Search results for: electrical distribution systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14784

Search results for: electrical distribution systems

14424 Study on the Addition of Solar Generating and Energy Storage Units to a Power Distribution System

Authors: T. Costa, D. Narvaez, K. Melo, M. Villalva

Abstract:

Installation of micro-generators based on renewable energy in power distribution system has increased in recent years, with the main renewable sources being solar and wind. Due to the intermittent nature of renewable energy sources, such micro-generators produce time-varying energy which does not correspond at certain times of the day to the peak energy consumption of end users. For this reason, the use of energy storage units next to the grid contributes to the proper leveling of the buses’ voltage level according to Brazilian energy quality standards. In this work, the effect of the addition of a photovoltaic solar generator and a store of energy in the busbar voltages of an electric system is analyzed. The consumption profile is defined as the average hourly use of appliances in a common residence, and the generation profile is defined as a function of the solar irradiation available in a locality. The power summation method is validated with analytical calculation and is used to calculate the modules and angles of the voltages in the buses of an electrical system based on the IEEE standard, at each hour of the day and with defined load and generation profiles. The results show that bus 5 presents the worst voltage level at the power consumption peaks and stabilizes at the appropriate range with the inclusion of the energy storage during the night time period. Solar generator maintains improvement of the voltage level during the period when it receives solar irradiation, having peaks of production during the 12 pm (without exceeding the appropriate maximum levels of tension).

Keywords: energy storage, power distribution system, solar generator, voltage level

Procedia PDF Downloads 103
14423 Experimental Study of the Electrical Conductivity and Thermal Conductivity Property of Micro-based Al-Cu-Nb-Mo Alloy

Authors: Uwa C. A., Jamiru T.

Abstract:

Aluminum based alloys with a certain compositional blend and manufacturing method have been reported to have excellent electrical conductors. In the current investigation, metal powders of Aluminum (Al), Copper (Cu), Niobium (Nb), and Molybdenum (Mo) were weighed in accordance with certain ratios and spread equally by combining the powder particles. The metal particles were mixed using a tube mixer for 12 hours. Before pouring into a 30mm-diameter graphite mold, pre-pressed, and placed into an SPS furnace, the thermal conductivity of the mixed metal powders was evaluated using a portable Thermtest device. Axial pressure of 50 MPa was used at a heating rate of 50 oC/min, and a multi-stage heating procedure with a holding period of 10 min. was used to sinter at temperatures between 300 oC and 480 oC. After being cooled to room temperature, the specimens were unmolded to produce the aluminum, copper, niobium, and molybdenum alloy material. The HPS 2662 Precision Four-point Probe Meter was used to determine the electrical resistivity and the values used to calculate the electrical conductivity of the sintered alloy samples. Finally, the alloy with the highest electrical conductivity and thermal conductivity qualities was the one with the following composition: Al 93.5Cu4Nb1.5Mo1. It also had a density of 3.23 g/cm3. It could be advisable for usage in automobile radiator and electric transmission line components.

Keywords: Al-Cu-Nb-Mo, electrical conductivity, alloy, sintering, thermal conductivity

Procedia PDF Downloads 59
14422 Assessment of Cellular Metabolites and Impedance for Early Diagnosis of Oral Cancer among Habitual Smokers

Authors: Ripon Sarkar, Kabita Chaterjee, Ananya Barui

Abstract:

Smoking is one of the leading causes of oral cancer. Cigarette smoke affects various cellular parameters and alters molecular metabolism of cells. Epithelial cells losses their cytoskeleton structure, membrane integrity, cellular polarity that subsequently initiates the process of epithelial cells to mesenchymal transition due to long exposure of cigarette smoking. It changes the normal cellular metabolic activity which induces oxidative stress and enhances the reactive oxygen spices (ROS) formation. Excessive ROS and associated oxidative stress are considered to be a driving force in alteration in cellular phenotypes, polarity distribution and mitochondrial metabolism. Noninvasive assessment of such parameters plays essential role in development of routine screening system for early diagnosis of oral cancer. Electrical cell-substrate impedance sensing (ECIS) is one of such method applied for detection of cellular membrane impedance which can be correlated to cell membrane integrity. Present study intends to explore the alteration in cellular impedance along with the expression of cellular polarity molecules and cytoskeleton distributions in oral epithelial cells of habitual smokers and to correlate the outcome to that of clinically diagnosed oral leukoplakia and oral squamous cell carcinoma patients. Total 80 subjects were categorized into four study groups: nonsmoker (NS), cigarette smoker (CS), oral leukoplakia (OLPK) and oral squamous cell carcinoma (OSCC). Cytoskeleton distribution was analyzed by staining of actin filament and generation of ROS was measured using assay kit using standard protocol. Cell impedance was measured through ECIS method at different frequencies. Expression of E-cadherin and protease-activated receptor (PAR) proteins were observed through immune-fluorescence method. Distribution of actin filament is well organized in NS group however; distribution pattern was grossly varied in CS, OLPK and OSCC. Generation of ROS was low in NS which subsequently increased towards OSCC. Expressions of E-cadherin and change in cellular electrical impedance in different study groups indicated the hallmark of cancer progression from NS to OSCC. Expressions of E-cadherin, PAR protein, and cell impedance were decreased from NS to CS and farther OSCC. Generally, the oral epithelial cells exhibit apico-basal polarity however with cancer progression these cells lose their characteristic polarity distribution. In this study expression of polarity molecule and ECIS observation indicates such altered pattern of polarity among smoker group. Overall the present study monitored the alterations in intracellular ROS generation and cell metabolic function, membrane integrity in oral epithelial cells in cigarette smokers. Present study thus has clinical significance, and it may help in developing a noninvasive technique for early diagnosis of oral cancer amongst susceptible individuals.

