Search results for: dynamic visual SLAM
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5760

Search results for: dynamic visual SLAM

5760 Open Source, Open Hardware Ground Truth for Visual Odometry and Simultaneous Localization and Mapping Applications

Authors: Janusz Bedkowski, Grzegorz Kisala, Michal Wlasiuk, Piotr Pokorski

Abstract:

Ground-truth data is essential for VO (Visual Odometry) and SLAM (Simultaneous Localization and Mapping) quantitative evaluation using e.g. ATE (Absolute Trajectory Error) and RPE (Relative Pose Error). Many open-access data sets provide raw and ground-truth data for benchmark purposes. The issue appears when one would like to validate Visual Odometry and/or SLAM approaches on data captured using the device for which the algorithm is targeted for example mobile phone and disseminate data for other researchers. For this reason, we propose an open source, open hardware groundtruth system that provides an accurate and precise trajectory with a 3D point cloud. It is based on LiDAR Livox Mid-360 with a non-repetitive scanning pattern, on-board Raspberry Pi 4B computer, battery and software for off-line calculations (camera to LiDAR calibration, LiDAR odometry, SLAM, georeferencing). We show how this system can be used for the evaluation of various the state of the art algorithms (Stella SLAM, ORB SLAM3, DSO) in typical indoor monocular VO/SLAM.

Keywords: SLAM, ground truth, navigation, LiDAR, visual odometry, mapping

Procedia PDF Downloads 66
5759 RGB-D SLAM Algorithm Based on pixel level Dense Depth Map

Authors: Hao Zhang, Hongyang Yu

Abstract:

Scale uncertainty is a well-known challenging problem in visual SLAM. Because RGB-D sensor provides depth information, RGB-D SLAM improves this scale uncertainty problem. However, due to the limitation of physical hardware, the depth map output by RGB-D sensor usually contains a large area of missing depth values. These missing depth information affect the accuracy and robustness of RGB-D SLAM. In order to reduce these effects, this paper completes the missing area of the depth map output by RGB-D sensor and then fuses the completed dense depth map into ORB SLAM2. By adding the process of obtaining pixel-level dense depth maps, a better RGB-D visual SLAM algorithm is finally obtained. In the process of obtaining dense depth maps, a deep learning model of indoor scenes is adopted. Experiments are conducted on public datasets and real-world environments of indoor scenes. Experimental results show that the proposed SLAM algorithm has better robustness than ORB SLAM2.

Keywords: RGB-D, SLAM, dense depth, depth map

Procedia PDF Downloads 139
5758 A Diagnostic Comparative Analysis of on Simultaneous Localization and Mapping (SLAM) Models for Indoor and Outdoor Route Planning and Obstacle Avoidance

Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari

Abstract:

In robotics literature, the simultaneous localization and mapping (SLAM) is commonly associated with a priori-posteriori problem. The autonomous vehicle needs a neutral map to spontaneously track its local position, i.e., “localization” while at the same time a precise path estimation of the environment state is required for effective route planning and obstacle avoidance. On the other hand, the environmental noise factors can significantly intensify the inherent uncertainties in using odometry information and measurements obtained from the robot’s exteroceptive sensor which in return directly affect the overall performance of the corresponding SLAM. Therefore, the current work is primarily dedicated to provide a diagnostic analysis of six SLAM algorithms including FastSLAM, L-SLAM, GraphSLAM, Grid SLAM and DP-SLAM. A SLAM simulated environment consisting of two sets of landmark locations and robot waypoints was set based on modified EKF and UKF in MATLAB using two separate maps for indoor and outdoor route planning subject to natural and artificial obstacles. The simulation results are expected to provide an unbiased platform to compare the estimation performances of the five SLAM models as well as on the reliability of each SLAM model for indoor and outdoor applications.

Keywords: route planning, obstacle, estimation performance, FastSLAM, L-SLAM, GraphSLAM, Grid SLAM, DP-SLAM

Procedia PDF Downloads 444
5757 Robot Operating System-Based SLAM for a Gazebo-Simulated Turtlebot2 in 2d Indoor Environment with Cartographer Algorithm

Authors: Wilayat Ali, Li Sheng, Waleed Ahmed

Abstract:

The ability of the robot to make simultaneously map of the environment and localize itself with respect to that environment is the most important element of mobile robots. To solve SLAM many algorithms could be utilized to build up the SLAM process and SLAM is a developing area in Robotics research. Robot Operating System (ROS) is one of the frameworks which provide multiple algorithm nodes to work with and provide a transmission layer to robots. Manyof these algorithms extensively in use are Hector SLAM, Gmapping and Cartographer SLAM. This paper describes a ROS-based Simultaneous localization and mapping (SLAM) library Google Cartographer mapping, which is open-source algorithm. The algorithm was applied to create a map using laser and pose data from 2d Lidar that was placed on a mobile robot. The model robot uses the gazebo package and simulated in Rviz. Our research work's primary goal is to obtain mapping through Cartographer SLAM algorithm in a static indoor environment. From our research, it is shown that for indoor environments cartographer is an applicable algorithm to generate 2d maps with LIDAR placed on mobile robot because it uses both odometry and poses estimation. The algorithm has been evaluated and maps are constructed against the SLAM algorithms presented by Turtlebot2 in the static indoor environment.

