationships, changes in volume under shear, dilatancy, as well as time-, rate- and temperature-dependent behavior. Over the years, many constitutive models, possessing different levels of sophistication, have been developed to simulate the behavior geomaterials, particularly cohesive soils. Early in the development of constitutive models, it became evident that elastic or standard elastoplastic formulations, employing purely isotropic hardening and predicated in the existence of a yield surface surrounding a purely elastic domain, were incapable of realistically simulating the behavior of geomaterials. Accordingly, more sophisticated constitutive models have been developed; for example, the bounding surface elastoplasticity. The essence of the bounding surface concept is the hypothesis that plastic deformations can occur for stress states either within or on the bounding surface. Thus, unlike classical yield surface elastoplasticity, the plastic states are not restricted only to those lying on a surface. Elastoplastic bounding surface models have been improved; however, there is still need to improve their capabilities in simulating the response of anisotropically consolidated cohesive soils, especially the response in extension tests. Thus, in this work an improved constitutive model that can more accurately predict diverse stress-strain phenomena exhibited by cohesive soils was developed. Particularly, an improved rotational hardening rule that better simulate the response of cohesive soils in extension. The generalized definition of the bounding surface model provides a convenient and elegant framework for unifying various previous versions of the model for anisotropically consolidated cohesive soils. The Generalized Bounding Surface Model for cohesive soils is a fully three-dimensional, time-dependent model that accounts for both inherent and stress induced anisotropy employing a non-associative flow rule. The model numerical implementation in a computer code followed an adaptive multistep integration scheme in conjunction with local iteration and radial return. The one-step trapezoidal rule was used to get the stiffness matrix that defines the relationship between the stress increment and the strain increment. After testing the model in simulating the response of cohesive soils through extensive comparisons of model simulations to experimental data, it has been shown to give quite good simulations. The new model successfully simulates the response of different cohesive soils; for example, Cardiff Kaolin, Spestone Kaolin, and Lower Cromer Till. The simulated undrained stress paths, stress-strain response, and excess pore pressures are in very good agreement with the experimental values, especially in extension.

Keywords: bounding surface elastoplasticity, cohesive soils, constitutive model, modeling of geomaterials

Procedia PDF Downloads 291
829 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics

Authors: Anas H. Aljemely, Jianping Xuan

Abstract:

Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.

Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features

Procedia PDF Downloads 170
828 Synthesis, Microstructure and Photoluminescence Properties of Yttrium Orthovanadates: Influences of Silica Nano-Particles and Nano-Layers

Authors: Seyed Mahdi Rafiaei

Abstract:

In this investigation, firstly Eu3+ doped YVO4 phosphor was synthesized using solid-state method. Then silica was coated on the surface of particles via sol-gel method. To study the influence of SiO2 addition on microstructure and photoluminescence characteristics of YVO4:4% Eu3+ phosphor materials, we employed X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), High-Resolution Transmitted Electron Microscope (HRTEM), Focused Ion Beam (FIB), Brunauer Emmett Teller (BET), Inductively coupled plasma (ICP), Electron Spin Resonance (ESR) and Photoluminescence (PL) equipments. The XPS characterization confirmed the formation of Y–O–Si and V-O-Si bondings between YVO4:Eu3+ phosphor particle and SiO2 coating. In addition, it was found that although the amounts of added SiO2 were not remarkable, but it resulted in enhancement of emission intensity of the phosphors. Finally by employing ESR analysis, it was shown that surface oxygen vacancies, result in reduction of V5+ to the lower valence state of V4+.