Keywords: cigarette smoking, early oral cancer detection, electric cell-substrate impedance sensing, noninvasive screening

Procedia PDF Downloads 149
14421 New Estimation in Autoregressive Models with Exponential White Noise by Using Reversible Jump MCMC Algorithm

Authors: Suparman Suparman

Abstract:

A white noise in autoregressive (AR) model is often assumed to be normally distributed. In application, the white noise usually do not follows a normal distribution. This paper aims to estimate a parameter of AR model that has a exponential white noise. A Bayesian method is adopted. A prior distribution of the parameter of AR model is selected and then this prior distribution is combined with a likelihood function of data to get a posterior distribution. Based on this posterior distribution, a Bayesian estimator for the parameter of AR model is estimated. Because the order of AR model is considered a parameter, this Bayesian estimator cannot be explicitly calculated. To resolve this problem, a method of reversible jump Markov Chain Monte Carlo (MCMC) is adopted. A result is a estimation of the parameter AR model can be simultaneously calculated.

Keywords: autoregressive (AR) model, exponential white Noise, bayesian, reversible jump Markov Chain Monte Carlo (MCMC)

Procedia PDF Downloads 333
14420 A Mathematical Model of Power System State Estimation for Power Flow Solution

Authors: F. Benhamida, A. Graa, L. Benameur, I. Ziane

Abstract:

The state estimation of the electrical power system operation state is very important for supervising task. With the nonlinearity of the AC power flow model, the state estimation problem (SEP) is a nonlinear mathematical problem with many local optima. This paper treat the mathematical model for the SEP and the monitoring of the nonlinear systems of great dimensions with an application on power electrical system, the modelling, the analysis and state estimation synthesis in order to supervise the power system behavior. in fact, it is very difficult, to see impossible, (for reasons of accessibility, techniques and/or of cost) to measure the excessive number of the variables of state in a large-sized system. It is thus important to develop software sensors being able to produce a reliable estimate of the variables necessary for the diagnosis and also for the control.

Keywords: power system, state estimation, robustness, observability

Procedia PDF Downloads 493
14419 Kinetic Model to Interpret Whistler Waves in Multicomponent Non-Maxwellian Space Plasmas

Authors: Warda Nasir, M. N. S. Qureshi

Abstract:

Whistler waves are right handed circularly polarized waves and are frequently observed in space plasmas. The Low frequency branch of the Whistler waves having frequencies nearly around 100 Hz, known as Lion roars, are frequently observed in magnetosheath. Another feature of the magnetosheath is the observations of flat top electron distributions with single as well as two electron populations. In the past, lion roars were studied by employing kinetic model using classical bi-Maxwellian distribution function, however, could not be justified both on quantitatively as well as qualitatively grounds. We studied Whistler waves by employing kinetic model using non-Maxwellian distribution function such as the generalized (r,q) distribution function which is the generalized form of kappa and Maxwellian distribution functions by employing kinetic theory with single or two electron populations. We compare our results with the Cluster observations and found good quantitative and qualitative agreement between them. At times when lion roars are observed (not observed) in the data and bi-Maxwellian could not provide the sufficient growth (damping) rates, we showed that when generalized (r,q) distribution function is employed, the resulted growth (damping) rates exactly match the observations.

Keywords: kinetic model, whistler waves, non-maxwellian distribution function, space plasmas

Procedia PDF Downloads 284
14418 Development of Kenaf Cellulose CNT Paper for Electrical Conductive Paper

Authors: A. W. Fareezal, R. Rosazley, M. A. Izzati, M. Z. Shazana, I. Rushdan

Abstract:

Kenaf cellulose CNT paper production was for lightweight, high strength and excellent flexibility electrical purposes. Aqueous dispersions of kenaf cellulose and varied weight percentage of CNT were combined with the assistance of PEI solution by using ultrasonic probe. The solution was dried using vacuum filter continued with air drying in condition room for 2 days. Circle shape conductive paper was characterized with Fourier transformed infrared (FTIR) spectra, scanning electron microscopy (SEM) and therma gravimetric analysis (TGA).