Keywords: SLAM, ROS, navigation, localization and mapping, gazebo, Rviz, Turtlebot2, slam algorithms, 2d indoor environment, cartographer

Procedia PDF Downloads 145
5756 MB-Slam: A Slam Framework for Construction Monitoring

Authors: Mojtaba Noghabaei, Khashayar Asadi, Kevin Han

Abstract:

Simultaneous Localization and Mapping (SLAM) technology has recently attracted the attention of construction companies for real-time performance monitoring. To effectively use SLAM for construction performance monitoring, SLAM results should be registered to a Building Information Models (BIM). Registring SLAM and BIM can provide essential insights for construction managers to identify construction deficiencies in real-time and ultimately reduce rework. Also, registering SLAM to BIM in real-time can boost the accuracy of SLAM since SLAM can use features from both images and 3d models. However, registering SLAM with the BIM in real-time is a challenge. In this study, a novel SLAM platform named Model-Based SLAM (MB-SLAM) is proposed, which not only provides automated registration of SLAM and BIM but also improves the localization accuracy of the SLAM system in real-time. This framework improves the accuracy of SLAM by aligning perspective features such as depth, vanishing points, and vanishing lines from the BIM to the SLAM system. This framework extracts depth features from a monocular camera’s image and improves the localization accuracy of the SLAM system through a real-time iterative process. Initially, SLAM can be used to calculate a rough camera pose for each keyframe. In the next step, each SLAM video sequence keyframe is registered to the BIM in real-time by aligning the keyframe’s perspective with the equivalent BIM view. The alignment method is based on perspective detection that estimates vanishing lines and points by detecting straight edges on images. This process will generate the associated BIM views from the keyframes' views. The calculated poses are later improved during a real-time gradient descent-based iteration method. Two case studies were presented to validate MB-SLAM. The validation process demonstrated promising results and accurately registered SLAM to BIM and significantly improved the SLAM’s localization accuracy. Besides, MB-SLAM achieved real-time performance in both indoor and outdoor environments. The proposed method can fully automate past studies and generate as-built models that are aligned with BIM. The main contribution of this study is a SLAM framework for both research and commercial usage, which aims to monitor construction progress and performance in a unified framework. Through this platform, users can improve the accuracy of the SLAM by providing a rough 3D model of the environment. MB-SLAM further boosts the application to practical usage of the SLAM.

Keywords: perspective alignment, progress monitoring, slam, stereo matching.

Procedia PDF Downloads 223
5755 Acceleration-Based Motion Model for Visual Simultaneous Localization and Mapping

Authors: Daohong Yang, Xiang Zhang, Lei Li, Wanting Zhou

Abstract:

Visual Simultaneous Localization and Mapping (VSLAM) is a technology that obtains information in the environment for self-positioning and mapping. It is widely used in computer vision, robotics and other fields. Many visual SLAM systems, such as OBSLAM3, employ a constant-speed motion model that provides the initial pose of the current frame to improve the speed and accuracy of feature matching. However, in actual situations, the constant velocity motion model is often difficult to be satisfied, which may lead to a large deviation between the obtained initial pose and the real value, and may lead to errors in nonlinear optimization results. Therefore, this paper proposed a motion model based on acceleration, which can be applied on most SLAM systems. In order to better describe the acceleration of the camera pose, we decoupled the pose transformation matrix, and calculated the rotation matrix and the translation vector respectively, where the rotation matrix is represented by rotation vector. We assume that, in a short period of time, the changes of rotating angular velocity and translation vector remain the same. Based on this assumption, the initial pose of the current frame is estimated. In addition, the error of constant velocity model was analyzed theoretically. Finally, we applied our proposed approach to the ORBSLAM3 system and evaluated two sets of sequences on the TUM dataset. The results showed that our proposed method had a more accurate initial pose estimation and the accuracy of ORBSLAM3 system is improved by 6.61% and 6.46% respectively on the two test sequences.

Keywords: error estimation, constant acceleration motion model, pose estimation, visual SLAM

Procedia PDF Downloads 91
5754 A Robust Visual Simultaneous Localization and Mapping for Indoor Dynamic Environment

Authors: Xiang Zhang, Daohong Yang, Ziyuan Wu, Lei Li, Wanting Zhou

Abstract:

Visual Simultaneous Localization and Mapping (VSLAM) uses cameras to collect information in unknown environments to realize simultaneous localization and environment map construction, which has a wide range of applications in autonomous driving, virtual reality and other related fields. At present, the related research achievements about VSLAM can maintain high accuracy in static environment. But in dynamic environment, due to the presence of moving objects in the scene, the movement of these objects will reduce the stability of VSLAM system, resulting in inaccurate localization and mapping, or even failure. In this paper, a robust VSLAM method was proposed to effectively deal with the problem in dynamic environment. We proposed a dynamic region removal scheme based on semantic segmentation neural networks and geometric constraints. Firstly, semantic extraction neural network is used to extract prior active motion region, prior static region and prior passive motion region in the environment. Then, the light weight frame tracking module initializes the transform pose between the previous frame and the current frame on the prior static region. A motion consistency detection module based on multi-view geometry and scene flow is used to divide the environment into static region and dynamic region. Thus, the dynamic object region was successfully eliminated. Finally, only the static region is used for tracking thread. Our research is based on the ORBSLAM3 system, which is one of the most effective VSLAM systems available. We evaluated our method on the TUM RGB-D benchmark and the results demonstrate that the proposed VSLAM method improves the accuracy of the original ORBSLAM3 by 70%˜98.5% under high dynamic environment.

