Search results for: deep learning models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13441

Search results for: deep learning models

13171 mKDNAD: A Network Flow Anomaly Detection Method Based On Multi-teacher Knowledge Distillation

Authors: Yang Yang, Dan Liu

Abstract:

Anomaly detection models for network flow based on machine learning have poor detection performance under extremely unbalanced training data conditions and also have slow detection speed and large resource consumption when deploying on network edge devices. Embedding multi-teacher knowledge distillation (mKD) in anomaly detection can transfer knowledge from multiple teacher models to a single model. Inspired by this, we proposed a state-of-the-art model, mKDNAD, to improve detection performance. mKDNAD mine and integrate the knowledge of one-dimensional sequence and two-dimensional image implicit in network flow to improve the detection accuracy of small sample classes. The multi-teacher knowledge distillation method guides the train of the student model, thus speeding up the model's detection speed and reducing the number of model parameters. Experiments in the CICIDS2017 dataset verify the improvements of our method in the detection speed and the detection accuracy in dealing with the small sample classes.

Keywords: network flow anomaly detection (NAD), multi-teacher knowledge distillation, machine learning, deep learning

Procedia PDF Downloads 91
13170 LanE-change Path Planning of Autonomous Driving Using Model-Based Optimization, Deep Reinforcement Learning and 5G Vehicle-to-Vehicle Communications

Authors: William Li

Abstract:

Lane-change path planning is a crucial and yet complex task in autonomous driving. The traditional path planning approach based on a system of carefully-crafted rules to cover various driving scenarios becomes unwieldy as more and more rules are added to deal with exceptions and corner cases. This paper proposes to divide the entire path planning to two stages. In the first stage the ego vehicle travels longitudinally in the source lane to reach a safe state. In the second stage the ego vehicle makes lateral lane-change maneuver to the target lane. The paper derives the safe state conditions based on lateral lane-change maneuver calculation to ensure collision free in the second stage. To determine the acceleration sequence that minimizes the time to reach a safe state in the first stage, the paper proposes three schemes, namely, kinetic model based optimization, deep reinforcement learning, and 5G vehicle-to-vehicle (V2V) communications. The paper investigates these schemes via simulation. The model-based optimization is sensitive to the model assumptions. The deep reinforcement learning is more flexible in handling scenarios beyond the model assumed by the optimization. The 5G V2V eliminates uncertainty in predicting future behaviors of surrounding vehicles by sharing driving intents and enabling cooperative driving.

Keywords: lane change, path planning, autonomous driving, deep reinforcement learning, 5G, V2V communications, connected vehicles

Procedia PDF Downloads 178
13169 A Novel Hybrid Deep Learning Architecture for Predicting Acute Kidney Injury Using Patient Record Data and Ultrasound Kidney Images

Authors: Sophia Shi

Abstract:

Acute kidney injury (AKI) is the sudden onset of kidney damage in which the kidneys cannot filter waste from the blood, requiring emergency hospitalization. AKI patient mortality rate is high in the ICU and is virtually impossible for doctors to predict because it is so unexpected. Currently, there is no hybrid model predicting AKI that takes advantage of two types of data. De-identified patient data from the MIMIC-III database and de-identified kidney images and corresponding patient records from the Beijing Hospital of the Ministry of Health were collected. Using data features including serum creatinine among others, two numeric models using MIMIC and Beijing Hospital data were built, and with the hospital ultrasounds, an image-only model was built. Convolutional neural networks (CNN) were used, VGG and Resnet for numeric data and Resnet for image data, and they were combined into a hybrid model by concatenating feature maps of both types of models to create a new input. This input enters another CNN block and then two fully connected layers, ending in a binary output after running through Softmax and additional code. The hybrid model successfully predicted AKI and the highest AUROC of the model was 0.953, achieving an accuracy of 90% and F1-score of 0.91. This model can be implemented into urgent clinical settings such as the ICU and aid doctors by assessing the risk of AKI shortly after the patient’s admission to the ICU, so that doctors can take preventative measures and diminish mortality risks and severe kidney damage.

