Search results for: density estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5099

Search results for: density estimation

779 Microfluidic Based High Throughput Screening System for Photodynamic Therapy against Cancer Cells

Authors: Rina Lee, Chung-Hun Oh, Eunjin Lee, Jeongyun Kim

Abstract:

The Photodynamic therapy (PDT) is a treatment that uses a photosensitizer as a drug to damage and kill cancer cells. After injecting the photosensitizer into the bloodstream, the drug is absorbed by cancer cells selectively. Then the area to be treated is exposed to specific wavelengths of light and the photosensitizer produces a form of oxygen that kills nearby cancer cells. PDT is has an advantage to destroy the tumor with minimized side-effects on normal cells. But, PDT is not a completed method for cancer therapy. Because the mechanism of PDT is quite clear yet and the parameters such as intensity of light and dose of photosensitizer are not optimized for different types of cancers. To optimize these parameters, we suggest a novel microfluidic system to automatically control intensity of light exposure with a personal computer (PC). A polydimethylsiloxane (PDMS) microfluidic chip is composed with (1) a cell culture channels layer where cancer cells were trapped to be tested with various dosed photofrin (1μg/ml used for the test) as the photosensitizer and (2) a color dye layer as a neutral density (ND) filter to reduce intensity of light which exposes the cell culture channels filled with cancer cells. Eight different intensity of light (10%, 20%, …, 100%) are generated through various concentrations of blue dye filling the ND filter. As a light source, a light emitting diode (LED) with 635nm wavelength was placed above the developed PDMS microfluidic chip. The total time for light exposure was 30 minutes and HeLa and PC3 cell lines of cancer cells were tested. The cell viability of cells was evaluated with a Live/Dead assay kit (L-3224, Invitrogen, USA). The stronger intensity of light exposed, the lower viability of the cell was observed, and vice versa. Therefore, this system was demonstrated through investigating the PDT against cancer cell to optimize the parameters as critical light intensity and dose of photosensitizer. Our results suggest that the system can be used for optimizing the combinational parameters of light intensity and photosensitizer dose against diverse cancer cell types.

Keywords: photodynamic therapy, photofrin, high throughput screening, hela

Procedia PDF Downloads 359
778 Comprehensive Analysis and Optimization of Alkaline Water Electrolysis for Green Hydrogen Production: Experimental Validation, Simulation Study, and Cost Analysis

Authors: Umair Ahmed, Muhammad Bin Irfan

Abstract:

This study focuses on designing and optimization of an alkaline water electrolyser for the production of green hydrogen. The aim is to enhance the durability and efficiency of this technology while simultaneously reducing the cost associated with the production of green hydrogen. The experimental results obtained from the alkaline water electrolyser are compared with simulated results using Aspen Plus software, allowing a comprehensive analysis and evaluation. To achieve the aforementioned goals, several design and operational parameters are investigated. The electrode material, electrolyte concentration, and operating conditions are carefully selected to maximize the efficiency and durability of the electrolyser. Additionally, cost-effective materials and manufacturing techniques are explored to decrease the overall production cost of green hydrogen. The experimental setup includes a carefully designed alkaline water electrolyser, where various performance parameters (such as hydrogen production rate, current density, and voltage) are measured. These experimental results are then compared with simulated data obtained using Aspen Plus software. The simulation model is developed based on fundamental principles and validated against the experimental data. The comparison between experimental and simulated results provides valuable insight into the performance of an alkaline water electrolyser. It helps to identify the areas where improvements can be made, both in terms of design and operation, to enhance the durability and efficiency of the system. Furthermore, the simulation results allow cost analysis providing an estimate of the overall production cost of green hydrogen. This study aims to develop a comprehensive understanding of alkaline water electrolysis technology. The findings of this research can contribute to the development of more efficient and durable electrolyser technology while reducing the cost associated with this technology. Ultimately, these advancements can pave the way for a more sustainable and economically viable hydrogen economy.

Keywords: sustainable development, green energy, green hydrogen, electrolysis technology

Procedia PDF Downloads 50
777 Optimization of an Electro-Submersible Pump for Crude Oil Extraction Processes

Authors: Deisy Becerra, Nicolas Rios, Miguel Asuaje

Abstract:

The Electrical Submersible Pump (ESP) is one of the most artificial lifting methods used in the last years, which consists of a serial arrangement of centrifugal pumps. One of the main concerns when handling crude oil is the formation of O/W or W/O (oil/water or water/oil) emulsions inside the pump, due to the shear rate imparted and the presence of high molecular weight substances that act as natural surfactants. Therefore, it is important to perform an analysis of the flow patterns inside the pump to increase the percentage of oil recovered using the centrifugal force and the difference in density between the oil and the water to generate the separation of liquid phases. For this study, a Computational Fluid Dynamic (CFD) model was developed on STAR-CCM+ software based on 3D geometry of a Franklin Electric 4400 4' four-stage ESP. In this case, the modification of the last stage was carried out to improve the centrifugal effect inside the pump, and a perforated double tube was designed with three different holes configurations disposed at the outlet section, through which the cut water flows. The arrangement of holes used has different geometrical configurations such as circles, rectangles, and irregular shapes determined as grating around the tube. The two-phase flow was modeled using an Eulerian approach with the Volume of Fluid (VOF) method, which predicts the distribution and movement of larger interfaces in immiscible phases. Different water-oil compositions were evaluated, such as 70-30% v/v, 80-20% v/v and 90-10% v/v, respectively. Finally, greater recovery of oil was obtained. For the several compositions evaluated, the volumetric oil fraction was greater than 0.55 at the pump outlet. Similarly, it is possible to show an inversely proportional relationship between the Water/Oil rate (WOR) and the volumetric flow. The volumetric fractions evaluated, the oil flow increased approximately between 41%-10% for circular perforations and 49%-19% for rectangular shaped perforations, regarding the inlet flow. Besides, the elimination of the pump diffuser in the last stage of the pump reduced the head by approximately 20%.