Keywords: dynamic scene, dynamic visual SLAM, semantic segmentation, scene flow, VSLAM

Procedia PDF Downloads 116
5753 Model of Obstacle Avoidance on Hard Disk Drive Manufacturing with Distance Constraint

Authors: Rawinun Praserttaweelap, Somyot Kiatwanidvilai

Abstract:

Obstacle avoidance is the one key for the robot system in unknown environment. The robots should be able to know their position and safety region. This research starts on the path planning which are SLAM and AMCL in ROS system. In addition, the best parameters of the obstacle avoidance function are required. In situation on Hard Disk Drive Manufacturing, the distance between robots and obstacles are very serious due to the manufacturing constraint. The simulations are accomplished by the SLAM and AMCL with adaptive velocity and safety region calculation.

Keywords: obstacle avoidance, OA, Simultaneous Localization and Mapping, SLAM, Adaptive Monte Carlo Localization, AMCL, KLD sampling, KLD

Procedia PDF Downloads 197
5752 Low-Cost Parking Lot Mapping and Localization for Home Zone Parking Pilot

Authors: Hongbo Zhang, Xinlu Tang, Jiangwei Li, Chi Yan

Abstract:

Home zone parking pilot (HPP) is a fast-growing segment in low-speed autonomous driving applications. It requires the car automatically cruise around a parking lot and park itself in a range of up to 100 meters inside a recurrent home/office parking lot, which requires precise parking lot mapping and localization solution. Although Lidar is ideal for SLAM, the car OEMs favor a low-cost fish-eye camera based visual SLAM approach. Recent approaches have employed segmentation models to extract semantic features and improve mapping accuracy, but these AI models are memory unfriendly and computationally expensive, making deploying on embedded ADAS systems difficult. To address this issue, we proposed a new method that utilizes object detection models to extract robust and accurate parking lot features. The proposed method could reduce computational costs while maintaining high accuracy. Once combined with vehicles’ wheel-pulse information, the system could construct maps and locate the vehicle in real-time. This article will discuss in detail (1) the fish-eye based Around View Monitoring (AVM) with transparent chassis images as the inputs, (2) an Object Detection (OD) based feature point extraction algorithm to generate point cloud, (3) a low computational parking lot mapping algorithm and (4) the real-time localization algorithm. At last, we will demonstrate the experiment results with an embedded ADAS system installed on a real car in the underground parking lot.

Keywords: ADAS, home zone parking pilot, object detection, visual SLAM

Procedia PDF Downloads 67
5751 Fusing Mentorship, Leadership and Empowerment Among Young Women In STEM

Authors: Anne Bubriski

Abstract:

Despite improvements in gender inequalities, women and girls continue to face glass ceilings, underrepresentation, and harmful stereotypes that can limit their aspirations and opportunities in STEM. While girls are taking similar high school math and science classes, boys are more likely to take physics and six times more likely to take an engineering course. The gap becomes even larger for minority or low-income girls. This gender gap is not due to biology; rather, it is due to cultural, social, and institutional forces. As girls get older, these forces often ‘teach’ them ‘STEM is more for boys’. The STEM gender gap widens in college, with only 20% of engineering degrees being awarded to women, and by the time women enter the workforce, they only occupy about 13% of engineering jobs. At the University of Central Florida, the Women’s and Gender Studies Program has developed a unique mentoring program to address these issues, Science Leadership and Mentoring (SLAM). What is unique about the approach of SLAM is that we look to address this problem through leadership and STEM. We look to help girls make connections between leadership and STEM—that young women can be leaders as scientists and that scientists are leaders making a change. This is particularly needed and relevant to our community because while there are mentoring programs to our knowledge, SLAM is one of the only, if not only, mentoring programs pairing college women and 7th-grade girls that includes a focus both on STEM and leadership in the United States. SLAM is a curriculum-based mentoring program pairing one 7th-grade girl with one UCF undergraduate STEM major. SLAM empowers young women to be assertive, brave, confident, independent, inquisitive and proud leaders in STEM. SLAM seeks to promote young women’s inspiration and excitement into STEM fields and careers while also building leadership abilities such as problem-solving, teamwork and cooperation, cultural identity and ethnic pride, advocacy for positive change, and goals for the future. SLAM serves about fifteen 7th-grade girls for the academic year and about 20 UCF students. SLAM holds weekly mentoring meetings lasting about 90 minutes, covering topics on leadership, STEM majors and careers, and STEM leadership. This past year, SLAM received a Community Action Grant from the American Association of University Women (AAUW) to run a sub-program, SLAM-Space. SLAM-Space focused on exposing SLAM participants to aerospace engineering and other space-related STEM fields, such as physics and astronomy, through guest speakers, workshops and field trips, including the Kenndy Space Center. The proposed paper presentation will present an overview of SLAM-Space and the data findings from pre and post-surveys, in-depth interviews and focus groups from the SLAM participants' experiences in the program.