Keywords: cellulose, CNT paper, PEI solution, electrical conductive paper

Procedia PDF Downloads 213
14417 Using Electrical Impedance Tomography to Control a Robot

Authors: Shayan Rezvanigilkolaei, Shayesteh Vefaghnematollahi

Abstract:

Electrical impedance tomography is a non-invasive medical imaging technique suitable for medical applications. This paper describes an electrical impedance tomography device with the ability to navigate a robotic arm to manipulate a target object. The design of the device includes various hardware and software sections to perform medical imaging and control the robotic arm. In its hardware section an image is formed by 16 electrodes which are located around a container. This image is used to navigate a 3DOF robotic arm to reach the exact location of the target object. The data set to form the impedance imaging is obtained by having repeated current injections and voltage measurements between all electrode pairs. After performing the necessary calculations to obtain the impedance, information is transmitted to the computer. This data is fed and then executed in MATLAB which is interfaced with EIDORS (Electrical Impedance Tomography Reconstruction Software) to reconstruct the image based on the acquired data. In the next step, the coordinates of the center of the target object are calculated by image processing toolbox of MATLAB (IPT). Finally, these coordinates are used to calculate the angles of each joint of the robotic arm. The robotic arm moves to the desired tissue with the user command.

Keywords: electrical impedance tomography, EIT, surgeon robot, image processing of electrical impedance tomography

Procedia PDF Downloads 243
14416 Synchronous Generator in Case Voltage Sags for Different Loads

Authors: Benalia Nadia, Bensiali Nadia, Zezouri Noura

Abstract:

This paper studies the effects of voltage sags, both symmetrical and unsymmetrical, on the three-phase Synchronous Machine (SM) when powering an isolate load or infinite bus bar. The vast majority of the electrical power generation systems in the world is consist of synchronous generators coupled to the electrical network though a transformer. Voltage sags on SM cause speed variations, current and torque peaks and hence may cause tripping and equipment damage. The consequences of voltage sags in the machine behavior depends on different factors such as its magnitude (or depth), duration , the parameters of the machine and also the size of load. In this study, we consider the machine feeds an infinite bus bar in the first and the isolate load using symmetric and asymmetric defaults to see the behavior of the machine in both case the simulation have been used on SIMULINK MATLAB.

Keywords: power quality, voltage sag, synchronous generator, infinite system

Procedia PDF Downloads 650
14415 The Role of the State Budget: An Evaluation of Public Expenditures and Taxes in Turkey

Authors: Erdal Eroğlu, Özhan Çetinkaya

Abstract:

The purpose of this paper is to show how state plays a regulatory role in the relations of distribution by analyzing tax and expenditure in Turkey. This paper has two main arguments. First, state intervenes in economic and social life via budget policies and steers the relations of distribution within the scope of the reproduction of the capital accumulation and legitimacy. Secondly, a great amount of public expenditure benefits capital owners while state gains its tax income mainly from low and middle income groups.

Keywords: distribution, public expenditure, state budget, taxes

Procedia PDF Downloads 499
14414 Population Size Estimation Based on the GPD

Authors: O. Anan, D. Böhning, A. Maruotti

Abstract:

The purpose of the study is to estimate the elusive target population size under a truncated count model that accounts for heterogeneity. The purposed estimator is based on the generalized Poisson distribution (GPD), which extends the Poisson distribution by adding a dispersion parameter. Thus, it becomes an useful model for capture-recapture data where concurrent events are not homogeneous. In addition, it can account for over-dispersion and under-dispersion. The ratios of neighboring frequency counts are used as a tool for investigating the validity of whether generalized Poisson or Poisson distribution. Since capture-recapture approaches do not provide the zero counts, the estimated parameters can be achieved by modifying the EM-algorithm technique for the zero-truncated generalized Poisson distribution. The properties and the comparative performance of proposed estimator were investigated through simulation studies. Furthermore, some empirical examples are represented insights on the behavior of the estimators.

Keywords: capture, recapture methods, ratio plot, heterogeneous population, zero-truncated count

Procedia PDF Downloads 417
14413 Techno-Economic Assessment of Distributed Heat Pumps Integration within a Swedish Neighborhood: A Cosimulation Approach

Authors: Monica Arnaudo, Monika Topel, Bjorn Laumert

Abstract:

Within the Swedish context, the current trend of relatively low electricity prices promotes the electrification of the energy infrastructure. The residential heating sector takes part in this transition by proposing a switch from a centralized district heating system towards a distributed heat pumps-based setting. When it comes to urban environments, two issues arise. The first, seen from an electricity-sector perspective, is related to the fact that existing networks are limited with regards to their installed capacities. Additional electric loads, such as heat pumps, can cause severe overloads on crucial network elements. The second, seen from a heating-sector perspective, has to do with the fact that the indoor comfort conditions can become difficult to handle when the operation of the heat pumps is limited by a risk of overloading on the distribution grid. Furthermore, the uncertainty of the electricity market prices in the future introduces an additional variable. This study aims at assessing the extent to which distributed heat pumps can penetrate an existing heat energy network while respecting the technical limitations of the electricity grid and the thermal comfort levels in the buildings. In order to account for the multi-disciplinary nature of this research question, a cosimulation modeling approach was adopted. In this way, each energy technology is modeled in its customized simulation environment. As part of the cosimulation methodology: a steady-state power flow analysis in pandapower was used for modeling the electrical distribution grid, a thermal balance model of a reference building was implemented in EnergyPlus to account for space heating and a fluid-cycle model of a heat pump was implemented in JModelica to account for the actual heating technology. With the models set in place, different scenarios based on forecasted electricity market prices were developed both for present and future conditions of Hammarby Sjöstad, a neighborhood located in the south-east of Stockholm (Sweden). For each scenario, the technical and the comfort conditions were assessed. Additionally, the average cost of heat generation was estimated in terms of levelized cost of heat. This indicator enables a techno-economic comparison study among the different scenarios. In order to evaluate the levelized cost of heat, a yearly performance simulation of the energy infrastructure was implemented. The scenarios related to the current electricity prices show that distributed heat pumps can replace the district heating system by covering up to 30% of the heating demand. By lowering of 2°C, the minimum accepted indoor temperature of the apartments, this level of penetration can increase up to 40%. Within the future scenarios, if the electricity prices will increase, as most likely expected within the next decade, the penetration of distributed heat pumps can be limited to 15%. In terms of levelized cost of heat, a residential heat pump technology becomes competitive only within a scenario of decreasing electricity prices. In this case, a district heating system is characterized by an average cost of heat generation 7% higher compared to a distributed heat pumps option.

Keywords: cosimulation, distributed heat pumps, district heating, electrical distribution grid, integrated energy systems

Procedia PDF Downloads 123
14412 Improving Law Enforcement Strategies Through Geographic Information Systems: A Spatio-Temporal Analysis of Antisocial Activities in Móstoles (2022)

Authors: Daniel Suarez Alonso

Abstract:

This study has tried to focus on the alternatives offered to police institutions by the implementation of Geographic Information systems. Providing operational police commanders with effective and efficient tools, providing analytical capacity to reduce criminal opportunities, must be a priority. Given the intimate connection of crimes and infractions to the environment, law enforcement institutions must respond proactively to changing circumstances of anti-norm behaviors. To this end, it has been intended to analyze the antisocial spatial distribution of the city of Móstoles, trying to identify those spatiotemporal patterns that occur to anticipate their commission through the planning of dynamic preventive strategies. The application of GIS offers alternative analytical approaches to the different problems that underlie the development of life in society, focusing resources on those places with the highest concentration of incidents.

Keywords: data analysis, police organizations, police prevention, geographic information systems

Procedia PDF Downloads 22
14411 Design and Control Algorithms for Power Electronic Converters for EV Applications

Authors: Ilya Kavalchuk, Mehdi Seyedmahmoudian, Ben Horan, Aman Than Oo, Alex Stojcevski

Abstract:

The power electronic components within Electric Vehicles (EV) need to operate in several important modes. Some modes directly influence safety, while others influence vehicle performance. Given the variety of functions and operational modes required of the power electronics, it needs to meet efficiency requirements to minimize power losses. Another challenge in the control and construction of such systems is the ability to support bidirectional power flow. This paper considers the construction, operation, and feasibility of available converters for electric vehicles with feasible configurations of electrical buses and loads. This paper describes logic and control signals for the converters for different operations conditions based on the efficiency and energy usage bases.

Keywords: electric vehicles, electrical machines control, power electronics, powerflow regulations

Procedia PDF Downloads 534
14410 Dispersions of Carbon Black in Microemulsions

Authors: Mohamed Youssry, Dominique Guyomard, Bernard Lestriez

Abstract:

In order to enhance the energy and power densities of electrodes for energy storage systems, the formulation and processing of electrode slurries proved to be a critical issue in determining the electrode performance. In this study, we introduce novel approach to formulate carbon black slurries based on microemulsion and lyotropic liquid crystalline phases (namely, lamellar phase) composed of non-ionic surfactant (Triton X100), decanol and water. Simultaneous measurements of electrical properties of slurries under shear flow (rheology) have been conducted to elucidate the microstructure evolution with the surfactant concentration and decanol/water ratio at rest, as well as, the structural transition under steady-shear which has been confirmed by rheo-microscopy. Interestingly, the carbon black slurries at low decanol/water ratio are weak-gel (flowable) with higher electrical conductivity than those at higher ratio which behave strong-gel viscoelastic response. In addition, the slurries show recoverable electrical behaviour under shear flow in tandem with the viscosity trend. It is likely that oil-in-water microemulsion enhances slurries’ stability without affecting on the percolating network of carbon black. On the other hand, the oil-in-water analogous and bilayer structure of lamellar phase cause the slurries less conductive as a consequence of losing the network percolation. These findings are encouraging to formulate microemulsion-based electrodes for energy storage system (lithium-ion batteries).