Keywords: Acute kidney injury, Convolutional neural network, Hybrid deep learning, Patient record data, ResNet, Ultrasound kidney images, VGG

Procedia PDF Downloads 107
13168 The Layout Analysis of Handwriting Characters and the Fusion of Multi-style Ancient Books’ Background

Authors: Yaolin Tian, Shanxiong Chen, Fujia Zhao, Xiaoyu Lin, Hailing Xiong

Abstract:

Ancient books are significant culture inheritors and their background textures convey the potential history information. However, multi-style texture recovery of ancient books has received little attention. Restricted by insufficient ancient textures and complex handling process, the generation of ancient textures confronts with new challenges. For instance, training without sufficient data usually brings about overfitting or mode collapse, so some of the outputs are prone to be fake. Recently, image generation and style transfer based on deep learning are widely applied in computer vision. Breakthroughs within the field make it possible to conduct research upon multi-style texture recovery of ancient books. Under the circumstances, we proposed a network of layout analysis and image fusion system. Firstly, we trained models by using Deep Convolution Generative against Networks (DCGAN) to synthesize multi-style ancient textures; then, we analyzed layouts based on the Position Rearrangement (PR) algorithm that we proposed to adjust the layout structure of foreground content; at last, we realized our goal by fusing rearranged foreground texts and generated background. In experiments, diversified samples such as ancient Yi, Jurchen, Seal were selected as our training sets. Then, the performances of different fine-turning models were gradually improved by adjusting DCGAN model in parameters as well as structures. In order to evaluate the results scientifically, cross entropy loss function and Fréchet Inception Distance (FID) are selected to be our assessment criteria. Eventually, we got model M8 with lowest FID score. Compared with DCGAN model proposed by Radford at el., the FID score of M8 improved by 19.26%, enhancing the quality of the synthetic images profoundly.

Keywords: deep learning, image fusion, image generation, layout analysis

Procedia PDF Downloads 114
13167 Chassis Level Control Using Proportional Integrated Derivative Control, Fuzzy Logic and Deep Learning

Authors: Atakan Aral Ormancı, Tuğçe Arslantaş, Murat Özcü

Abstract:

This study presents the design and implementation of an experimental chassis-level system for various control applications. Specifically, the height level of the chassis is controlled using proportional integrated derivative, fuzzy logic, and deep learning control methods. Real-time data obtained from height and pressure sensors installed in a 6x2 truck chassis, in combination with pulse-width modulation signal values, are utilized during the tests. A prototype pneumatic system of a 6x2 truck is added to the setup, which enables the Smart Pneumatic Actuators to function as if they were in a real-world setting. To obtain real-time signal data from height sensors, an Arduino Nano is utilized, while a Raspberry Pi processes the data using Matlab/Simulink and provides the correct output signals to control the Smart Pneumatic Actuator in the truck chassis. The objective of this research is to optimize the time it takes for the chassis to level down and up under various loads. To achieve this, proportional integrated derivative control, fuzzy logic control, and deep learning techniques are applied to the system. The results show that the deep learning method is superior in optimizing time for a non-linear system. Fuzzy logic control with a triangular membership function as the rule base achieves better outcomes than proportional integrated derivative control. Traditional proportional integrated derivative control improves the time it takes to level the chassis down and up compared to an uncontrolled system. The findings highlight the superiority of deep learning techniques in optimizing the time for a non-linear system, and the potential of fuzzy logic control. The proposed approach and the experimental results provide a valuable contribution to the field of control, automation, and systems engineering.