Keywords: computational fluid dynamic, CFD, electrical submersible pump, ESP, two phase flow, volume of fluid, VOF, water/oil rate, WOR

Procedia PDF Downloads 126
776 Tibial Plateau Fractures During Covid-19 In A Trauma Unit. Impact of Lockdown and The Pressures on the Healthcare Provider

Authors: R. Gwynn, P. Panwalkar, K. Veravalli , M. Tofighi, R. Clement, A. Mofidi

Abstract:

The aim of this study was to access the impact of Covid-19 and lockdown on the incidence, injury pattern, and treatment of tibial plateau fractures in a combined rural and urban population in wales. Methods: Retrospective study was performed to identify tibial plateau fractures in 15-month period of Covid-19 lockdown 15-month period immediately before lockdown. Patient demographics, injury mechanism, injury severity (based on Schatzker classification), and associated injuries, treatment methods, and outcome of fractures in the Covid-19 period was studied. Results: The incidence oftibial plateau fracture was 9 per 100000 during Covid-19, and 8.5 per 100000, and both were similar to previous studies. The average age was 52, and female to male ratio was 1:1 in both control and study group. High energy injury was seen in only 20% of the patients and 35% in the control groups (2=12, p<0025). 14% of the covid-19 population sustained other injuries as opposed 16% in the control group(2=0.09, p>0.95). Lower severity isolated lateral condyle fracturesinjury (Schatzker 1-3) were seen in 40% of fractures this was 60% in the control populations. Higher bicondylar and shaft fractures (Schatzker 5-6) were seen in 60% of the Covid-19 group and 35% in the control groups(2=7.8, p<0.02). Treatment mode was not impacted by Covid-19. The complication rate was low in spite of higher number of complex fractures and the impact of covid-19 pandemic. Conclusion: The associated injuries were similar in spite of a significantly lower mechanism of injury. There were unexpectedly worst tibial plateau fracture based Schatzker classification in the Covid-19 period as compared to the control groups. This was especially relevant for medial condyle and shaft fractures. This was postulated to be caused by reduction in bone density caused by lack of vitamin D and reduction in activity. The treatment mode and outcome was not impacted by the impact of Covid-19 on care for tibial plateau fractures.

Keywords: Covid-19, knee, tibial plateau fracture, trauma

Procedia PDF Downloads 94
775 The Use of Space Syntax in Urban Transportation Planning and Evaluation: Limits and Potentials

Authors: Chuan Yang, Jing Bie, Yueh-Lung Lin, Zhong Wang

Abstract:

Transportation planning is an academic integration discipline combining research and practice with the aim of mobility and accessibility improvements at both strategic-level policy-making and operational dimensions of practical planning. Transportation planning could build the linkage between traffic and social development goals, for instance, economic benefits and environmental sustainability. The transportation planning analysis and evaluation tend to apply empirical quantitative approaches with the guidance of the fundamental principles, such as efficiency, equity, safety, and sustainability. Space syntax theory has been applied in the spatial distribution of pedestrian movement or vehicle flow analysis, however rare has been written about its application in transportation planning. The correlated relationship between the variables of space syntax analysis and authentic observations have declared that the urban configurations have a significant effect on urban dynamics, for instance, land value, building density, traffic, crime. This research aims to explore the potentials of applying Space Syntax methodology to evaluate urban transportation planning through studying the effects of urban configuration on cities transportation performance. By literature review, this paper aims to discuss the effects that urban configuration with different degrees of integration and accessibility have on three elementary components of transportation planning - transportation efficiency, transportation safety, and economic agglomeration development - via intensifying and stabilising the nature movements generated by the street network. And then the potential and limits of Space Syntax theory to study the performance of urban transportation and transportation planning would be discussed in the paper. In practical terms, this research will help future research explore the effects of urban design on transportation performance, and identify which patterns of urban street networks would allow for most efficient and safe transportation performance with higher economic benefits.

Keywords: transportation planning, space syntax, economic agglomeration, transportation efficiency, transportation safety

Procedia PDF Downloads 162
774 Processing and Evaluation of Jute Fiber Reinforced Hybrid Composites

Authors: Mohammad W. Dewan, Jahangir Alam, Khurshida Sharmin

Abstract:

Synthetic fibers (carbon, glass, aramid, etc.) are generally utilized to make composite materials for better mechanical and thermal properties. However, they are expensive and non-biodegradable. In the perspective of Bangladesh, jute fibers are available, inexpensive, and comprising good mechanical properties. The improved properties (i.e., low cost, low density, eco-friendly) of natural fibers have made them a promising reinforcement in hybrid composites without sacrificing mechanical properties. In this study, jute and e-glass fiber reinforced hybrid composite materials are fabricated utilizing hand lay-up followed by a compression molding technique. Room temperature cured two-part epoxy resin is used as a matrix. Approximate 6-7 mm thick composite panels are fabricated utilizing 17 layers of woven glass and jute fibers with different fiber layering sequences- only jute, only glass, glass, and jute alternatively (g/j/g/j---) and 4 glass - 9 jute – 4 glass (4g-9j-4g). The fabricated composite panels are analyzed through fiber volume calculation, tensile test, bending test, and water absorption test. The hybridization of jute and glass fiber results in better tensile, bending, and water absorption properties than only jute fiber-reinforced composites, but inferior properties as compared to only glass fiber reinforced composites. Among different fiber layering sequences, 4g-9j-4g fibers layering sequence resulted in better tensile, bending, and water absorption properties. The effect of chemical treatment on the woven jute fiber and chopped glass microfiber infusion are also investigated in this study. Chemically treated jute fiber and 2 wt. % chopped glass microfiber infused hybrid composite shows about 12% improvements in flexural strength as compared to untreated and no micro-fiber infused hybrid composite panel. However, fiber chemical treatment and micro-filler do not have a significant effect on tensile strength.

Keywords: compression molding, chemical treatment, hybrid composites, mechanical properties

Procedia PDF Downloads 124
773 E4D-MP: Time-Lapse Multiphysics Simulation and Joint Inversion Toolset for Large-Scale Subsurface Imaging

Authors: Zhuanfang Fred Zhang, Tim C. Johnson, Yilin Fang, Chris E. Strickland

Abstract:

A variety of geophysical techniques are available to image the opaque subsurface with little or no contact with the soil. It is common to conduct time-lapse surveys of different types for a given site for improved results of subsurface imaging. Regardless of the chosen survey methods, it is often a challenge to process the massive amount of survey data. The currently available software applications are generally based on the one-dimensional assumption for a desktop personal computer. Hence, they are usually incapable of imaging the three-dimensional (3D) processes/variables in the subsurface of reasonable spatial scales; the maximum amount of data that can be inverted simultaneously is often very small due to the capability limitation of personal computers. Presently, high-performance or integrating software that enables real-time integration of multi-process geophysical methods is needed. E4D-MP enables the integration and inversion of time-lapsed large-scale data surveys from geophysical methods. Using the supercomputing capability and parallel computation algorithm, E4D-MP is capable of processing data across vast spatiotemporal scales and in near real time. The main code and the modules of E4D-MP for inverting individual or combined data sets of time-lapse 3D electrical resistivity, spectral induced polarization, and gravity surveys have been developed and demonstrated for sub-surface imaging. E4D-MP provides capability of imaging the processes (e.g., liquid or gas flow, solute transport, cavity development) and subsurface properties (e.g., rock/soil density, conductivity) critical for successful control of environmental engineering related efforts such as environmental remediation, carbon sequestration, geothermal exploration, and mine land reclamation, among others.