Keywords: electrode slurries, microemulsion, microstructure transition, rheo-electrical properties

Procedia PDF Downloads 238
14409 2D Nanomaterials-Based Geopolymer as-Self-Sensing Buildings in Construction Industry

Authors: Maryam Kiani

Abstract:

The self-sensing capability opens up new possibilities for structural health monitoring, offering real-time information on the condition and performance of constructions. The synthesis and characterization of these functional 2D material geopolymers will be explored in this study. Various fabrication techniques, including mixing, dispersion, and coating methods, will be employed to ensure uniform distribution and integration of the 2D materials within the geopolymers. The resulting composite materials will be evaluated for their mechanical strength, electrical conductivity, and sensing capabilities through rigorous testing and analysis. The potential applications of these self-sensing geopolymers are vast. They can be used in infrastructure projects, such as bridges, tunnels, and buildings, to provide continuous monitoring and early detection of structural damage or degradation. This proactive approach to maintenance and safety can significantly improve the lifespan and efficiency of constructions, ultimately reducing maintenance costs and enhancing overall sustainability. In conclusion, the development of functional 2D material geopolymers as self-sensing materials presents an exciting advancement in the construction industry. By integrating these innovative materials into structures, we can create a new generation of intelligent, self-monitoring constructions that can adapt and respond to their environment.

Keywords: 2D materials, geopolymers, electrical properties, self-sensing

Procedia PDF Downloads 77
14408 Application of Neutron Stimulated Gamma Spectroscopy for Soil Elemental Analysis and Mapping

Authors: Aleksandr Kavetskiy, Galina Yakubova, Nikolay Sargsyan, Stephen A. Prior, H. Allen Torbert

Abstract:

Determining soil elemental content and distribution (mapping) within a field are key features of modern agricultural practice. While traditional chemical analysis is a time consuming and labor-intensive multi-step process (e.g., sample collections, transport to laboratory, physical preparations, and chemical analysis), neutron-gamma soil analysis can be performed in-situ. This analysis is based on the registration of gamma rays issued from nuclei upon interaction with neutrons. Soil elements such as Si, C, Fe, O, Al, K, and H (moisture) can be assessed with this method. Data received from analysis can be directly used for creating soil elemental distribution maps (based on ArcGIS software) suitable for agricultural purposes. The neutron-gamma analysis system developed for field application consisted of an MP320 Neutron Generator (Thermo Fisher Scientific, Inc.), 3 sodium iodide gamma detectors (SCIONIX, Inc.) with a total volume of 7 liters, 'split electronics' (XIA, LLC), a power system, and an operational computer. Paired with GPS, this system can be used in the scanning mode to acquire gamma spectra while traversing a field. Using acquired spectra, soil elemental content can be calculated. These data can be combined with geographical coordinates in a geographical information system (i.e., ArcGIS) to produce elemental distribution maps suitable for agricultural purposes. Special software has been developed that will acquire gamma spectra, process and sort data, calculate soil elemental content, and combine these data with measured geographic coordinates to create soil elemental distribution maps. For example, 5.5 hours was needed to acquire necessary data for creating a carbon distribution map of an 8.5 ha field. This paper will briefly describe the physics behind the neutron gamma analysis method, physical construction the measurement system, and main characteristics and modes of work when conducting field surveys. Soil elemental distribution maps resulting from field surveys will be presented. and discussed. Comparison of these maps with maps created on the bases of chemical analysis and soil moisture measurements determined by soil electrical conductivity was similar. The maps created by neutron-gamma analysis were reproducible, as well. Based on these facts, it can be asserted that neutron stimulated soil gamma spectroscopy paired with GPS system is fully applicable for soil elemental agricultural field mapping.

Keywords: ArcGIS mapping, neutron gamma analysis, soil elemental content, soil gamma spectroscopy

Procedia PDF Downloads 115
14407 Health Percentage Evaluation for Satellite Electrical Power System Based on Linear Stresses Accumulation Damage Theory

Authors: Lin Wenli, Fu Linchun, Zhang Yi, Wu Ming

Abstract:

To meet the demands of long-life and high-intelligence for satellites, the electrical power system should be provided with self-health condition evaluation capability. Any over-stress events in operations should be recorded. Based on Linear stresses accumulation damage theory, accumulative damage analysis was performed on thermal-mechanical-electrical united stresses for three components including the solar array, the batteries and the power conditioning unit. Then an overall health percentage evaluation model for satellite electrical power system was built. To obtain the accurate quantity for system health percentage, an automatic feedback closed-loop correction method for all coefficients in the evaluation model was present. The evaluation outputs could be referred as taking earlier fault-forecast and interventions for Ground Control Center or Satellites self.