Keywords: automotive, chassis level control, control systems, pneumatic system control

Procedia PDF Downloads 49
13166 Empowering Transformers for Evidence-Based Medicine

Authors: Jinan Fiaidhi, Hashmath Shaik

Abstract:

Breaking the barrier for practicing evidence-based medicine relies on effective methods for rapidly identifying relevant evidence from the body of biomedical literature. An important challenge confronted by medical practitioners is the long time needed to browse, filter, summarize and compile information from different medical resources. Deep learning can help in solving this based on automatic question answering (Q&A) and transformers. However, Q&A and transformer technologies are not trained to answer clinical queries that can be used for evidence-based practice, nor can they respond to structured clinical questioning protocols like PICO (Patient/Problem, Intervention, Comparison and Outcome). This article describes the use of deep learning techniques for Q&A that are based on transformer models like BERT and GPT to answer PICO clinical questions that can be used for evidence-based practice extracted from sound medical research resources like PubMed. We are reporting acceptable clinical answers that are supported by findings from PubMed. Our transformer methods are reaching an acceptable state-of-the-art performance based on two staged bootstrapping processes involving filtering relevant articles followed by identifying articles that support the requested outcome expressed by the PICO question. Moreover, we are also reporting experimentations to empower our bootstrapping techniques with patch attention to the most important keywords in the clinical case and the PICO questions. Our bootstrapped patched with attention is showing relevancy of the evidence collected based on entropy metrics.

Keywords: automatic question answering, PICO questions, evidence-based medicine, generative models, LLM transformers

Procedia PDF Downloads 10
13165 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree

Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli

Abstract:

Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.

Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture

Procedia PDF Downloads 388
13164 Arabic Light Word Analyser: Roles with Deep Learning Approach

Authors: Mohammed Abu Shquier

Abstract:

This paper introduces a word segmentation method using the novel BP-LSTM-CRF architecture for processing semantic output training. The objective of web morphological analysis tools is to link a formal morpho-syntactic description to a lemma, along with morpho-syntactic information, a vocalized form, a vocalized analysis with morpho-syntactic information, and a list of paradigms. A key objective is to continuously enhance the proposed system through an inductive learning approach that considers semantic influences. The system is currently under construction and development based on data-driven learning. To evaluate the tool, an experiment on homograph analysis was conducted. The tool also encompasses the assumption of deep binary segmentation hypotheses, the arbitrary choice of trigram or n-gram continuation probabilities, language limitations, and morphology for both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), which provide justification for updating this system. Most Arabic word analysis systems are based on the phonotactic morpho-syntactic analysis of a word transmitted using lexical rules, which are mainly used in MENA language technology tools, without taking into account contextual or semantic morphological implications. Therefore, it is necessary to have an automatic analysis tool taking into account the word sense and not only the morpho-syntactic category. Moreover, they are also based on statistical/stochastic models. These stochastic models, such as HMMs, have shown their effectiveness in different NLP applications: part-of-speech tagging, machine translation, speech recognition, etc. As an extension, we focus on language modeling using Recurrent Neural Network (RNN); given that morphological analysis coverage was very low in dialectal Arabic, it is significantly important to investigate deeply how the dialect data influence the accuracy of these approaches by developing dialectal morphological processing tools to show that dialectal variability can support to improve analysis.

Keywords: NLP, DL, ML, analyser, MSA, RNN, CNN

Procedia PDF Downloads 9
13163 The Content-Based Classroom: Perspectives on Integrating Language and Content

Authors: Mourad Ben Bennani

Abstract:

Views of language and language learning have undergone a tremendous change over the last decades. Language is no longer seen as a set of structured rules. It is rather viewed as a tool of interaction and communication. This shift in views has resulted in change in viewing language learning, which gave birth to various approaches and methodologies of language teaching. Two of these approaches are content-based instruction and content and language integrated learning (CLIL). These are similar approaches which integrate content and foreign/second language learning through various methodologies and models as a result of different implementations around the world. This presentation deals with sociocultural view of CBI and CLIL. It also defines language and content as vital components of CBI and CLIL. Next it reviews the origins of CBI and the continuum perspectives and CLIL definitions and models featured in the literature. Finally it summarizes current aspects around research in program evaluation with a focus on the benefits and challenges of these innovative approaches for second language teaching.