Keywords: gravity survey, high-performance computing, sub-surface monitoring, electrical resistivity tomography

Procedia PDF Downloads 125
772 Mathematical Modelling of Biogas Dehumidification by Using of Counterflow Heat Exchanger

Authors: Staņislavs Gendelis, Andris Jakovičs, Jānis Ratnieks, Aigars Laizāns, Dāvids Vardanjans

Abstract:

Dehumidification of biogas at the biomass plants is very important to provide the energy efficient burning of biomethane at the outlet. A few methods are widely used to reduce the water content in biogas, e.g. chiller/heat exchanger based cooling, usage of different adsorbents like PSA, or the combination of such approaches. A quite different method of biogas dehumidification is offered and analyzed in this paper. The main idea is to direct the flow of biogas from the plant around it downwards; thus, creating additional insulation layer. As the temperature in gas shell layer around the plant will decrease from ~ 38°C to 20°C in the summer or even to 0°C in the winter, condensation of water vapor occurs. The water from the bottom of the gas shell can be collected and drain away. In addition, another upward shell layer is created after the condensate drainage place on the outer side to further reducing heat losses. Thus, counterflow biogas heat exchanger is created around the biogas plant. This research work deals with the numerical modelling of biogas flow, taking into account heat exchange and condensation on cold surfaces. Different kinds of boundary conditions (air and ground temperatures in summer/winter) and various physical properties of constructions (insulation between layers, wall thickness) are included in the model to make it more general and useful for different biogas flow conditions. The complexity of this problem is fact, that the temperatures in both channels are conjugated in case of low thermal resistance between layers. MATLAB programming language is used for multiphysical model development, numerical calculations and result visualization. Experimental installation of a biogas plant’s vertical wall with an additional 2 layers of polycarbonate sheets with the controlled gas flow was set up to verify the modelling results. Gas flow at inlet/outlet, temperatures between the layers and humidity were controlled and measured during a number of experiments. Good correlation with modelling results for vertical wall section allows using of developed numerical model for an estimation of parameters for the whole biogas dehumidification system. Numerical modelling of biogas counterflow heat exchanger system placed on the plant’s wall for various cases allows optimizing of thickness for gas layers and insulation layer to ensure necessary dehumidification of the gas under different climatic conditions. Modelling of system’s defined configuration with known conditions helps to predict the temperature and humidity content of the biogas at the outlet.

Keywords: biogas dehumidification, numerical modelling, condensation, biogas plant experimental model

Procedia PDF Downloads 504
771 An Evaluation of the Influence of Corn Cob Ash on the Strength Parameters of Lateritic SoiLs

Authors: O. A. Apampa, Y. A. Jimoh

Abstract:

The paper reports the investigation of Corn Cob Ash as a chemical stabilizing agent for laterite soils. Corn cob feedstock was obtained from Maya, a rural community in the derived savannah agro-ecological zone of South-Western Nigeria and burnt to ashes of pozzolanic quality. Reddish brown silty clayey sand material characterized as AASHTO A-2-6(3) lateritic material was obtained from a borrow pit in Abeokuta and subjected to strength characterization tests according to BS 1377: 2000. The soil was subsequently mixed with CCA in varying percentages of 0-7.5% at 1.5% intervals. The influence of CCA stabilized soil was determined for the Atterberg limits, compaction characteristics, CBR and the unconfined compression strength. The tests were repeated on laterite cement-soil mixture in order to establish a basis for comparison. The result shows a similarity in the compaction characteristics of soil-cement and soil-CCA. With increasing addition of binder from 1.5% to 7.5%, Maximum Dry Density progressively declined while the OMC steadily increased. For the CBR, the maximum positive impact was observed at 1.5% CCA addition at a value of 85% compared to the control value of 65% for the cement stabilization, but declined steadily thereafter with increasing addition of CCA, while that of soil-cement continued to increase with increasing addition of cement beyond 1.5% though at a relatively slow rate. Similar behavior was observed in the UCS values for the soil-CCA mix, increasing from a control value of 0.4 MN/m2 to 1.0 MN/m2 at 1.5% CCA and declining thereafter, while that for soil-cement continued to increase with increasing cement addition, but at a slower rate. This paper demonstrates that CCA is effective for chemical stabilization of a typical Nigerian AASHTO A-2-6 lateritic soil at maximum stabilizer content limit of 1.5% and therefore recommends its use as a way of finding further application for agricultural waste products and achievement of environmental sustainability in line with the ideals of the millennium development goals because of the economic and technical feasibility of the processing of the cobs from corn.

Keywords: corn cob ash, pozzolan, cement, laterite, stabilizing agent, cation exchange capacity

Procedia PDF Downloads 267
770 Corn Flakes Produced from Different Cultivars of Zea Mays as a Functional Product

Authors: Milenko Košutić, Jelena Filipović, Zvonko Nježić

Abstract:

Extrusion technology is thermal processing that is applied to improve the nutritional, hygienic, and physical-chemical characteristics of the raw material. Overall, the extrusion process is an efficient method for the production of a wide range of food products. It combines heat, pressure, and shear to transform raw materials into finished goods with desired textures, shapes, and nutritional profiles. The extruded products’ quality is remarkably dependent upon feed material composition, barrel temperature profile, feed moisture content, screw speed, and other extrusion system parameters. Given consumer expectations for snack foods, a high expansion index and low bulk density, in addition to crunchy texture and uniform microstructure, are desired. This paper investigates the effects of simultaneous different types of corn (white corn, yellow corn, red corn, and black corn) addition and different screw speed (350, 500, 650 rpm) on the physical, technological, and functional properties of flakes products. Black corn flour and screw speed at 350 rpm positively influenced physical, technological characteristics, mineral composition, and antioxidant properties of flake products with the best total score analysis of 0,59. Overall, the combination of Tukey's HSD test and PCA enables a comprehensive analysis of the observed corn products, allowing researchers to identify them. This research aims to analyze the influence of different types of corn flour (white corn, yellow corn, red corn, and black corn) on the nutritive and sensory properties of the product (quality, texture, and color), as well as the acceptance of the new product by consumers on the territory of Novi Sad. The presented data point that investigated corn flakes from black corn flour at 350 rpm is a product with good physical-technological and functional properties due to a higher level of antioxidant activity.