Keywords: solid state, sol-gel, silica, coating, photoluminescence

Procedia PDF Downloads 183
827 Relay Mining: Verifiable Multi-Tenant Distributed Rate Limiting

Authors: Daniel Olshansky, Ramiro Rodrıguez Colmeiro

Abstract:

Relay Mining presents a scalable solution employing probabilistic mechanisms and crypto-economic incentives to estimate RPC volume usage, facilitating decentralized multitenant rate limiting. Network traffic from individual applications can be concurrently serviced by multiple RPC service providers, with costs, rewards, and rate limiting governed by a native cryptocurrency on a distributed ledger. Building upon established research in token bucket algorithms and distributed rate-limiting penalty models, our approach harnesses a feedback loop control mechanism to adjust the difficulty of mining relay rewards, dynamically scaling with network usage growth. By leveraging crypto-economic incentives, we reduce coordination overhead costs and introduce a mechanism for providing RPC services that are both geopolitically and geographically distributed.

Keywords: remote procedure call, crypto-economic, commit-reveal, decentralization, scalability, blockchain, rate limiting, token bucket

Procedia PDF Downloads 27
826 Employing Motivation, Enjoyment and Self-Regulation to Predict Aural Vocabulary Knowledge

Authors: Seyed Mohammad Reza Amirian, Seyedeh Khadije Amirian, Maryam Sabouri

Abstract:

The present study aimed to investigate second language (L2) motivation, enjoyment, and self-regulation as the main variables for explaining variance in the process, and to find out the outcome of L2 Aural Vocabulary Knowledge (AVK) development by focusing on the Iranian EFL students at Hakim Sabzevari University. To this end, 122 EFL students (86 females) and (36 males) participated in this study. The students filled out the Motivation Questionnaire, Foreign Language Enjoyment Questionnaire, and Self-Regulation Questionnaire and also took Aural Vocabulary Knowledge (AVK) Test. Using SPSS software, the data were analyzed through multiple regressions and path analysis. A preliminary Pearson correlation analysis revealed that 2 out of 3 independent variables were significantly linked to AVK. According to the obtained regression model, self-regulation was a significant predictor of aural vocabulary knowledge test. Finally, the results of the mediation analysis showed that the indirect effect of enjoyment on AVK through self- regulation was significant. These findings are discussed, and implications are offered.

Keywords: aural vocabulary knowledge, enjoyment, motivation, self-regulation

Procedia PDF Downloads 121
825 Development of Folding Based Aptasensor for Ochratoxin a Using Different Pulse Voltammetry

Authors: Rupesh K. Mishra, Gaëlle Catanante, Akhtar Hayat, Jean-Louis Marty

Abstract:

Ochratoxins (OTA) are secondary metabolites present in a wide variety of food stuff. They are dangerous by-products mainly produced by several species of storage fungi including the Aspergillus and Penicillium genera. OTA is known to have nephrotoxic, immunotoxic, teratogenic and carcinogenic effects. Thus, needs a special attention for a highly sensitive and selective detection system that can quantify these organic toxins in various matrices such as cocoa beans. This work presents a folding based aptasensors by employing an aptamer conjugated redox probe (methylene blue) specifically designed for OTA. The aptamers were covalently attached to the screen printed carbon electrodes using diazonium grafting. Upon sensing the OTA, it binds with the immobilized aptamer on the electrode surface, which induces the conformational changes of the aptamer, consequently increased in the signal. This conformational change of the aptamer before and after biosensing of target OTA could produce the distinguishable electrochemical signal. The obtained limit of detection was 0.01 ng/ml for OTA samples with recovery of up to 88% in contaminated cocoa samples.

Keywords: ochratoxin A, cocoa, DNA aptamer, labelled probe

Procedia PDF Downloads 254
824 Positive Politeness in Writing Centre Consultations with an Emphasis on Praise

Authors: Avasha Rambiritch, Adelia Carstens

Abstract:

In especially the context of a writing center, learning takes place during, and as part of, the conversations between the writing center tutor and the student. This interaction or dialogue is an integral part of writing center research and is the focus of this largely qualitative study, employing a politeness lens. While there is some research on positive politeness strategies employed by writing center tutors, there is very little research on specifically praising as a positive politeness strategy. This study attempts to fill this gap by analyzing a corpus of 10 video-recorded consultations to determine how tutors in a writing center utilize the positive politeness strategy of praise. Findings indicate that while tutors exploit a range of politeness strategies, praise is used more often than any other strategy. The research indicates that praise as a politeness strategy is utilized significantly more when commenting on higher-order concerns, as in line with the writing center literature. The benefits of this study include insights into how such analyses can be used to better prepare and equip the tutors (usually postgraduate students appointed as part-time tutors in the writing center) for the work they do on a daily basis.