Keywords: gender, leadership, STEM, empowerment

Procedia PDF Downloads 39
5750 Constrained RGBD SLAM with a Prior Knowledge of the Environment

Authors: Kathia Melbouci, Sylvie Naudet Collette, Vincent Gay-Bellile, Omar Ait-Aider, Michel Dhome

Abstract:

In this paper, we handle the problem of real time localization and mapping in indoor environment assisted by a partial prior 3D model, using an RGBD sensor. The proposed solution relies on a feature-based RGBD SLAM algorithm to localize the camera and update the 3D map of the scene. To improve the accuracy and the robustness of the localization, we propose to combine in a local bundle adjustment process, geometric information provided by a prior coarse 3D model of the scene (e.g. generated from the 2D floor plan of the building) along with RGBD data from a Kinect camera. The proposed approach is evaluated on a public benchmark dataset as well as on real scene acquired by a Kinect sensor.

Keywords: SLAM, global localization, 3D sensor, bundle adjustment, 3D model

Procedia PDF Downloads 411
5749 Development of an Autonomous Automated Guided Vehicle with Robot Manipulator under Robot Operation System Architecture

Authors: Jinsiang Shaw, Sheng-Xiang Xu

Abstract:

This paper presents the development of an autonomous automated guided vehicle (AGV) with a robot arm attached on top of it within the framework of robot operation system (ROS). ROS can provide libraries and tools, including hardware abstraction, device drivers, libraries, visualizers, message-passing, package management, etc. For this reason, this AGV can provide automatic navigation and parts transportation and pick-and-place task using robot arm for typical industrial production line use. More specifically, this AGV will be controlled by an on-board host computer running ROS software. Command signals for vehicle and robot arm control and measurement signals from various sensors are transferred to respective microcontrollers. Users can operate the AGV remotely through the TCP / IP protocol and perform SLAM (Simultaneous Localization and Mapping). An RGBD camera and LIDAR sensors are installed on the AGV, using these data to perceive the environment. For SLAM, Gmapping is used to construct the environment map by Rao-Blackwellized particle filter; and AMCL method (Adaptive Monte Carlo localization) is employed for mobile robot localization. In addition, current AGV position and orientation can be visualized by ROS toolkit. As for robot navigation and obstacle avoidance, A* for global path planning and dynamic window approach for local planning are implemented. The developed ROS AGV with a robot arm on it has been experimented in the university factory. A 2-D and 3-D map of the factory were successfully constructed by the SLAM method. Base on this map, robot navigation through the factory with and without dynamic obstacles are shown to perform well. Finally, pick-and-place of parts using robot arm and ensuing delivery in the factory by the mobile robot are also accomplished.

Keywords: automated guided vehicle, navigation, robot operation system, Simultaneous Localization and Mapping

Procedia PDF Downloads 148
5748 The Involvement of Visual and Verbal Representations Within a Quantitative and Qualitative Visual Change Detection Paradigm

Authors: Laura Jenkins, Tim Eschle, Joanne Ciafone, Colin Hamilton

Abstract:

An original working memory model suggested the separation of visual and verbal systems in working memory architecture, in which only visual working memory components were used during visual working memory tasks. It was later suggested that the visuo spatial sketch pad was the only memory component at use during visual working memory tasks, and components such as the phonological loop were not considered. In more recent years, a contrasting approach has been developed with the use of an executive resource to incorporate both visual and verbal representations in visual working memory paradigms. This was supported using research demonstrating the use of verbal representations and an executive resource in a visual matrix patterns task. The aim of the current research is to investigate the working memory architecture during both a quantitative and a qualitative visual working memory task. A dual task method will be used. Three secondary tasks will be used which are designed to hit specific components within the working memory architecture – Dynamic Visual Noise (visual components), Visual Attention (spatial components) and Verbal Attention (verbal components). A comparison of the visual working memory tasks will be made to discover if verbal representations are at use, as the previous literature suggested. This direct comparison has not been made so far in the literature. Considerations will be made as to whether a domain specific approach should be employed when discussing visual working memory tasks, or whether a more domain general approach could be used instead.

Keywords: semantic organisation, visual memory, change detection

Procedia PDF Downloads 594
5747 The Contemporary Visual Spectacle: Critical Visual Literacy

Authors: Lai-Fen Yang

Abstract:

In this increasingly visual world, how can we best decipher and understand the many ways that our everyday lives are organized around looking practices and the many images we encounter each day? Indeed, how we interact with and interpret visual images is a basic component of human life. Today, however, we are living in one of the most artificial visual and image-saturated cultures in human history, which makes understanding the complex construction and multiple social functions of visual imagery more important than ever before. Themes regarding our experience of a visually pervasive mediated culture, here, termed visual spectacle.