Keywords: corn types, flakes product, nutritive quality, acceptability

Procedia PDF Downloads 19
769 Insight into the Electrocatalytic Activities of Nitrogen-Doped Graphyne and Graphdiyne Families: A First-Principles Study

Authors: Bikram K. Das, Kalyan K. Chattopadhyay

Abstract:

The advent of 2-D materials in the last decade has induced a fresh spur of growth in fuel cell technology as these materials have some highly promising traits that can be exploited to felicitate Oxygen Reduction Reaction (ORR) in an efficient way. Among the various 2-D carbon materials, graphyne (Gy) and graphdiyne (Gdy)1 with their intrinsic non-uniform charge distribution holds promises in this purpose and it is expected2 that substitutional Nitrogen (N) doping could further enhance their efficiency. In this regard, dispersive force corrected density functional theory is used to map the oxygen reduction reaction (ORR) kinetics of five different kinds of N doped graphyne and graphdiyne systems (namely αGy, βGy, γGy, RGy and 6,6,12Gy and Gdy) in alkaline medium. The best doping site for each of the Gy/ Gdy system is determined comparing the formation energies of the possible doping configurations. Similarly, the best di-oxygen (O₂) adsorption sites for the doped systems are identified by comparing the adsorption energies. O₂ adsorption on all N doped Gy/ Gdy systems is found to be energetically favorable. ORR on a catalyst surface may occur either via the Eley-Rideal (ER) or the Langmuir–Hinschelwood (LH) pathway. Systematic studies performed on the considered systems reveal that all of them favor the ER pathway. Further, depending on the nature of di-oxygen adsorption ORR can follow either associative or dissociative mechanism; the possibility of occurrence of both the mechanisms is tested thoroughly for each N doped Gy/ Gdy. For the ORR process, all the Gy/Gdy systems are observed to prefer the efficient four-electron pathway but the expected monotonically exothermic reaction pathway is found only for N doped 6,6,12Gy and RGy following the associative pathway and for N doped βGy, γGy and Gdy following the dissociative pathway. Further computation performed for these systems reveals that for N doped 6,6,12Gy, RGy, βGy, γGy and Gdy the overpotentials are 1.08 V, 0.94 V, 1.17 V, 1.21 V and 1.04 V respectively depicting N doped RGy is the most promising material, to carry out ORR in alkaline medium, among the considered ones. The stability of the ORR intermediate states with the variation of pH and electrode potentials is further explored with Pourbiax diagrams and the activities of these systems in the alkaline medium are compared with the prior reported B/N doped identical systems for ORR in an acidic medium in terms of a common descriptor.

Keywords: graphdiyne, graphyne, nitrogen-doped, ORR

Procedia PDF Downloads 96
768 Blending Effects on Crude Oil Stability: An Experimental Study

Authors: Muheddin Hamza, Entisar Etter

Abstract:

This study is a part of investigating the possibility of blending two crude oils obtained from Libyan oil fields, namely crude oil (A) and crude oil (B) with different ratios, prior to blending the crude oils have to be compatible in order to avoid phase out and precipitation of asphaltene from the bulk of crude. The physical properties of both crudes such as density, viscosity, pour point and sulphur content were measured according to (ASTM) method. To examine the stability of both crudes and their blends, the oil compatibility model using microscopic, colloidal instability index (CII) using SARA analysis and asphaltene stabilization test using Turbiscan tests were conducted in the Libyan Petroleum Institute laboratories. Compatibility tests were carried out with both crude oils, the insolubility number (IN), and the solubility blending number (SBN), for both crude oils and their blends were calculated. The criteria for compatibility of any blend is that the volume average solubility blending number (SBN) is greater than the insolubility number (IN) of any component in the blend, the results indicated that both crudes were compatible. To support the results of compatibility tests the SARA analysis was done for the fractional determination of (saturates, aromatics, resins and asphaltenes) content. From this result, the colloidal Instability index (CII) and resin to asphaltenes ratio (R/A) were calculated for crudes and their blends. The results show that crude oil (B) which has higher (R/A) and lower (CII) is more stable than crude oil (A) and as the ratio of crude (B) increases in the blend the (CII) and (R/A) were improved, and the blends becomes more stable. Asphaltene stabilization test was also conducted for the crudes and their blends using Turbiscan MA200 according to the standard test method ASTM D7061-04, the Turbiscan shows that the crude (B) is more stable than crude (A) which shows a fair tendency. The (CII) and (R/A) were compared with the solubility number (SBN) for each crude and the blends along with Turbiscan results. The solubility blending number (SBN) of the crudes and their blends show that the crudes are compatible, also by comparing (R/A) and (SBN) values of the blends, it can be seen that they are complements of each other. All the experimental results show that the blends of both crudes are more stability.

Keywords: asphaltene, crude oil, compatibility, oil blends, resin, SARA

Procedia PDF Downloads 452
767 Comparison Of Virtual Non-Contrast To True Non-Contrast Images Using Dual Layer Spectral Computed Tomography

Authors: O’Day Luke

Abstract:

Purpose: To validate virtual non-contrast reconstructions generated from dual-layer spectral computed tomography (DL-CT) data as an alternative for the acquisition of a dedicated true non-contrast dataset during multiphase contrast studies. Material and methods: Thirty-three patients underwent a routine multiphase clinical CT examination, using Dual-Layer Spectral CT, from March to August 2021. True non-contrast (TNC) and virtual non-contrast (VNC) datasets, generated from both portal venous and arterial phase imaging were evaluated. For every patient in both true and virtual non-contrast datasets, a region-of-interest (ROI) was defined in aorta, liver, fluid (i.e. gallbladder, urinary bladder), kidney, muscle, fat and spongious bone, resulting in 693 ROIs. Differences in attenuation for VNC and TNV images were compared, both separately and combined. Consistency between VNC reconstructions obtained from the arterial and portal venous phase was evaluated. Results: Comparison of CT density (HU) on the VNC and TNC images showed a high correlation. The mean difference between TNC and VNC images (excluding bone results) was 5.5 ± 9.1 HU and > 90% of all comparisons showed a difference of less than 15 HU. For all tissues but spongious bone, the mean absolute difference between TNC and VNC images was below 10 HU. VNC images derived from the arterial and the portal venous phase showed a good correlation in most tissue types. The aortic attenuation was somewhat dependent however on which dataset was used for reconstruction. Bone evaluation with VNC datasets continues to be a problem, as spectral CT algorithms are currently poor in differentiating bone and iodine. Conclusion: Given the increasing availability of DL-CT and proven accuracy of virtual non-contrast processing, VNC is a promising tool for generating additional data during routine contrast-enhanced studies. This study shows the utility of virtual non-contrast scans as an alternative for true non-contrast studies during multiphase CT, with potential for dose reduction, without loss of diagnostic information.

Keywords: dual-layer spectral computed tomography, virtual non-contrast, true non-contrast, clinical comparison

Procedia PDF Downloads 112
766 Design of Traffic Counting Android Application with Database Management System and Its Comparative Analysis with Traditional Counting Methods

Authors: Muhammad Nouman, Fahad Tiwana, Muhammad Irfan, Mohsin Tiwana

Abstract:

Traffic congestion has been increasing significantly in major metropolitan areas as a result of increased motorization, urbanization, population growth and changes in the urban density. Traffic congestion compromises efficiency of transport infrastructure and causes multiple traffic concerns; including but not limited to increase of travel time, safety hazards, air pollution, and fuel consumption. Traffic management has become a serious challenge for federal and provincial governments, as well as exasperated commuters. Effective, flexible, efficient and user-friendly traffic information/database management systems characterize traffic conditions by making use of traffic counts for storage, processing, and visualization. While, the emerging data collection technologies continue to proliferate, its accuracy can be guaranteed through the comparison of observed data with the manual handheld counters. This paper presents the design of tablet based manual traffic counting application and framework for development of traffic database management system for Pakistan. The database management system comprises of three components including traffic counting android application; establishing online database and its visualization using Google maps. Oracle relational database was chosen to develop the data structure whereas structured query language (SQL) was adopted to program the system architecture. The GIS application links the data from the database and projects it onto a dynamic map for traffic conditions visualization. The traffic counting device and example of a database application in the real-world problem provided a creative outlet to visualize the uses and advantages of a database management system in real time. Also, traffic data counts by means of handheld tablet/ mobile application can be used for transportation planning and forecasting.