Keywords: writing center, academic writing, positive politeness, tutor

Procedia PDF Downloads 178
823 Numerical Investigation of Wave Run-Up on Curved Dikes

Authors: Suba Periyal Subramaniam, Babette Scheres, Altomare Corrado, Holger Schuttrumpf

Abstract:

Due to the climatic change and the usage of coastal areas, there is an increasing risk of dike failures along the coast worldwide. Wave run-up plays a key role in planning and design of a coastal structure. The coastal dike lines are bent either due to geological characteristics or due to influence of anthropogenic activities. The effect of the curvature of coastal dikes on wave run-up and overtopping is not yet investigated. The scope of this research is to find the effects of the dike curvature on wave run-up by employing numerical model studies for various dike opening angles. Numerical simulation is carried out using DualSPHysics, a meshless method, and OpenFOAM, a mesh-based method. The numerical results of the wave run-up on a curved dike and the wave transformation process for various opening angles, wave attacks, and wave parameters will be compared and discussed. This research aims to contribute a more precise analysis and understanding the influence of the curvature in the dike line and thus ensuring a higher level of protection in the future development of coastal structures.

Keywords: curved dikes, DualSPHysics, OpenFOAM, wave run-up

Procedia PDF Downloads 123
822 A Comparison of Computational and Experimental Data to Investigate the Influence of the Tangential Velocity of Inner Rotating Wall on Axial Velocity Profile of Flow through Vertical Annular Pipe with Rotating Inner Surface

Authors: Abdusalam Sharf

Abstract:

In the oil and gas industries, one of the most important issues in drilling wells is understanding the behavior of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates. The main emphasis is placed on a comparison of experimental and computational investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The computational investigations were carried out by employing CFD software, and Gambit and Fluent. Three turbulence models were used: standard, RNG with enhanced wall treatment, and SST model. The profiles of the axial velocity had investigated at different rotation speeds of the inner pipe with three different volumetric flow rates. The comparison results showed that the calculations satisfactorily predict the qualitative features of the axial and swirl velocity profiles and the RNG model performs the best results.

Keywords: computational fluid dynamics (CFD), SST k−ω shear-stress transport (k−ω mode variant), RNG k–ε renormalisation group (k−ε mode variant), y+ dimensionless distance from wall

Procedia PDF Downloads 352
821 Dynamic Response of Nano Spherical Shell Subjected to Termo-Mechanical Shock Using Nonlocal Elasticity Theory

Authors: J. Ranjbarn, A. Alibeigloo

Abstract:

In this paper, we present an analytical method for analysis of nano-scale spherical shell subjected to thermo-mechanical shocks based on nonlocal elasticity theory. Thermo-mechanical properties of nano shpere is assumed to be temperature dependent. Governing partial differential equation of motion is solved analytically by using Laplace transform for time domain and power series for spacial domain. The results in Laplace domain is transferred to time domain by employing the fast inverse Laplace transform (FLIT) method. Accuracy of present approach is assessed by comparing the the numerical results with the results of published work in literature. Furtheremore, the effects of non-local parameter and wall thickness on the dynamic characteristics of the nano-sphere are studied.