Keywords: satellite electrical power system, health percentage, linear stresses accumulation damage, evaluation model

Procedia PDF Downloads 368
14406 Effect of Fault Depth on Near-Fault Peak Ground Velocity

Authors: Yanyan Yu, Haiping Ding, Pengjun Chen, Yiou Sun

Abstract:

Fault depth is an important parameter to be determined in ground motion simulation, and peak ground velocity (PGV) demonstrates good application prospect. Using numerical simulation method, the variations of distribution and peak value of near-fault PGV with different fault depth were studied in detail, and the reason of some phenomena were discussed. The simulation results show that the distribution characteristics of PGV of fault-parallel (FP) component and fault-normal (FN) component are distinctly different; the value of PGV FN component is much larger than that of FP component. With the increase of fault depth, the distribution region of the FN component strong PGV moves forward along the rupture direction, while the strong PGV zone of FP component becomes gradually far away from the fault trace along the direction perpendicular to the strike. However, no matter FN component or FP component, the strong PGV distribution area and its value are both quickly reduced with increased fault depth. The results above suggest that the fault depth have significant effect on both FN component and FP component of near-fault PGV.

Keywords: fault depth, near-fault, PGV, numerical simulation

Procedia PDF Downloads 320
14405 Methodology of Geometry Simplification for Conjugate Heat Transfer of Electrical Rotating Machines Using Computational Fluid Dynamics

Authors: Sachin Aggarwal, Sarah Kassinger, Nicholas Hoffman

Abstract:

Geometry simplification is a key step in performing conjugate heat transfer analysis using CFD. This paper proposes a standard methodology for the geometry simplification of rotating machines, such as electrical generators and electrical motors (both air and liquid-cooled). These machines are extensively deployed throughout the aerospace and automotive industries, where optimization of weight, volume, and performance is paramount -especially given the current global transition to renewable energy sources and vehicle hybridization and electrification. Conjugate heat transfer analysis is an essential step in optimizing their complex design. This methodology will help in reducing convergence issues due to poor mesh quality, thus decreasing computational cost and overall analysis time.

Keywords: CFD, electrical machines, Geometry simplification, heat transfer

Procedia PDF Downloads 90
14404 Distribution Patterns of Trace Metals in Soils of Gbongan-Odeyinka-Orileowu Area, Southwestern Nigeria

Authors: T. A. Adesiyan, J. A. Adekoya A. Akinlua, N. Torto

Abstract:

One hundred and eighty six in situ soil samples of the B–horizon were collected around Gbongan–Odeyinka-Orileowu area, southwestern Nigeria, delineated by longitude 4°15l and 4°30l and latitude 7°14l and 7°31 for a reconnaissance geochemical soil survey. The objective was to determine the distribution pattern of some trace metals in the area with a view to discovering any indication of metallic mineralization. The samples were air–dried and sieved to obtain the minus 230 µ fractions which were used for pH determinations and subjected to hot aqua regia acid digestion. The solutions obtained were analyzed for Ag, As, Au, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sn, and Zn using atomic absorption spectrometric methods. The resulting data were subjected to simple statistical treatment and used in preparing distribution maps of the elements. With these, the spatial distributions of the elements in the area were discussed. The pH of the soils range from 4.70 to 7.59 and this reflects the geochemical distribution patterns of trace metals in the area. The spatial distribution maps of the elements showed similarity in the distributions of Co, Cr, Fe, Ni, Mn and Pb. This suggests close associations between these elements none of which showed any significant anomaly in the study. The associations might be due to the scavenging actions of Fe–Mn oxides on the elements. Only Ag, Au and Sn on one hand and Zn on the other hand showed significant anomalies, which are thought to be due to mineralization and anthropogenic activities respectively.

Keywords: distribution, metals, Gbongan, Nigeria, mineralization anthropogenic

Procedia PDF Downloads 296
14403 The Grain Size Distribution of Sandy Soils in Libya

Authors: Massoud Farag Abouklaish

Abstract:

The main aim of the present study is to investigate and classify the particle size distribution of sandy soils in Libya. More than fifty soil samples collected from many regions in North, West and South of Libya. Laboratory sieve analysis tests performed on disturbed soil samples to determine grain size distribution. As well as to provide an indicator of general engineering behavior and good understanding, test results are presented and analysed. In addition, conclusions, recommendations are made.