Keywords: manual count, emerging data sources, traffic information quality, traffic surveillance, traffic counting device, android; data visualization, traffic management

Procedia PDF Downloads 168
765 Liquid Nitrogen as Fracturing Method for Hot Dry Rocks in Kazakhstan

Authors: Sotirios Longinos, Anna Loskutova, Assel Tolegenova, Assem Imanzhussip, Lei Wang

Abstract:

Hot, dry rock (HDR) has substantial potential as a thermal energy source. It has been exploited by hydraulic fracturing to extract heat and generate electricity, which is a well-developed technique known for creating the enhanced geothermal systems (EGS). These days, LN2 is being tested as an environmental friendly fracturing fluid to generate densely interconnected crevices to augment heat exchange efficiency and production. This study examines experimentally the efficacy of LN2 cryogenic fracturing for granite samples in Kazakhstan with immersion method. A comparison of two different experimental models is carried out. The first mode is rock heating along with liquid nitrogen treatment (heating with freezing time), and the second mode is multiple times of heating along with liquid nitrogen treatment (heating with LN2 freezing-thawing cycles). The experimental results indicated that with multiple heating and LN2-treatment cycles, the permeability of granite first ameliorates with increasing number of cycles and later reaches a plateau after a certain number of cycles. On the other hand, density, P-wave velocity, uniaxial compressive strength, elastic modulus, and tensile strength indicate a downward trend with increasing heating and treatment cycles. The thermal treatment cycles do not seem to have an obvious effect on the Poisson’s ratio. The changing rate of granite rock properties decreases as the number of cycles increases. The deterioration of granite primarily happens within the early few cycles. The heating temperature during the cycles shows an important influence on the deterioration of granite. More specifically, mechanical deterioration and permeability amelioration become more remarkable as the heating temperature increases.LN2 fracturing generates many positives compared to conventional fracturing methods such as little water consumption, requirement of zero chemical additives, lessening of reservoir damage, and so forth. Based on the experimental observations, LN2 can work as a promising waterless fracturing fluid to stimulate hot, dry rock reservoirs.

Keywords: granite, hydraulic fracturing, liquid nitrogen, Kazakhstan

Procedia PDF Downloads 131
764 Signaling Theory: An Investigation on the Informativeness of Dividends and Earnings Announcements

Authors: Faustina Masocha, Vusani Moyo

Abstract:

For decades, dividend announcements have been presumed to contain important signals about the future prospects of companies. Similarly, the same has been presumed about management earnings announcements. Despite both dividend and earnings announcements being considered informative, a number of researchers questioned their credibility and found both to contain short-term signals. Pertaining to dividend announcements, some authors argued that although they might contain important information that can result in changes in share prices, which consequently results in the accumulation of abnormal returns, their degree of informativeness is less compared to other signaling tools such as earnings announcements. Yet, this claim in favor has been refuted by other researchers who found the effect of earnings to be transitory and of little value to shareholders as indicated by the little abnormal returns earned during the period surrounding earnings announcements. Considering the above, it is apparent that both dividends and earnings have been hypothesized to have a signaling impact. This prompts one to question which between these two signaling tools is more informative. To answer this question, two follow-up questions were asked. The first question sought to determine the event which results in the most effect on share prices, while the second question focused on the event that influenced trading volume the most. To answer the first question and evaluate the effect that each of these events had on share prices, an event study methodology was employed on a sample made up of the top 10 JSE-listed companies for data collected from 2012 to 2019 to determine if shareholders gained abnormal returns (ARs) during announcement dates. The event that resulted in the most persistent and highest amount of ARs was considered to be more informative. Looking at the second follow-up question, an investigation was conducted to determine if either dividends or earnings announcements influenced trading patterns, resulting in abnormal trading volumes (ATV) around announcement time. The event that resulted in the most ATV was considered more informative. Using an estimation period of 20 days and an event window of 21 days, and hypothesis testing, it was found that announcements pertaining to the increase of earnings resulted in the most ARs, Cumulative Abnormal Returns (CARs) and had a lasting effect in comparison to dividend announcements whose effect lasted until day +3. This solidifies some empirical arguments that the signaling effect of dividends has become diminishing. It was also found that when reported earnings declined in comparison to the previous period, there was an increase in trading volume, resulting in ATV. Although dividend announcements did result in abnormal returns, they were lesser than those acquired during earnings announcements which refutes a number of theoretical and empirical arguments that found dividends to be more informative than earnings announcements.

Keywords: dividend signaling, event study methodology, information content of earnings, signaling theory

Procedia PDF Downloads 136
763 Tracing the Courtyard Typology from the Past: Highlighting a Need for Conservation in Case of Historic Settlement in Historic Town of Gwalior

Authors: Shivani Dolas, A. Richa Mishra

Abstract:

The existence of Courtyards in India can be traced back to ‘Indus valley civilization’ and various layers of history bearing implications like socio-cultural, traditional, religious, climatic, etc., moreover serving as a breathing space in case of historical core areas. Over time, with the overlay of various historic layers within the historic urban cores and the present high density populace, the cores are getting congested day by day. In this case, courtyards may emerge out as an efficient medium to provide quality of life through livable spaces. Presently, with the growing population of the historic town of Gwalior, town in Madhya Pradesh holds remarkable essence of courtyards with its multiple concepts over time. Its scale and function varies from an imposing grand appearance in palatial form, up to functional practices as residential. Its privilege can also be drawn in urban forms, in sharing single space by multiple dwellings and in temples which can be sketched specifically in the region. Moreover, the effectiveness of courtyards has proven balance and control of micro-climate in such composite climate region. The research paper aims to underline the concept of courtyards in case of a mixed use neighborhood, Naya bazar, in Lashkar area of Gwalior, which developed during 19th century, highlighting the need of its preservation. The paper also elaborates its various implications on user-space relationship as in the present context, and growing congestion in the area, user and space relationship is seen lost. The noticeable change in the behavioral context in buildings and users can be noticed with the downfall of courtyards, isolating users with land. Also, a concern has been expressed on negligence of courtyard planning in future development, suggesting recommendations on preserving the courtyard typology as heritage.