Keywords: nano-scale spherical shell, nonlocal elasticity theory, thermomechanical shock, dynamic response

Procedia PDF Downloads 342
820 A Low Power and High-Speed Conditional-Precharge Sense Amplifier Based Flip-Flop Using Single Ended Latch

Authors: Guo-Ming Sung, Ramavath Naga Raju Naik

Abstract:

This paper presents a low power, high speed, sense-amplifier based flip-flop (SAFF). The flip-flop’s power con-sumption and delay are greatly reduced by employing a new conditionally precharge sense-amplifier stage and a single-ended latch stage. Glitch-free and contention-free latch operation is achieved by using a conditional cut-off strategy. The design uses fewer transistors, has a lower clock load, and has a simple structure, all of which contribute to a near-zero setup time. When compared to previous flip-flop structures proposed for similar input/output conditions, this design’s performance and overall PDP have improved. The post layout simulation of the circuit uses 2.91µW of power and has a delay of 65.82 ps. Overall, the power-delay product has seen some enhancements. Cadence Virtuoso Designing tool with CMOS 90nm technology are used for all designs.

Keywords: high-speed, low-power, flip-flop, sense-amplifier

Procedia PDF Downloads 130
819 A Semi-supervised Classification Approach for Trend Following Investment Strategy

Authors: Rodrigo Arnaldo Scarpel

Abstract:

Trend following is a widely accepted investment strategy that adopts a rule-based trading mechanism that rather than striving to predict market direction or on information gathering to decide when to buy and when to sell a stock. Thus, in trend following one must respond to market’s movements that has recently happen and what is currently happening, rather than on what will happen. Optimally, in trend following strategy, is to catch a bull market at its early stage, ride the trend, and liquidate the position at the first evidence of the subsequent bear market. For applying the trend following strategy one needs to find the trend and identify trade signals. In order to avoid false signals, i.e., identify fluctuations of short, mid and long terms and to separate noise from real changes in the trend, most academic works rely on moving averages and other technical analysis indicators, such as the moving average convergence divergence (MACD) and the relative strength index (RSI) to uncover intelligible stock trading rules following trend following strategy philosophy. Recently, some works has applied machine learning techniques for trade rules discovery. In those works, the process of rule construction is based on evolutionary learning which aims to adapt the rules to the current environment and searches for the global optimum rules in the search space. In this work, instead of focusing on the usage of machine learning techniques for creating trading rules, a time series trend classification employing a semi-supervised approach was used to early identify both the beginning and the end of upward and downward trends. Such classification model can be employed to identify trade signals and the decision-making procedure is that if an up-trend (down-trend) is identified, a buy (sell) signal is generated. Semi-supervised learning is used for model training when only part of the data is labeled and Semi-supervised classification aims to train a classifier from both the labeled and unlabeled data, such that it is better than the supervised classifier trained only on the labeled data. For illustrating the proposed approach, it was employed daily trade information, including the open, high, low and closing values and volume from January 1, 2000 to December 31, 2022, of the São Paulo Exchange Composite index (IBOVESPA). Through this time period it was visually identified consistent changes in price, upwards or downwards, for assigning labels and leaving the rest of the days (when there is not a consistent change in price) unlabeled. For training the classification model, a pseudo-label semi-supervised learning strategy was used employing different technical analysis indicators. In this learning strategy, the core is to use unlabeled data to generate a pseudo-label for supervised training. For evaluating the achieved results, it was considered the annualized return and excess return, the Sortino and the Sharpe indicators. Through the evaluated time period, the obtained results were very consistent and can be considered promising for generating the intended trading signals.

Keywords: evolutionary learning, semi-supervised classification, time series data, trading signals generation

Procedia PDF Downloads 53
818 The Impact of Economic Freedom on Entrepreneurship Motivation: A Gendered Perspective on OECD Countries

Authors: Sepideh Khavarinezhad, Paolo Pietro Biancone

Abstract:

This paper sheds light on how gender entrepreneurship is influenced by economic freedom in OECD countries. Our study empirically explores the interaction of financial institutions and its effect of both motivations on total entrepreneurial activities (TEA) of women and men in these countries and to discuss the differences between women and men in this field, which is always a hot topic in entrepreneurship. Employing a dynamic method, we conducted panel data analysis in the time frame from 2012-2015. In this regard, we evaluate the relationship between the Index of Economic Freedoms and its three years, and both indicators of Global Entrepreneurship Monitor (GEM) on supportive financial institutions. We investigate that economic liberalization tends to persuade men and women entrepreneurs to start their businesses or to reduce motivation entrepreneurship. In particular, our paper demonstrates that motivation entrepreneurship seems to benefit from government support and fade barriers in legal structure in business, while we expect to confirm that free trade and economic freedom stimulate the entrepreneur’s motivation and their participation to start own business.