Keywords: Libya, grain size, sandy soils, sieve analysis tests

Procedia PDF Downloads 576
14402 The Effects of Microstructure of Directionally Solidified Al-Si-Fe Alloys on Micro Hardness, Tensile Strength, and Electrical Resistivity

Authors: Sevda Engin, Ugur Buyuk, Necmettin Marasli

Abstract:

Directional solidification of eutectic alloys attracts considerable attention because of microhardness, tensile strength, and electrical resistivity influenced by eutectic structures. In this research, we examined processing of Al–Si–Fe (Al–11.7wt.%Si–1wt.%Fe) eutectic by directional solidification. The alloy was prepared by vacuum furnace and directionally solidified in Bridgman-type equipment. During the directional solidification process, the growth rates utilized varied from 8.25 m/s to 164.80 m/s. The Al–Si–Fe system showed an eutectic transformation, which resulted in the matrix Al, Si and Al5SiFe plate phases. The eutectic spacing between (λ_Si-λ_Si, λ_(Al_5 SiFe)-λ_(Al_5 SiFe)) was measured. Additionally, the microhardness, tensile strength, and electrical resistivity of the alloy were determined using directionally solidified samples. The effects of growth rates on microhardness, tensile strength, and electrical resistivity for directionally solidified Al–Si–Fe eutectic alloy were investigated, and the relationships between them were experimentally obtained. It was found that the microhardness, tensile strength, and electrical resistivity were affected by both eutectic spacing and the solidification parameter.

Keywords: directional solidification, aluminum alloy, microstructure, electrical properties, tensile test, hardness test

Procedia PDF Downloads 268
14401 On the PTC Thermistor Model with a Hyperbolic Tangent Electrical Conductivity

Authors: M. O. Durojaye, J. T. Agee

Abstract:

This paper is on the one-dimensional, positive temperature coefficient (PTC) thermistor model with a hyperbolic tangent function approximation for the electrical conductivity. The method of asymptotic expansion was adopted to obtain the steady state solution and the unsteady-state response was obtained using the method of lines (MOL) which is a well-established numerical technique. The approach is to reduce the partial differential equation to a vector system of ordinary differential equations and solve numerically. Our analysis shows that the hyperbolic tangent approximation introduced is well suitable for the electrical conductivity. Numerical solutions obtained also exhibit correct physical characteristics of the thermistor and are in good agreement with the exact steady state solutions.

Keywords: electrical conductivity, hyperbolic tangent function, PTC thermistor, method of lines

Procedia PDF Downloads 301
14400 Effect of Load Ratio on Probability Distribution of Fatigue Crack Propagation Life in Magnesium Alloys

Authors: Seon Soon Choi

Abstract:

It is necessary to predict a fatigue crack propagation life for estimation of structural integrity. Because of an uncertainty and a randomness of a structural behavior, it is also required to analyze stochastic characteristics of the fatigue crack propagation life at a specified fatigue crack size. The essential purpose of this study is to present the good probability distribution fit for the fatigue crack propagation life at a specified fatigue crack size in magnesium alloys under various fatigue load ratio conditions. To investigate a stochastic crack growth behavior, fatigue crack propagation experiments are performed in laboratory air under several conditions of fatigue load ratio using AZ31. By Anderson-Darling test, a goodness-of-fit test for probability distribution of the fatigue crack propagation life is performed and the good probability distribution fit for the fatigue crack propagation life is presented. The effect of load ratio on variability of fatigue crack propagation life is also investigated.

Keywords: fatigue crack propagation life, load ratio, magnesium alloys, probability distribution

Procedia PDF Downloads 619
14399 Optimum Dispatching Rule in Solar Ingot-Wafer Manufacturing System

Authors: Wheyming Song, Hung-Hsiang Lin, Scott Lian

Abstract:

In this research, we investigate the optimal dispatching rule for machines and manpower allocation in the solar ingot-wafer systems. The performance of the method is measured by the sales profit for each dollar paid to the operators in a one week at steady-state. The decision variables are identification-number of machines and operators when each job is required to be served in each process. We propose a rule which is a function of operator’s ability, corresponding salary, and standing location while in the factory. The rule is named ‘Multi-nominal distribution dispatch rule’. The proposed rule performs better than many traditional rules including generic algorithm and particle swarm optimization. Simulation results show that the proposed Multi-nominal distribution dispatch rule improvement on the sales profit dramatically.

Keywords: dispatching, solar ingot, simulation, flexsim

Procedia PDF Downloads 275
14398 Markov Characteristics of the Power Line Communication Channels in China

Authors: Ming-Yue Zhai

Abstract:

Due to the multipath and pulse noise nature, power line communications(PLC) channel can be modelled as a memory one with the finite states Markov model(FSMC). As the most important parameter modelling a Markov channel,the memory order in an FSMC is not solved in PLC systems yet. In the paper, the mutual information is used as a measure of the dependence between the different symbols, treated as the received SNA or amplitude of the current channel symbol or that of previous symbols. The joint distribution probabilities of the envelopes in PLC systems are computed based on the multi-path channel model, which is commonly used in PLC. we confirm that given the information of the symbol immediately preceding the current one, any other previous symbol is independent of the current one in PLC systems, which means the PLC channels is a Markov chain with the first-order. The field test is also performed to model the received OFDM signals with the help of AR model. The results show that the first-order AR model is enough to model the fading channel in PLC systems, which means the amount of uncertainty remaining in the current symbol should be negligible, given the information corresponding to the immediately preceding one.