Keywords: CBI, CLIL, CBI continuum, CLIL models

Procedia PDF Downloads 390
13162 Uncertainty Estimation in Neural Networks through Transfer Learning

Authors: Ashish James, Anusha James

Abstract:

The impressive predictive performance of deep learning techniques on a wide range of tasks has led to its widespread use. Estimating the confidence of these predictions is paramount for improving the safety and reliability of such systems. However, the uncertainty estimates provided by neural networks (NNs) tend to be overconfident and unreasonable. Ensemble of NNs typically produce good predictions but uncertainty estimates tend to be inconsistent. Inspired by these, this paper presents a framework that can quantitatively estimate the uncertainties by leveraging the advances in transfer learning through slight modification to the existing training pipelines. This promising algorithm is developed with an intention of deployment in real world problems which already boast a good predictive performance by reusing those pretrained models. The idea is to capture the behavior of the trained NNs for the base task by augmenting it with the uncertainty estimates from a supplementary network. A series of experiments with known and unknown distributions show that the proposed approach produces well calibrated uncertainty estimates with high quality predictions.

Keywords: uncertainty estimation, neural networks, transfer learning, regression

Procedia PDF Downloads 100
13161 Deep Reinforcement Learning Approach for Trading Automation in The Stock Market

Authors: Taylan Kabbani, Ekrem Duman

Abstract:

The design of adaptive systems that take advantage of financial markets while reducing the risk can bring more stagnant wealth into the global market. However, most efforts made to generate successful deals in trading financial assets rely on Supervised Learning (SL), which suffered from various limitations. Deep Reinforcement Learning (DRL) offers to solve these drawbacks of SL approaches by combining the financial assets price "prediction" step and the "allocation" step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. In this paper, a continuous action space approach is adopted to give the trading agent the ability to gradually adjust the portfolio's positions with each time step (dynamically re-allocate investments), resulting in better agent-environment interaction and faster convergence of the learning process. In addition, the approach supports the managing of a portfolio with several assets instead of a single one. This work represents a novel DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem, or what is referred to as The Agent Environment as Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. More specifically, we design an environment that simulates the real-world trading process by augmenting the state representation with ten different technical indicators and sentiment analysis of news articles for each stock. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which can learn policies in high-dimensional and continuous action spaces like those typically found in the stock market environment. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of deep reinforcement learning in financial markets over other types of machine learning such as supervised learning and proves its credibility and advantages of strategic decision-making.

Keywords: the stock market, deep reinforcement learning, MDP, twin delayed deep deterministic policy gradient, sentiment analysis, technical indicators, autonomous agent

Procedia PDF Downloads 154
13160 AI-Based Autonomous Plant Health Monitoring and Control System with Visual Health-Scoring Models

Authors: Uvais Qidwai, Amor Moursi, Mohamed Tahar, Malek Hamad, Hamad Alansi

Abstract:

This paper focuses on the development and implementation of an advanced plant health monitoring system with an AI backbone and IoT sensory network. Our approach involves addressing the critical environmental factors essential for preserving a plant’s well-being, including air temperature, soil moisture, soil temperature, soil conductivity, pH, water levels, and humidity, as well as the presence of essential nutrients like nitrogen, phosphorus, and potassium. Central to our methodology is the utilization of computer vision technology, particularly a night vision camera. The captured data is then compared against a reference database containing different health statuses. This comparative analysis is implemented using an AI deep learning model, which enables us to generate accurate assessments of plant health status. By combining the AI-based decision-making approach, our system aims to provide precise and timely insights into the overall health and well-being of plants, offering a valuable tool for effective plant care and management.

Keywords: deep learning image model, IoT sensing, cloud-based analysis, remote monitoring app, computer vision, fuzzy control

Procedia PDF Downloads 9
13159 Deepnic, A Method to Transform Each Variable into Image for Deep Learning

Authors: Nguyen J. M., Lucas G., Brunner M., Ruan S., Antonioli D.