Keywords: economic freedom, gender entrepreneurship, financial institutions, OECD countries

Procedia PDF Downloads 121
817 Spin-Polarized Structural, Electronic, and Magnetic Properties of Co and Mn-Doped CdTe in Zinc-Blende Phase

Authors: A.Zitouni, S.Bentata, B.Bouadjemi, T.Lantri, W. Benstaali, Z.Aziz, S.Cherid, A. Sefir

Abstract:

Structural, electronic, and magnetic properties of Co and Mn-doped CdTe have been studied by employing the full potential linear augmented plane waves (FP-LAPW) method within the spin-polarized density functional theory (DFT). The electronic exchange-correlation energy is described by generalized gradient approximation (GGA) as exchange–correlation (XC) potential. We have calculated the lattice parameters, bulk modulii and the first pressure derivatives of the bulk modulii, spin-polarized band structures, and total and local densities of states. The value of calculated magnetic moment per Co and Mn impurity atoms is found to be 2.21 µB for CdCoTe and 3.20 µB for CdMnTe. The calculated densities of states presented in this study identify the half-metallic of Co and Mn-doped CdTe.

Keywords: electronic structure, density functional theory, band structures, half-metallic, magnetic moment

Procedia PDF Downloads 435
816 Induced-Gravity Inflation in View of the Bicep2 Results

Authors: C. Pallis

Abstract:

Induced-Gravity inflation is a model of chaotic inflation where the inflaton is identified with a Higgs-like modulus whose the vacuum expectation value controls the gravitational strength. Thanks to a strong enough coupling between the inflaton and the Ricci scalar curvature, inflation is attained even for subplanckian values of the inflaton with the corresponding effective theory being valid up to the Planck scale. In its simplest realization, induced-gravity inflation is based on a quatric potential and a quadratic non-minimal coupling and the inflationary observables turn out to be in agreement with the Planck data. Its supersymmetrization can be formulated within no-scale Supergravity employing two gauge singlet chiral superfields and applying a continuous $R$ and a discrete Zn symmetry to the proposed superpotential and Kahler potential. Modifying slightly the non-minimal coupling to Gravity, the model can account for the recent results of BICEP2. These modifications can be also accommodated beyond the no-scale SUGRA considering the fourth order term of the Kahler potential which mixes the inflaton with the accompanying non-inflaton field and small deviations from the prefactor $-3$ encountered in the adopted Kahler potential.

Keywords: cosmology, supersymmetric models, supergravity, modified gravity

Procedia PDF Downloads 683
815 A Simplified, Fabrication-Friendly Acoustophoretic Model for Size Sensitive Particle Sorting

Authors: V. Karamzadeh, J. Adhvaryu, A. Chandrasekaran, M. Packirisamy

Abstract:

In Bulk Acoustic Wave (BAW) microfluidics, the throughput of particle sorting is dependent on the complex interplay between the geometric configuration of the channel, the size of the particles, and the properties of the fluid medium, which therefore calls for a detailed modeling and understanding of the fluid-particle interaction dynamics under an acoustic field, prior to designing the system. In this work, we propose a simplified Bulk acoustophoretic system that can be used for size dependent particle sorting. A Finite Element Method (FEM) based analytical model has been developed to study the dependence of particle sizes on channel parameters, and the sorting efficiency in a given fluid medium. Based on the results, the microfluidic system has been designed to take into account all the variables involved with the underlying physics, and has been fabricated using an additive manufacturing technique employing a commercial 3D printer, to generate a simple, cost-effective system that can be used for size sensitive particle sorting.