Keywords: courtyards, Gwalior, historic settlement, heritage

Procedia PDF Downloads 117
762 Objective Assessment of the Evolution of Microplastic Contamination in Sediments from a Vast Coastal Area

Authors: Vanessa Morgado, Ricardo Bettencourt da Silva, Carla Palma

Abstract:

The environmental pollution by microplastics is well recognized. Microplastics were already detected in various matrices from distinct environmental compartments worldwide, some from remote areas. Various methodologies and techniques have been used to determine microplastic in such matrices, for instance, sediment samples from the ocean bottom. In order to determine microplastics in a sediment matrix, the sample is typically sieved through a 5 mm mesh, digested to remove the organic matter, and density separated to isolate microplastics from the denser part of the sediment. The physical analysis of microplastic consists of visual analysis under a stereomicroscope to determine particle size, colour, and shape. The chemical analysis is performed by an infrared spectrometer coupled to a microscope (micro-FTIR), allowing to the identification of the chemical composition of microplastic, i.e., the type of polymer. Creating legislation and policies to control and manage (micro)plastic pollution is essential to protect the environment, namely the coastal areas. The regulation is defined from the known relevance and trends of the pollution type. This work discusses the assessment of contamination trends of a 700 km² oceanic area affected by contamination heterogeneity, sampling representativeness, and the uncertainty of the analysis of collected samples. The methodology developed consists of objectively identifying meaningful variations of microplastic contamination by the Monte Carlo simulation of all uncertainty sources. This work allowed us to unequivocally conclude that the contamination level of the studied area did not vary significantly between two consecutive years (2018 and 2019) and that PET microplastics are the major type of polymer. The comparison of contamination levels was performed for a 99% confidence level. The developed know-how is crucial for the objective and binding determination of microplastic contamination in relevant environmental compartments.

Keywords: measurement uncertainty, micro-ATR-FTIR, microplastics, ocean contamination, sampling uncertainty

Procedia PDF Downloads 58
761 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging

Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen

Abstract:

Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.

Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques

Procedia PDF Downloads 70
760 Biomechanics of Atalantoaxial Complex for Various Posterior Fixation Techniques

Authors: Arun C. O., Shrijith M. B., Thakur Rajesh Singh

Abstract:

The study aims to analyze and understand the biomechanical stability of the atlantoaxial complex under different posterior fixation techniques using the finite element method in the Indian context. The conventional cadaveric studies performed show heterogeneity in biomechanical properties. The finite element method being a versatile numerical tool, is being wisely used for biomechanics analysis of atlantoaxial complex. However, the biomechanics of posterior fixation techniques for an Indian subject is missing in the literature. It is essential to study in this context as the bone density and geometry of vertebrae vary from region to region, thereby requiring different screw lengths and it can affect the range of motion(ROM), stresses generated. The current study uses CT images for developing a 3D finite element model with C1-C2 geometry without ligaments. Instrumentation is added to this geometry to develop four models for four fixation techniques, namely C1-C2 TA, C1LM-C2PS, C1LM-C2Pars, C1LM-C2TL. To simulate Flexion, extension, lateral bending, axial rotation, 1.5 Nm is applied to C1 while the bottom nodes of C2 are fixed. Then Range of Motion (ROM) is compared with the unstable model(without ligaments). All the fixation techniques showed more than 97 percent reduction in the Range of Motion. The von-mises stresses developed in the screw constructs are obtained. From the studies, it is observed that Transarticular technique is most stable in Lateral Bending, C1LM-C2 Translaminar is found most stable in Flexion/extension. The Von-Mises stresses developed minimum in Trasarticular technique in lateral bending and axial rotation, whereas stress developed in C2 pars construct minimum in Flexion/ Extension. On average, the TA technique is stable in all motions and also stresses in constructs are less in TA. Tarnsarticular technique is found to be the best fixation technique for Indian subjects among the 4 methods.

Keywords: biomechanics, cervical spine, finite element model, posterior fixation

Procedia PDF Downloads 117
759 An Improved Adaptive Dot-Shape Beamforming Algorithm Research on Frequency Diverse Array

Authors: Yanping Liao, Zenan Wu, Ruigang Zhao

Abstract:

Frequency diverse array (FDA) beamforming is a technology developed in recent years, and its antenna pattern has a unique angle-distance-dependent characteristic. However, the beam is always required to have strong concentration, high resolution and low sidelobe level to form the point-to-point interference in the concentrated set. In order to eliminate the angle-distance coupling of the traditional FDA and to make the beam energy more concentrated, this paper adopts a multi-carrier FDA structure based on proposed power exponential frequency offset to improve the array structure and frequency offset of the traditional FDA. The simulation results show that the beam pattern of the array can form a dot-shape beam with more concentrated energy, and its resolution and sidelobe level performance are improved. However, the covariance matrix of the signal in the traditional adaptive beamforming algorithm is estimated by the finite-time snapshot data. When the number of snapshots is limited, the algorithm has an underestimation problem, which leads to the estimation error of the covariance matrix to cause beam distortion, so that the output pattern cannot form a dot-shape beam. And it also has main lobe deviation and high sidelobe level problems in the case of limited snapshot. Aiming at these problems, an adaptive beamforming technique based on exponential correction for multi-carrier FDA is proposed to improve beamforming robustness. The steps are as follows: first, the beamforming of the multi-carrier FDA is formed under linear constrained minimum variance (LCMV) criteria. Then the eigenvalue decomposition of the covariance matrix is ​​performed to obtain the diagonal matrix composed of the interference subspace, the noise subspace and the corresponding eigenvalues. Finally, the correction index is introduced to exponentially correct the small eigenvalues ​​of the noise subspace, improve the divergence of small eigenvalues ​​in the noise subspace, and improve the performance of beamforming. The theoretical analysis and simulation results show that the proposed algorithm can make the multi-carrier FDA form a dot-shape beam at limited snapshots, reduce the sidelobe level, improve the robustness of beamforming, and have better performance.

Keywords: adaptive beamforming, correction index, limited snapshot, multi-carrier frequency diverse array, robust

Procedia PDF Downloads 103
758 The Role of Risk Attitudes and Networks on the Migration Decision: Empirical Evidence from the United States

Authors: Tamanna Rimi

Abstract:

A large body of literature has discussed the determinants of migration decision. However, the potential role of individual risk attitudes on migration decision has so far been overlooked. The research on migration literature has studied how the expected income differential influences migration flows for a risk neutral individual. However, migration takes place when there is no expected income differential or even the variability of income appears as lower than in the current location. This migration puzzle motivates a recent trend in the literature that analyzes how attitudes towards risk influence the decision to migrate. However, the significance of risk attitudes on migration decision has been addressed mostly in a theoretical perspective in the mainstream migration literature. The efficient outcome of labor market and overall economy are largely influenced by migration in many countries. Therefore, attitudes towards risk as a determinant of migration should get more attention in empirical studies. To author’s best knowledge, this is the first study that has examined the relationship between relative risk aversion and migration decision in US market. This paper considers movement across United States as a means of migration. In addition, this paper also explores the network effect due to the increasing size of one’s own ethnic group to a source location on the migration decision and how attitudes towards risk vary with network effect. Two ethnic groups (i.e. Asian and Hispanic) have been considered in this regard. For the empirical estimation, this paper uses two sources of data: 1) U.S. census data for social, economic, and health research, 2010 (IPUMPS) and 2) University of Michigan Health and Retirement Study, 2010 (HRS). In order to measure relative risk aversion, this study uses the ‘Two Sample Two-Stage Instrumental Variable (TS2SIV)’ technique. This is a similar method of Angrist (1990) and Angrist and Kruegers’ (1992) ‘Two Sample Instrumental Variable (TSIV)’ technique. Using a probit model, the empirical investigation yields the following results: (i) risk attitude has a significantly large impact on migration decision where more risk averse people are less likely to migrate; (ii) the impact of risk attitude on migration varies by other demographic characteristics such as age and sex; (iii) people with higher concentration of same ethnic households living in a particular place are expected to migrate less from their current place; (iv) the risk attitudes on migration vary with network effect. The overall findings of this paper relating risk attitude, migration decision and network effect can be a significant contribution addressing the gap between migration theory and empirical study in migration literature.

Keywords: migration, network effect, risk attitude, U.S. market

Procedia PDF Downloads 138
757 Identification of Toxic Metal Deposition in Food Cycle and Its Associated Public Health Risk

Authors: Masbubul Ishtiaque Ahmed

Abstract:

Food chain contamination by heavy metals has become a critical issue in recent years because of their potential accumulation in bio systems through contaminated water, soil and irrigation water. Industrial discharge, fertilizers, contaminated irrigation water, fossil fuels, sewage sludge and municipality wastes are the major sources of heavy metal contamination in soils and subsequent uptake by crops. The main objectives of this project were to determine the levels of minerals, trace elements and heavy metals in major foods and beverages consumed by the poor and non-poor households of Dhaka city and assess the dietary risk exposure to heavy metal and trace metal contamination and potential health implications as well as recommendations for action. Heavy metals are naturally occurring elements that have a high atomic weight and a density of at least 5 times greater than that of water. Their multiple industrial, domestic, agricultural, medical and technological applications have led to their wide distribution in the environment; raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, and carcinogenicity.

Keywords: food chain, determine the levels of minerals, trace elements, heavy metals, production and use, human exposure, toxicity, carcinogenicity

Procedia PDF Downloads 250
756 Processing and Characterization of Aluminum Matrix Composite Reinforced with Amorphous Zr₃₇.₅Cu₁₈.₆₇Al₄₃.₉₈ Phase

Authors: P. Abachi, S. Karami, K. Purazrang

Abstract:

The amorphous reinforcements (metallic glasses) can be considered as promising options for reinforcing light-weight aluminum and its alloys. By using the proper type of reinforcement, one can overcome to drawbacks such as interfacial de-cohesion and undesirable reactions which can be created at ceramic particle and metallic matrix interface. In this work, the Zr-based amorphous phase was produced via mechanical milling of elemental powders. Based on Miedema semi-empirical Model and diagrams for formation enthalpies and/or Gibbs free energies of Zr-Cu amorphous phase in comparison with the crystalline phase, the glass formability range was predicted. The composite was produced using the powder mixture of the aluminum and metallic glass and spark plasma sintering (SPS) at the temperature slightly above the glass transition Tg of the metallic glass particles. The selected temperature and rapid sintering route were suitable for consolidation of an aluminum matrix without crystallization of amorphous phase. To characterize amorphous phase formation, X-ray diffraction (XRD) phase analyses were performed on powder mixture after specified intervals of milling. The microstructure of the composite was studied by optical and scanning electron microscope (SEM). Uniaxial compression tests were carried out on composite specimens with the dimension of 4 mm long and a cross-section of 2 ˟ 2mm2. The micrographs indicated an appropriate reinforcement distribution in the metallic matrix. The comparison of stress–strain curves of the consolidated composite and the non-reinforced Al matrix alloy in compression showed that the enhancement of yield strength and mechanical strength are combined with an appreciable plastic strain at fracture. It can be concluded that metallic glasses (amorphous phases) are alternative reinforcement material for lightweight metal matrix composites capable of producing high strength and adequate ductility. However, this is in the expense of minor density increase.

Keywords: aluminum matrix composite, amorphous phase, mechanical alloying, spark plasma sintering

Procedia PDF Downloads 338
755 Feasibility Study of Plant Design with Biomass Direct Chemical Looping Combustion for Power Generation

Authors: Reza Tirsadi Librawan, Tara Vergita Rakhma

Abstract:

The increasing demand for energy and concern of global warming are intertwined issues of critical importance. With the pressing needs of clean, efficient and cost-effective energy conversion processes, an alternative clean energy source is needed. Biomass is one of the preferable options because it is clean and renewable. The efficiency for biomass conversion is constrained by the relatively low energy density and high moisture content from biomass. This study based on bio-based resources presents the Biomass Direct Chemical Looping Combustion Process (BDCLC), an alternative process that has a potential to convert biomass in thermal cracking to produce electricity and CO2. The BDCLC process using iron-based oxygen carriers has been developed as a biomass conversion process with in-situ CO2 capture. The BDCLC system cycles oxygen carriers between two reactor, a reducer reactor and combustor reactor in order to convert coal for electric power generation. The reducer reactor features a unique design: a gas-solid counter-current moving bed configuration to achieve the reduction of Fe2O3 particles to a mixture of Fe and FeO while converting the coal into CO2 and steam. The combustor reactor is a fluidized bed that oxidizes the reduced particles back to Fe2O3 with air. The oxidation of iron is an exothermic reaction and the heat can be recovered for electricity generation. The plant design’s objective is to obtain 5 MW of electricity with the design of the reactor in 900 °C, 2 ATM for the reducer and 1200 °C, 16 ATM for the combustor. We conduct process simulation and analysis to illustrate the individual reactor performance and the overall mass and energy management scheme of BDCLC process that developed by Aspen Plus software. Process simulation is then performed based on the reactor performance data obtained in multistage model.

Keywords: biomass, CO2 capture, direct chemical looping combustion, power generation

Procedia PDF Downloads 480
754 Experimental Investigation of Nucleate Pool Boiling Heat Transfer Characteristics on Copper Surface with Laser-Textured Stepped Microstructures

Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil

Abstract:

Due to the rapid advancement of integrated circuits and the increasing trend towards miniaturizing electronic devices, the amount of heat produced by electronic devices has consistently exceeded the maximum limit for heat dissipation. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but to find the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-textured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-textured copper surfaces is superior to the bare copper surface in all aspects.

Keywords: heat transfer coefficient, laser texturing, micro structured surface, pool boiling

Procedia PDF Downloads 64
753 A Contemporary Advertising Strategy on Social Networking Sites

Authors: M. S. Aparna, Pushparaj Shetty D.