Keywords: visual culture, contemporary, images, literacy

Procedia PDF Downloads 512
5746 Applications of Visual Ethnography in Public Anthropology

Authors: Subramaniam Panneerselvam, Gunanithi Perumal, KP Subin

Abstract:

The Visual Ethnography is used to document the culture of a community through a visual means. It could be either photography or audio-visual documentation. The visual ethnographic techniques are widely used in visual anthropology. The visual anthropologists use the camera to capture the cultural image of the studied community. There is a scope for subjectivity while the culture is documented by an external person. But the upcoming of the public anthropology provides an opportunity for the participants to document their own culture. There is a need to equip the participants with the skill of doing visual ethnography. The mobile phone technology provides visual documentation facility to everyone to capture the moments instantly. The visual ethnography facilitates the multiple-interpretation for the audiences. This study explores the effectiveness of visual ethnography among the tribal youth through public anthropology perspective. The case study was conducted to equip the tribal youth of Nilgiris in visual ethnography and the outcome of the experiment shared in this paper.

Keywords: visual ethnography, visual anthropology, public anthropology, multiple-interpretation, case study

Procedia PDF Downloads 182
5745 The Analogy of Visual Arts and Visual Literacy

Authors: Lindelwa Pepu

Abstract:

Visual Arts and Visual Literacy are defined with distinction from one another. Visual Arts are known for art forms such as drawing, painting, and photography, just to name a few. At the same time, Visual Literacy is known for learning through images. The Visual Literacy phenomenon may be attributed to the use of images was first established for creating memories and enjoyment. As time evolved, images became the center and essential means of making contact between people. Gradually, images became a means for interpreting and understanding words through visuals, that being Visual Arts. The purpose of this study is to present the analogy of the two terms Visual Arts and Visual Literacy, which are defined and compared through early practicing visual artists as well as relevant researchers to reveal how they interrelate with one another. This is a qualitative study that uses an interpretive approach as it seeks to understand and explain the interest of the study. The results reveal correspondence of the analogy between the two terms through various writers of early and recent years. This study recommends the significance of the two terms and the role they play in relation to other fields of study.

Keywords: visual arts, visual literacy, pictures, images

Procedia PDF Downloads 164
5744 Optical Flow Localisation and Appearance Mapping (OFLAAM) for Long-Term Navigation

Authors: Daniel Pastor, Hyo-Sang Shin

Abstract:

This paper presents a novel method to use optical flow navigation for long-term navigation. Unlike standard SLAM approaches for augmented reality, OFLAAM is designed for Micro Air Vehicles (MAV). It uses an optical flow camera pointing downwards, an IMU and a monocular camera pointing frontwards. That configuration avoids the expensive mapping and tracking of the 3D features. It only maps these features in a vocabulary list by a localization module to tackle the loss of the navigation estimation. That module, based on the well-established algorithm DBoW2, will be also used to close the loop and allow long-term navigation in confined areas. That combination of high-speed optical flow navigation with a low rate localization algorithm allows fully autonomous navigation for MAV, at the same time it reduces the overall computational load. This framework is implemented in ROS (Robot Operating System) and tested attached to a laptop. A representative scenarios is used to analyse the performance of the system.

Keywords: vision, UAV, navigation, SLAM

Procedia PDF Downloads 605
5743 An Image Based Visual Servoing (IBVS) Approach Using a Linear-Quadratic Regulator (LQR) for Quadcopters

Authors: C. Gebauer, C. Henke, R. Vossen

Abstract:

Within the Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2020, a team of unmanned aerial vehicles (UAV) is used to capture intruder drones by physical interaction. The challenge is motivated by UAV safety. The purpose of this work is to investigate the agility of a quadcopter being controlled visually. The aim is to track and follow a highly dynamic target, e.g., an intruder quadcopter. The following is realized in close range and the opponent has a velocity of up to 10 m/s. Additional limitations are given by the hardware itself, where only monocular vision is present, and no additional knowledge about the targets state is available. An image based visual servoing (IBVS) approach is applied in combination with a Linear Quadratic Regulator (LQR). The IBVS is integrated into the LQR and an optimal trajectory is computed within the projected three-dimensional image-space. The approach has been evaluated on real quadcopter systems in different flight scenarios to demonstrate the system's stability.

Keywords: image based visual servoing, quadcopter, dynamic object tracking, linear-quadratic regulator

Procedia PDF Downloads 148
5742 Visual Identity Components of Tourist Destination

Authors: Petra Barisic, Zrinka Blazevic

Abstract:

In the world of modern communications, visual identity has predominant influence on the overall success of tourist destinations, but despite of these, the problem of designing thriving tourist destination visual identity and their components are hardly addressed. This study highlights the importance of building and managing the visual identity of tourist destination, and based on the empirical study of well-known Mediterranean destination of Croatia analyses three main components of tourist destination visual identity; name, slogan, and logo. Moreover, the paper shows how respondents perceive each component of Croatia’s visual identity. According to study, logo is the most important, followed by the name and slogan. Research also reveals that Croatian economy lags behind developed countries in understanding the importance of visual identity, and its influence on marketing goal achievements.