Abstract:

Deep learning based on convolutional neural networks (CNN) is a very powerful technique for classifying information from an image. We propose a new method, DeepNic, to transform each variable of a tabular dataset into an image where each pixel represents a set of conditions that allow the variable to make an error-free prediction. The contrast of each pixel is proportional to its prediction performance and the color of each pixel corresponds to a sub-family of NICs. NICs are probabilities that depend on the number of inputs to each neuron and the range of coefficients of the inputs. Each variable can therefore be expressed as a function of a matrix of 2 vectors corresponding to an image whose pixels express predictive capabilities. Our objective is to transform each variable of tabular data into images into an image that can be analysed by CNNs, unlike other methods which use all the variables to construct an image. We analyse the NIC information of each variable and express it as a function of the number of neurons and the range of coefficients used. The predictive value and the category of the NIC are expressed by the contrast and the color of the pixel. We have developed a pipeline to implement this technology and have successfully applied it to genomic expressions on an Affymetrix chip.

Keywords: tabular data, deep learning, perfect trees, NICS

Procedia PDF Downloads 59
13158 Melanoma and Non-Melanoma, Skin Lesion Classification, Using a Deep Learning Model

Authors: Shaira L. Kee, Michael Aaron G. Sy, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar AlDahoul

Abstract:

Skin diseases are considered the fourth most common disease, with melanoma and non-melanoma skin cancer as the most common type of cancer in Caucasians. The alarming increase in Skin Cancer cases shows an urgent need for further research to improve diagnostic methods, as early diagnosis can significantly improve the 5-year survival rate. Machine Learning algorithms for image pattern analysis in diagnosing skin lesions can dramatically increase the accuracy rate of detection and decrease possible human errors. Several studies have shown the diagnostic performance of computer algorithms outperformed dermatologists. However, existing methods still need improvements to reduce diagnostic errors and generate efficient and accurate results. Our paper proposes an ensemble method to classify dermoscopic images into benign and malignant skin lesions. The experiments were conducted using the International Skin Imaging Collaboration (ISIC) image samples. The dataset contains 3,297 dermoscopic images with benign and malignant categories. The results show improvement in performance with an accuracy of 88% and an F1 score of 87%, outperforming other existing models such as support vector machine (SVM), Residual network (ResNet50), EfficientNetB0, EfficientNetB4, and VGG16.

Keywords: deep learning - VGG16 - efficientNet - CNN – ensemble – dermoscopic images - melanoma

Procedia PDF Downloads 55
13157 Deciphering Orangutan Drawing Behavior Using Artificial Intelligence

Authors: Benjamin Beltzung, Marie Pelé, Julien P. Renoult, Cédric Sueur

Abstract:

To this day, it is not known if drawing is specifically human behavior or if this behavior finds its origins in ancestor species. An interesting window to enlighten this question is to analyze the drawing behavior in genetically close to human species, such as non-human primate species. A good candidate for this approach is the orangutan, who shares 97% of our genes and exhibits multiple human-like behaviors. Focusing on figurative aspects may not be suitable for orangutans’ drawings, which may appear as scribbles but may have meaning. A manual feature selection would lead to an anthropocentric bias, as the features selected by humans may not match with those relevant for orangutans. In the present study, we used deep learning to analyze the drawings of a female orangutan named Molly († in 2011), who has produced 1,299 drawings in her last five years as part of a behavioral enrichment program at the Tama Zoo in Japan. We investigate multiple ways to decipher Molly’s drawings. First, we demonstrate the existence of differences between seasons by training a deep learning model to classify Molly’s drawings according to the seasons. Then, to understand and interpret these seasonal differences, we analyze how the information spreads within the network, from shallow to deep layers, where early layers encode simple local features and deep layers encode more complex and global information. More precisely, we investigate the impact of feature complexity on classification accuracy through features extraction fed to a Support Vector Machine. Last, we leverage style transfer to dissociate features associated with drawing style from those describing the representational content and analyze the relative importance of these two types of features in explaining seasonal variation. Content features were relevant for the classification, showing the presence of meaning in these non-figurative drawings and the ability of deep learning to decipher these differences. The style of the drawings was also relevant, as style features encoded enough information to have a classification better than random. The accuracy of style features was higher for deeper layers, demonstrating and highlighting the variation of style between seasons in Molly’s drawings. Through this study, we demonstrate how deep learning can help at finding meanings in non-figurative drawings and interpret these differences.