Keywords: power line communication, channel model, markovian, information theory, first-order

Procedia PDF Downloads 383
14397 VaR or TCE: Explaining the Preferences of Regulators

Authors: Silvia Faroni, Olivier Le Courtois, Krzysztof Ostaszewski

Abstract:

While a lot of research concentrates on the merits of VaR and TCE, which are the two most classic risk indicators used by financial institutions, little has been written on explaining why regulators favor the choice of VaR or TCE in their set of rules. In this paper, we investigate the preferences of regulators with the aim of understanding why, for instance, a VaR with a given confidence level is ultimately retained. Further, this paper provides equivalence rules that explain how a given choice of VaR can be equivalent to a given choice of TCE. Then, we introduce a new risk indicator that extends TCE by providing a more versatile weighting of the constituents of probability distribution tails. All of our results are illustrated using the generalized Pareto distribution.

Keywords: generalized pareto distribution, generalized tail conditional expectation, regulator preferences, risk measure

Procedia PDF Downloads 138
14396 EECS: Reimagining the Future of Technology Education through Electrical Engineering and Computer Science Integration

Authors: Yousef Sharrab, Dimah Al-Fraihat, Monther Tarawneh, Aysh Alhroob, Ala’ Khalifeh, Nabil Sarhan

Abstract:

This paper explores the evolution of Electrical Engineering (EE) and Computer Science (CS) education in higher learning, examining the feasibility of unifying them into Electrical Engineering and Computer Science (EECS) for the technology industry. It delves into the historical reasons for their separation and underscores the need for integration. Emerging technologies such as AI, Virtual Reality, IoT, Cloud Computing, and Cybersecurity demand an integrated EE and CS program to enhance students' understanding. The study evaluates curriculum integration models, drawing from prior research and case studies, demonstrating how integration can provide students with a comprehensive knowledge base for industry demands. Successful integration necessitates addressing administrative and pedagogical challenges. For academic institutions considering merging EE and CS programs, the paper offers guidance, advocating for a flexible curriculum encompassing foundational courses and specialized tracks in computer engineering, software engineering, bioinformatics, information systems, data science, AI, robotics, IoT, virtual reality, cybersecurity, and cloud computing. Elective courses are emphasized to keep pace with technological advancements. Implementing this integrated approach can prepare students for success in the technology industry, addressing the challenges of a technologically advanced society reliant on both EE and CS principles. Integrating EE and CS curricula is crucial for preparing students for the future.

Keywords: electrical engineering, computer science, EECS, curriculum integration of EE and CS

Procedia PDF Downloads 23
14395 Food Foam Characterization: Rheology, Texture and Microstructure Studies

Authors: Rutuja Upadhyay, Anurag Mehra

Abstract:

Solid food foams/cellular foods are colloidal systems which impart structure, texture and mouthfeel to many food products such as bread, cakes, ice-cream, meringues, etc. Their heterogeneous morphology makes the quantification of structure/mechanical relationships complex. The porous structure of solid food foams is highly influenced by the processing conditions, ingredient composition, and their interactions. Sensory perceptions of food foams are dependent on bubble size, shape, orientation, quantity and distribution and determines the texture of foamed foods. The state and structure of the solid matrix control the deformation behavior of the food, such as elasticity/plasticity or fracture, which in turn has an effect on the force-deformation curves. The obvious step in obtaining the relationship between the mechanical properties and the porous structure is to quantify them simultaneously. Here, we attempt to research food foams such as bread dough, baked bread and steamed rice cakes to determine the link between ingredients and the corresponding effect of each of them on the rheology, microstructure, bubble size and texture of the final product. Dynamic rheometry (SAOS), confocal laser scanning microscopy, flatbed scanning, image analysis and texture profile analysis (TPA) has been used to characterize the foods studied. In all the above systems, there was a common observation that when the mean bubble diameter is smaller, the product becomes harder as evidenced by the increase in storage and loss modulus (G′, G″), whereas when the mean bubble diameter is large the product is softer with decrease in moduli values (G′, G″). Also, the bubble size distribution affects texture of foods. It was found that bread doughs with hydrocolloids (xanthan gum, alginate) aid a more uniform bubble size distribution. Bread baking experiments were done to study the rheological changes and mechanisms involved in the structural transition of dough to crumb. Steamed rice cakes with xanthan gum (XG) addition at 0.1% concentration resulted in lower hardness with a narrower pore size distribution and larger mean pore diameter. Thus, control of bubble size could be an important parameter defining final food texture.

Keywords: food foams, rheology, microstructure, texture

Procedia PDF Downloads 312