Keywords: components of visual identity, Croatia, tourist destination, visual identity

Procedia PDF Downloads 1049
5741 To Estimate the Association between Visual Stress and Visual Perceptual Skills

Authors: Vijay Reena Durai, Krithica Srinivasan

Abstract:

Introduction: The two fundamental skills involved in the growth and wellbeing of any child can be categorized into visual motor and perceptual skills. Visual stress is a disorder which is characterized by visual discomfort, blurred vision, misspelling words, skipping lines, letters bunching together. There is a need to understand the deficits in perceptual skills among children with visual stress. Aim: To estimate the association between visual stress and visual perceptual skills Objective: To compare visual perceptual skills of children with and without visual stress Methodology: Children between 8 to 15 years of age participated in this cross-sectional study. All children with monocular visual acuity better than or equal to 6/6 were included. Visual perceptual skills were measured using test for visual perceptual skills (TVPS) tool. Reading speed was measured with the chosen colored overlay using Wilkins reading chart and pattern glare score was estimated using a 3cpd gratings. Visual stress was defined as change in reading speed of greater than or equal to 10% and a pattern glare score of greater than or equal to 4. Results: 252 children participated in this study and the male: female ratio of 3:2. Majority of the children preferred Magenta (28%) and Yellow (25%) colored overlay for reading. There was a significant difference between the two groups (MD=1.24±0.6) (p<0.04, 95% CI 0.01-2.43) only in the sequential memory skills. The prevalence of visual stress in this group was found to be 31% (n=78). Binary logistic regression showed that odds ratio of having poor visual perceptual skills was OR: 2.85 (95% CI 1.08-7.49) among children with visual stress. Conclusion: Children with visual stress are found to have three times poorer visual perceptual skills than children without visual stress.

Keywords: visual stress, visual perceptual skills, colored overlay, pattern glare

Procedia PDF Downloads 386
5740 Bag of Words Representation Based on Weighting Useful Visual Words

Authors: Fatma Abdedayem

Abstract:

The most effective and efficient methods in image categorization are almost based on bag-of-words (BOW) which presents image by a histogram of occurrence of visual words. In this paper, we propose a novel extension to this method. Firstly, we extract features in multi-scales by applying a color local descriptor named opponent-SIFT. Secondly, in order to represent image we use Spatial Pyramid Representation (SPR) and an extension to the BOW method which based on weighting visual words. Typically, the visual words are weighted during histogram assignment by computing the ratio of their occurrences in the image to the occurrences in the background. Finally, according to classical BOW retrieval framework, only a few words of the vocabulary is useful for image representation. Therefore, we select the useful weighted visual words that respect the threshold value. Experimentally, the algorithm is tested by using different image classes of PASCAL VOC 2007 and is compared against the classical bag-of-visual-words algorithm.

Keywords: BOW, useful visual words, weighted visual words, bag of visual words

Procedia PDF Downloads 435
5739 Autonomous Exploration, Navigation and Mapping Payload Integrated on a Quadruped Robot

Authors: Julian Y. Raheema, Michael R. Hess, Raymond C. Provost, Mark Bilinski

Abstract:

The world is rapidly moving towards advancing and utilizing artificial intelligence and autonomous robotics. The ground-breaking Boston Dynamics quadruped robot, SPOT, was designed for industrial and commercial tasks requiring limited autonomous navigation. Out of the box, SPOT has route memorization and playback – it can repeat a path that it has been manually piloted through, but it cannot autonomously navigate an area that has not been previously explored. The presented SPOT payload package is built on ROS framework to support autonomous navigation and mapping of an unexplored environment. The package is fully integrated with SPOT to take advantage of motor controls and collision avoidance that comes natively with the robot. The payload runs all computations onboard, takes advantage of visual odometry SLAM and uses an Intel RealSense depth camera and Velodyne LiDAR sensor to generate 2D and 3D maps while in autonomous navigation mode. These maps are fused into the navigation stack to generate a costmap to enable the robot to safely navigate the environment without causing damage to the surroundings or the robot. The operator defines the operational zone and start location and then sends the explore command to have SPOT explore, generate 2D and 3D maps of the environment and return to the start location to await the operator's next command. The benefit of the presented package is that it is much lighter weight and less expensive than previous approaches and, importantly, operates in GPS-denied scenarios, which is ideal for indoor mapping. There are numerous applications that are hazardous to humans for SPOT enhanced with the autonomy payload, including disaster response, nuclear inspection, mine inspection, and so on. Other less extreme uses cases include autonomous 3D and 2D scanning of facilities for inspection, engineering and construction purposes.