Keywords: cognition, deep learning, drawing behavior, interpretability

Procedia PDF Downloads 130
13156 End-to-End Spanish-English Sequence Learning Translation Model

Authors: Vidhu Mitha Goutham, Ruma Mukherjee

Abstract:

The low availability of well-trained, unlimited, dynamic-access models for specific languages makes it hard for corporate users to adopt quick translation techniques and incorporate them into product solutions. As translation tasks increasingly require a dynamic sequence learning curve; stable, cost-free opensource models are scarce. We survey and compare current translation techniques and propose a modified sequence to sequence model repurposed with attention techniques. Sequence learning using an encoder-decoder model is now paving the path for higher precision levels in translation. Using a Convolutional Neural Network (CNN) encoder and a Recurrent Neural Network (RNN) decoder background, we use Fairseq tools to produce an end-to-end bilingually trained Spanish-English machine translation model including source language detection. We acquire competitive results using a duo-lingo-corpus trained model to provide for prospective, ready-made plug-in use for compound sentences and document translations. Our model serves a decent system for large, organizational data translation needs. While acknowledging its shortcomings and future scope, it also identifies itself as a well-optimized deep neural network model and solution.

Keywords: attention, encoder-decoder, Fairseq, Seq2Seq, Spanish, translation

Procedia PDF Downloads 152
13155 Real-Time Generative Architecture for Mesh and Texture

Authors: Xi Liu, Fan Yuan

Abstract:

In the evolving landscape of physics-based machine learning (PBML), particularly within fluid dynamics and its applications in electromechanical engineering, robot vision, and robot learning, achieving precision and alignment with researchers' specific needs presents a formidable challenge. In response, this work proposes a methodology that integrates neural transformation with a modified smoothed particle hydrodynamics model for generating transformed 3D fluid simulations. This approach is useful for nanoscale science, where the unique and complex behaviors of viscoelastic medium demand accurate neurally-transformed simulations for materials understanding and manipulation. In electromechanical engineering, the method enhances the design and functionality of fluid-operated systems, particularly microfluidic devices, contributing to advancements in nanomaterial design, drug delivery systems, and more. The proposed approach also aligns with the principles of PBML, offering advantages such as multi-fluid stylization and consistent particle attribute transfer. This capability is valuable in various fields where the interaction of multiple fluid components is significant. Moreover, the application of neurally-transformed hydrodynamical models extends to manufacturing processes, such as the production of microelectromechanical systems, enhancing efficiency and cost-effectiveness. The system's ability to perform neural transfer on 3D fluid scenes using a deep learning algorithm alongside physical models further adds a layer of flexibility, allowing researchers to tailor simulations to specific needs across scientific and engineering disciplines.

Keywords: physics-based machine learning, robot vision, robot learning, hydrodynamics

Procedia PDF Downloads 38
13154 Reinforcement Learning for Self Driving Racing Car Games

Authors: Adam Beaunoyer, Cory Beaunoyer, Mohammed Elmorsy, Hanan Saleh

Abstract:

This research aims to create a reinforcement learning agent capable of racing in challenging simulated environments with a low collision count. We present a reinforcement learning agent that can navigate challenging tracks using both a Deep Q-Network (DQN) and a Soft Actor-Critic (SAC) method. A challenging track includes curves, jumps, and varying road widths throughout. Using open-source code on Github, the environment used in this research is based on the 1995 racing game WipeOut. The proposed reinforcement learning agent can navigate challenging tracks rapidly while maintaining low racing completion time and collision count. The results show that the SAC model outperforms the DQN model by a large margin. We also propose an alternative multiple-car model that can navigate the track without colliding with other vehicles on the track. The SAC model is the basis for the multiple-car model, where it can complete the laps quicker than the single-car model but has a higher collision rate with the track wall.