Abstract:

Nowadays social networking sites have become so popular that the producers or the sellers look for these sites as one of the best options to target the right audience to market their products. There are several tools available to monitor or analyze the social networks. Our task is to identify the right community web pages and find out the behavior analysis of the members by using these tools and formulate an appropriate strategy to market the products or services to achieve the set goals. The advertising becomes more effective when the information of the product/ services come from a known source. The strategy explores great buying influence in the audience on referral marketing. Our methodology proceeds with critical budget analysis and promotes viral influence propagation. In this context, we encompass the vital bits of budget evaluation such as the number of optimal seed nodes or primary influential users activated onset, an estimate coverage spread of nodes and maximum influence propagating distance from an initial seed to an end node. Our proposal for Buyer Prediction mathematical model arises from the urge to perform complex analysis when the probability density estimates of reliable factors are not known or difficult to calculate. Order Statistics and Buyer Prediction mapping function guarantee the selection of optimal influential users at each level. We exercise an efficient tactics of practicing community pages and user behavior to determine the product enthusiasts on social networks. Our approach is promising and should be an elementary choice when there is little or no prior knowledge on the distribution of potential buyers on social networks. In this strategy, product news propagates to influential users on or surrounding networks. By applying the same technique, a user can search friends who are capable to advise better or give referrals, if a product interests him.

Keywords: viral marketing, social network analysis, community web pages, buyer prediction, influence propagation, budget constraints

Procedia PDF Downloads 236
752 Simple Assessments to Demystify Complementary Feeding: Leveraging a Successful Literacy Initiative Assessment Approach in Gujarat, India

Authors: Smriti Pahwa, Karishma Vats, Aditi Macwan, Jija Dutt, Sumukhi Vaid

Abstract:

Age approporiate complementary feeding has been stressed upon for sound young child nutrition and appropriate growth. National Infant and Young Child Feeding guidelines, policies and programs indicate cognizance of the issue taken by the country’s government, policy makers and technical experts. However, it is important that ordinary people, the caregivers of young children too understand the importance of appropriate feeding. For this, an interface might be required where ordinary people could participate in assessing the gaps in IYCF as a first step to take subsequent action. In this context an attempt was made to extrapolate a citizen led learning level survey that has been involving around 25000 ordinary citizens to reach out to 600,000 children annually for over a decade in India. Based on this philosophy of involving ordinary people in simple assessments to produce understandable actionable evidence, a rapid diet assessment tool was developed and collected from caregivers of 90 < 3year children from two urban clusters in Ahmedabad and Baroda, Gujarat. Target sample for pilot was selected after cluster census. Around half the mothers reported that they had not yet introduced water or other fluids to their < 6 month babies. However, about a third were already feeding them food other than mother’s milk. Although complementary feeding was initiated in almost all (95%) children more than 6 months old, frequency was suboptimal in 60%; in 80% cases no measure was taken to either improve energy or nutrient density; only 33% were fed protective foods; Green Leafy Vegetables consumption was negligible (1.4%). Anganwadi food was not consumed. By engaging ordinary people to generate evidence and understand the gaps, such assessments have the potential to be used to generate useful evidence for action at scale as well as locally.

Keywords: citizen led, grass root engagement, IYCF (Infant and Young Child Feeding), rapid diet assessment, under nutrition

Procedia PDF Downloads 140
751 Comparison of Inexpensive Cell Disruption Techniques for an Oleaginous Yeast

Authors: Scott Nielsen, Luca Longanesi, Chris Chuck

Abstract:

Palm oil is obtained from the flesh and kernel of the fruit of oil palms and is the most productive and inexpensive oil crop. The global demand for palm oil is approximately 75 million metric tonnes, a 29% increase in global production of palm oil since 2016. This expansion of oil palm cultivation has resulted in mass deforestation, vast biodiversity destruction and increasing net greenhouse gas emissions. One possible alternative is to produce a saturated oil, similar to palm, from microbes such as oleaginous yeast. The yeasts can be cultured on sugars derived from second-generation sources and do not compete with tropical forests for land. One highly promising oleaginous yeast for this application is Metschnikowia pulcherrima. However, recent techno-economic modeling has shown that cell lysis and standard lipid extraction are major contributors to the cost of the oil. Typical cell disruption techniques to extract either single cell oils or proteins have been based around bead-beating, homogenization and acid lysis. However, these can have a detrimental effect on lipid quality and are energy-intensive. In this study, a vortex separator, which produces high sheer with minimal energy input, was investigated as a potential low energy method of lysing cells. This was compared to four more traditional methods (thermal lysis, acid lysis, alkaline lysis, and osmotic lysis). For each method, the yeast loading was also examined at 1 g/L, 10 g/L and 100 g/L. The quality of the cell disruption was measured by optical cell density, cell counting and the particle size distribution profile comparison over a 2-hour period. This study demonstrates that the vortex separator is highly effective at lysing the cells and could potentially be used as a simple apparatus for lipid recovery in an oleaginous yeast process. The further development of this technology could potentially reduce the overall cost of microbial lipids in the future.

Keywords: palm oil substitute, metschnikowia pulcherrima, cell disruption, cell lysis

Procedia PDF Downloads 164
750 Study of the Relationship between the Civil Engineering Parameters and the Floating of Buoy Model Which Made from Expanded Polystyrene-Mortar

Authors: Panarat Saengpanya

Abstract:

There were five objectives in this study including the study of housing type with water environment, the physical and mechanical properties of the buoy material, the mechanical properties of the buoy models, the floating of the buoy models and the relationship between the civil engineering parameters and the floating of the buoy. The buoy examples made from Expanded Polystyrene (EPS) covered by 5 mm thickness of mortar with the equal thickness on each side. Specimens are 0.05 m cubes tested at a displacement rate of 0.005 m/min. The existing test method used to assess the parameters relationship is ASTM C 109 to provide comparative results. The results found that the three type of housing with water environment were Stilt Houses, Boat House, and Floating House. EPS is a lightweight material that has been used in engineering applications since at least the 1950s. Its density is about a hundredth of that of mortar, while the mortar strength was found 72 times of EPS. One of the advantage of composite is that two or more materials could be combined to take advantage of the good characteristics of each of the material. The strength of the buoy influenced by mortar while the floating influenced by EPS. Results showed the buoy example compressed under loading. The Stress-Strain curve showed the high secant modulus before reached the peak value. The failure occurred within 10% strain then the strength reduces while the strain was continuing. It was observed that the failure strength reduced by increasing the total volume of examples. For the buoy examples with same area, an increase of the failure strength is found when the high dimension is increased. The results showed the relationship between five parameters including the floating level, the bearing capacity, the volume, the high dimension and the unit weight. The study found increases in high of buoy lead to corresponding decreases in both modulus and compressive strength. The total volume and the unit weight had relationship with the bearing capacity of the buoy.

Keywords: floating house, buoy, floating structure, EPS

Procedia PDF Downloads 117