Keywords: autonomous, SLAM, quadruped, mapping, exploring, ROS, robotics, navigation

Procedia PDF Downloads 90
5738 The Importance of Visual Communication in Artificial Intelligence

Authors: Manjitsingh Rajput

Abstract:

Visual communication plays an important role in artificial intelligence (AI) because it enables machines to understand and interpret visual information, similar to how humans do. This abstract explores the importance of visual communication in AI and emphasizes the importance of various applications such as computer vision, object emphasis recognition, image classification and autonomous systems. In going deeper, with deep learning techniques and neural networks that modify visual understanding, In addition to AI programming, the abstract discusses challenges facing visual interfaces for AI, such as data scarcity, domain optimization, and interpretability. Visual communication and other approaches, such as natural language processing and speech recognition, have also been explored. Overall, this abstract highlights the critical role that visual communication plays in advancing AI capabilities and enabling machines to perceive and understand the world around them. The abstract also explores the integration of visual communication with other modalities like natural language processing and speech recognition, emphasizing the critical role of visual communication in AI capabilities. This methodology explores the importance of visual communication in AI development and implementation, highlighting its potential to enhance the effectiveness and accessibility of AI systems. It provides a comprehensive approach to integrating visual elements into AI systems, making them more user-friendly and efficient. In conclusion, Visual communication is crucial in AI systems for object recognition, facial analysis, and augmented reality, but challenges like data quality, interpretability, and ethics must be addressed. Visual communication enhances user experience, decision-making, accessibility, and collaboration. Developers can integrate visual elements for efficient and accessible AI systems.

Keywords: visual communication AI, computer vision, visual aid in communication, essence of visual communication.

Procedia PDF Downloads 94
5737 A Comparison of Anger State and Trait Anger Among Adolescents with and without Visual Impairment

Authors: Sehmus Aslan, Sibel Karacaoglu, Cengiz Sevgin, Ummuhan Bas Aslan

Abstract:

Objective: Anger expression style is an important moderator of the effects on the person and person’s environment. Anger and anger expression have become important constructs in identifying individuals at high risk for psychological difficulties. To our knowledge, there is no information about anger and anger expression of adolescents with visual impairment. The aim of this study was to compare anger and anger expression among adolescents with and without visual impairment. Methods: Thirty-eight adolescents with visual impairment (18 female, 20 male) and 44 adolescents without visual impairment (22 female, 24 male), in totally 84 adolescents aged between 12 to 15 years, participated in the study. Anger and anger expression of the participants assessed with The State-Trait Anger Scale (STAS). STAS, a self-report questionnaire, is designed to measure the experience and expression of anger. STAS has four subtitles including continuous anger, anger in, anger out and anger control. Reliability and validity of the STAS have been well established among adolescents. Mann-Whitney U Test was used for statistical analysis. Results: No significant differences were found in the scores of continuous anger and anger out between adolescents with and without visual impairment (p < 0.05). On the other hand, there were differences in scores of anger control and anger in between adolescents with and without visual impairment (p>0.05). The score of anger control in adolescents with visual impairment were higher compared with adolescents without visual impairment. Meanwhile, the adolescents with visual impairment had lower score for anger in compared with adolescents without visual impairment. Conclusions: The results of this study suggest that there is no difference in anger level among adolescents with and without visual impairment meanwhile there is difference in anger expression.

Keywords: adolescent, anger, impaired, visual

Procedia PDF Downloads 411
5736 Visual Improvement with Low Vision Aids in Children with Stargardt’s Disease

Authors: Anum Akhter, Sumaira Altaf

Abstract:

Purpose: To study the effect of low vision devices i.e. telescope and magnifying glasses on distance visual acuity and near visual acuity of children with Stargardt’s disease. Setting: Low vision department, Alshifa Trust Eye Hospital, Rawalpindi, Pakistan. Methods: 52 children having Stargardt’s disease were included in the study. All children were diagnosed by pediatrics ophthalmologists. Comprehensive low vision assessment was done by me in Low vision clinic. Visual acuity was measured using ETDRS chart. Refraction and other supplementary tests were performed. Children with Stargardt’s disease were provided with different telescopes and magnifying glasses for improving far vision and near vision. Results: Out of 52 children, 17 children were males and 35 children were females. Distance visual acuity and near visual acuity improved significantly with low vision aid trial. All children showed visual acuity better than 6/19 with a telescope of higher magnification. Improvement in near visual acuity was also significant with magnifying glasses trial. Conclusions: Low vision aids are useful for improvement in visual acuity in children. Children with Stargardt’s disease who are having a problem in education and daily life activities can get help from low vision aids.

Keywords: Stargardt, s disease, low vision aids, telescope, magnifiers

Procedia PDF Downloads 537
5735 Aspects of Semiotics in Contemporary Design: A Case Study on Dice Brand

Authors: Laila Zahran Mohammed Alsibani

Abstract:

The aim of the research is to understand the aspects of semiotics in contemporary designs by redesigning an Omani donut brand with localized cultural identity. To do so, visual identity samples of Dice brand of donuts in Oman has been selected to be a case study. This study conducted based on semiotic theory by using mixed method research tools which are: documentation analysis, interview and survey. The literature review concentrates on key areas of semiotics in visual elements used in the brand designs. Also, it spotlights on the categories of semiotics in visual design. In addition, this research explores the visual cues in brand identity. The objectives of the research are to investigate the aspects of semiotics in providing meaning to visual cues and to identify visual cues for each visual element. It is hoped that this study will have the contribution to a better understanding of the different ways of using semiotics in contemporary designs. Moreover, this research can be a review of further studies in understanding and explaining current and future design trends. Future research can also focus on how brand-related signs are perceived by consumers.