Keywords: reinforcement learning, soft actor-critic, deep q-network, self-driving cars, artificial intelligence, gaming

Procedia PDF Downloads 14
13153 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks

Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez

Abstract:

Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.

Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning

Procedia PDF Downloads 320
13152 Accuracy Improvement of Traffic Participant Classification Using Millimeter-Wave Radar by Leveraging Simulator Based on Domain Adaptation

Authors: Tokihiko Akita, Seiichi Mita

Abstract:

A millimeter-wave radar is the most robust against adverse environments, making it an essential environment recognition sensor for automated driving. However, the reflection signal is sparse and unstable, so it is difficult to obtain the high recognition accuracy. Deep learning provides high accuracy even for them in recognition, but requires large scale datasets with ground truth. Specially, it takes a lot of cost to annotate for a millimeter-wave radar. For the solution, utilizing a simulator that can generate an annotated huge dataset is effective. Simulation of the radar is more difficult to match with real world data than camera image, and recognition by deep learning with higher-order features using the simulator causes further deviation. We have challenged to improve the accuracy of traffic participant classification by fusing simulator and real-world data with domain adaptation technique. Experimental results with the domain adaptation network created by us show that classification accuracy can be improved even with a few real-world data.

Keywords: millimeter-wave radar, object classification, deep learning, simulation, domain adaptation

Procedia PDF Downloads 65
13151 Coupling Large Language Models with Disaster Knowledge Graphs for Intelligent Construction

Authors: Zhengrong Wu, Haibo Yang

Abstract:

In the context of escalating global climate change and environmental degradation, the complexity and frequency of natural disasters are continually increasing. Confronted with an abundance of information regarding natural disasters, traditional knowledge graph construction methods, which heavily rely on grammatical rules and prior knowledge, demonstrate suboptimal performance in processing complex, multi-source disaster information. This study, drawing upon past natural disaster reports, disaster-related literature in both English and Chinese, and data from various disaster monitoring stations, constructs question-answer templates based on large language models. Utilizing the P-Tune method, the ChatGLM2-6B model is fine-tuned, leading to the development of a disaster knowledge graph based on large language models. This serves as a knowledge database support for disaster emergency response.

Keywords: large language model, knowledge graph, disaster, deep learning

Procedia PDF Downloads 27
13150 Recommendation Systems for Cereal Cultivation using Advanced Casual Inference Modeling

Authors: Md Yeasin, Ranjit Kumar Paul

Abstract:

In recent years, recommendation systems have become indispensable tools for agricultural system. The accurate and timely recommendations can significantly impact crop yield and overall productivity. Causal inference modeling aims to establish cause-and-effect relationships by identifying the impact of variables or factors on outcomes, enabling more accurate and reliable recommendations. New advancements in causal inference models have been found in the literature. With the advent of the modern era, deep learning and machine learning models have emerged as efficient tools for modeling. This study proposed an innovative approach to enhance recommendation systems-based machine learning based casual inference model. By considering the causal effect and opportunity cost of covariates, the proposed system can provide more reliable and actionable recommendations for cereal farmers. To validate the effectiveness of the proposed approach, experiments are conducted using cereal cultivation data of eastern India. Comparative evaluations are performed against existing correlation-based recommendation systems, demonstrating the superiority of the advanced causal inference modeling approach in terms of recommendation accuracy and impact on crop yield. Overall, it empowers farmers with personalized recommendations tailored to their specific circumstances, leading to optimized decision-making and increased crop productivity.

Keywords: agriculture, casual inference, machine learning, recommendation system

Procedia PDF Downloads 47
13149 Analysis of Facial Expressions with Amazon Rekognition

Authors: Kashika P. H.