Keywords: 3D printing, 3D microfluidic chip, acoustophoresis, cell separation, MEMS (Microelectromechanical Systems), microfluidics

Procedia PDF Downloads 144
814 Design of Wireless Readout System for Resonant Gas Sensors

Authors: S. Mohamed Rabeek, Mi Kyoung Park, M. Annamalai Arasu

Abstract:

This paper presents a design of a wireless read out system for tracking the frequency shift of the polymer coated piezoelectric micro electromechanical resonator due to gas absorption. The measure of this frequency shift indicates the percentage of a particular gas the sensor is exposed to. It is measured using an oscillator and an FPGA based frequency counter by employing the resonator as a frequency determining element in the oscillator. This system consists of a Gas Sensing Wireless Readout (GSWR) and an USB Wireless Transceiver (UWT). GSWR consists of an oscillator based on a trans-impedance sustaining amplifier, an FPGA based frequency readout, a sub 1GHz wireless transceiver and a micro controller. UWT can be plugged into the computer via USB port and function as a wireless module to transfer gas sensor data from GSWR to the computer through its USB port. GUI program running on the computer periodically polls for sensor data through UWT - GSWR wireless link, the response from GSWR is logged in a file for post processing as well as displayed on screen.

Keywords: gas sensor, GSWR, micromechanical system, UWT, volatile emissions

Procedia PDF Downloads 459
813 Ultimate Stress of the Steel Tube in Circular Concrete-Filled Steel Tube Stub Columns Subjected to Axial Compression

Authors: Siqi Lin, Yangang Zhao

Abstract:

Concrete-filled steel tube column achieves the excellent performance of high strength, stiffness, and ductility due to the confinement from the steel tube. Well understanding the stress of the steel tube is important to make clear the confinement effect. In this paper, the ultimate stress of the steel tube in circular concrete-filled steel tube columns subjected to axial compression was studied. Experimental tests were conducted to investigate the effects of the parameters, including concrete strength, steel strength, and D/t ratio, on the ultimate stress of the steel tube. The stress of the steel tube was determined by employing the Prandtl-Reuss flow rule associated with isotropic strain hardening. Results indicate that the stress of steel tube was influenced by the parameters. Specimen with higher strength ratio fy/fc and smaller D/t ratio generally leads to a higher utilization efficiency of the steel tube.

Keywords: concrete-filled steel tube, axial compression, ultimate stress, utilization efficiency

Procedia PDF Downloads 379
812 Preparation of Ag-Doped and MOFs Coupled-LaFeO₃ Nanosheet for Electrochemical CO₂ Conversion

Authors: Iltaf Khan, Munzir H. Suliman, Muhammad Usman

Abstract:

The rapid growth of modern industries has led to increased energy demand and worsened fossil fuel depletion, resulting in global warming, while organic pollutants pose significant threats to aquatic environments due to their stability, insolubleness, and non-biodegradability. So, scientists are investigating high-performance materials to resolve these issues. In this study, we prepared LaFeO₃ nanosheets (LFONS) employing a solvothermal method via a soft template such as polyvinylpyrrolidone (PVP). The LFONS have good performance regarding surface area and charge separation as compared to LaFeO₃ nanoparticles (LFONP). To improve the efficiency of LFONS, it was further modified with Ag and ZIF-67 and utilized for CO₂ conversion. Herein, the results confirm that Ag-doped and ZIF-67 coupled LFONS (ZIF-67/Ag-LFONS) exhibit superior performance compared to pristine LFONP. In addition, the stability tests confirm that our optimal sample is the most active and stable one among various nanocomposites. Ultimately, our studies will open a new pave for cost-effective, eco-friendly, and electroactive nanomaterials for CO₂ conversion.

Keywords: LaFeO₃ nanosheets, Ag incorporation, MOFs coupling, CO₂ conversion

Procedia PDF Downloads 23