Keywords: brands, semiotics, visual arts, visual communication

Procedia PDF Downloads 158
5734 Development of Visual Element Design Guidelines for Consumer Products Based on User Characteristics

Authors: Taezoon Park, Wonil Hwang

Abstract:

This study aims to build a design guideline for the effective visual display used for consumer products considering user characteristics; gender and age. Although a number of basic experiments identified the limits of human visual perception, the findings remain fragmented and many times in an unfriendly form. This study compiled a design cases along with tables aggregated from the experimental result of visual perception; brightness/contrast, useful field of view, color sensitivity. Visual design elements commonly used for consumer product, were selected and appropriate guidelines were developed based on the experimental result. Since the provided data with case example suggests a feasible design space, it will save time for a product designer to find appropriate design alternatives.

Keywords: design guideline, consumer product, visual design element, visual perception, emotional design

Procedia PDF Downloads 370
5733 Dynamic Gabor Filter Facial Features-Based Recognition of Emotion in Video Sequences

Authors: T. Hari Prasath, P. Ithaya Rani

Abstract:

In the world of visual technology, recognizing emotions from the face images is a challenging task. Several related methods have not utilized the dynamic facial features effectively for high performance. This paper proposes a method for emotions recognition using dynamic facial features with high performance. Initially, local features are captured by Gabor filter with different scale and orientations in each frame for finding the position and scale of face part from different backgrounds. The Gabor features are sent to the ensemble classifier for detecting Gabor facial features. The region of dynamic features is captured from the Gabor facial features in the consecutive frames which represent the dynamic variations of facial appearances. In each region of dynamic features is normalized using Z-score normalization method which is further encoded into binary pattern features with the help of threshold values. The binary features are passed to Multi-class AdaBoost classifier algorithm with the well-trained database contain happiness, sadness, surprise, fear, anger, disgust, and neutral expressions to classify the discriminative dynamic features for emotions recognition. The developed method is deployed on the Ryerson Multimedia Research Lab and Cohn-Kanade databases and they show significant performance improvement owing to their dynamic features when compared with the existing methods.

Keywords: detecting face, Gabor filter, multi-class AdaBoost classifier, Z-score normalization

Procedia PDF Downloads 277
5732 Getting Back Out There Looking like That: A Visual Critique of Rebecca Welton’s Costuming in Reference to Female Representation in Television

Authors: Abigail R. Gardner

Abstract:

With the rise of big budget television comes a demand for more nuanced characters. However, female characters are often underdeveloped, especially those who do not fit neatly into societal norms. This study examines how Ted Lasso’s Rebecca Welton challenges this idea by using her on-screen fashion to mirror her motivations and character development. Through detailed analysis, this research explores how Rebecca’s wardrobe adds depth to her character, contrasting traditional strategies of costuming female characters in mainstream movies and television. While women, especially older women, are getting more screen time, very few have been given a wardrobe to reflect their dynamic characters. Rebecca’s costumes represent a form of visual storytelling typically reserved for film, but with the rise of single-camera television, there is an opportunity to redefine the relationship between women and fashion on screen.

Keywords: costume design, gender and media, visual storytelling, women in television

Procedia PDF Downloads 16
5731 Factor Study Affecting Visual Awareness on Dynamic Object Monitoring

Authors: Terry Liang Khin Teo, Sun Woh Lye, Kai Lun Brendon Goh

Abstract:

As applied to dynamic monitoring situations, the prevailing approach to situation awareness (SA) assumes that the relevant areas of interest (AOI) be perceived before that information can be processed further to affect decision-making and, thereafter, action. It is not entirely clear whether this is the case. This study seeks to investigate the monitoring of dynamic objects through matching eye fixations with the relevant AOIs in boundary-crossing scenarios. By this definition, a match is where a fixation is registered on the AOI. While many factors may affect monitoring characteristics, traffic simulations were designed in this study to explore two factors, namely: the number of inbounds/outbound traffic transfers and the number of entry and/or exit points in a radar monitoring sector. These two factors were graded into five levels of difficulty ranging from low to high traffic flow numbers. Combined permutation in terms of levels of difficulty of these two factors yielded a total of thirty scenarios. Through this, results showed that changes in the traffic flow numbers on transfer resulted in greater variations having match limits ranging from 29%-100%, as compared to the number of sector entry/exit points of range limit from 80%-100%. The subsequent analysis is able to determine the type and combination of traffic scenarios where imperfect matching is likely to occur.

Keywords: air traffic simulation, eye-tracking, visual monitoring, focus attention

Procedia PDF Downloads 57