Abstract:

The development of computer vision systems has been greatly aided by the efficient and precise detection of images and videos. Although the ability to recognize and comprehend images is a strength of the human brain, employing technology to tackle this issue is exceedingly challenging. In the past few years, the use of Deep Learning algorithms to treat object detection has dramatically expanded. One of the key issues in the realm of image recognition is the recognition and detection of certain notable people from randomly acquired photographs. Face recognition uses a way to identify, assess, and compare faces for a variety of purposes, including user identification, user counting, and classification. With the aid of an accessible deep learning-based API, this article intends to recognize various faces of people and their facial descriptors more accurately. The purpose of this study is to locate suitable individuals and deliver accurate information about them by using the Amazon Rekognition system to identify a specific human from a vast image dataset. We have chosen the Amazon Rekognition system, which allows for more accurate face analysis, face comparison, and face search, to tackle this difficulty.

Keywords: Amazon rekognition, API, deep learning, computer vision, face detection, text detection

Procedia PDF Downloads 80
13148 A Deep Learning Approach to Online Social Network Account Compromisation

Authors: Edward K. Boahen, Brunel E. Bouya-Moko, Changda Wang

Abstract:

The major threat to online social network (OSN) users is account compromisation. Spammers now spread malicious messages by exploiting the trust relationship established between account owners and their friends. The challenge in detecting a compromised account by service providers is validating the trusted relationship established between the account owners, their friends, and the spammers. Another challenge is the increase in required human interaction with the feature selection. Research available on supervised learning (machine learning) has limitations with the feature selection and accounts that cannot be profiled, like application programming interface (API). Therefore, this paper discusses the various behaviours of the OSN users and the current approaches in detecting a compromised OSN account, emphasizing its limitations and challenges. We propose a deep learning approach that addresses and resolve the constraints faced by the previous schemes. We detailed our proposed optimized nonsymmetric deep auto-encoder (OPT_NDAE) for unsupervised feature learning, which reduces the required human interaction levels in the selection and extraction of features. We evaluated our proposed classifier using the NSL-KDD and KDDCUP'99 datasets in a graphical user interface enabled Weka application. The results obtained indicate that our proposed approach outperformed most of the traditional schemes in OSN compromised account detection with an accuracy rate of 99.86%.

Keywords: computer security, network security, online social network, account compromisation

Procedia PDF Downloads 92
13147 A Deep Learning Approach to Detect Complete Safety Equipment for Construction Workers Based on YOLOv7

Authors: Shariful Islam, Sharun Akter Khushbu, S. M. Shaqib, Shahriar Sultan Ramit

Abstract:

In the construction sector, ensuring worker safety is of the utmost significance. In this study, a deep learning-based technique is presented for identifying safety gear worn by construction workers, such as helmets, goggles, jackets, gloves, and footwear. The suggested method precisely locates these safety items by using the YOLO v7 (You Only Look Once) object detection algorithm. The dataset utilized in this work consists of labeled images split into training, testing and validation sets. Each image has bounding box labels that indicate where the safety equipment is located within the image. The model is trained to identify and categorize the safety equipment based on the labeled dataset through an iterative training approach. We used custom dataset to train this model. Our trained model performed admirably well, with good precision, recall, and F1-score for safety equipment recognition. Also, the model's evaluation produced encouraging results, with a [email protected] score of 87.7%. The model performs effectively, making it possible to quickly identify safety equipment violations on building sites. A thorough evaluation of the outcomes reveals the model's advantages and points up potential areas for development. By offering an automatic and trustworthy method for safety equipment detection, this research contributes to the fields of computer vision and workplace safety. The proposed deep learning-based approach will increase safety compliance and reduce the risk of accidents in the construction industry.

Keywords: deep learning, safety equipment detection, YOLOv7, computer vision, workplace safety

Procedia PDF Downloads 42
13146 Validating Condition-Based Maintenance Algorithms through Simulation

Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile

Abstract:

Industrial end-users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both machine learning and first principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed by breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems, and humans -including asset maintenance operations- in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.

Keywords: degradation models, ageing, anomaly detection, soft sensor, incremental learning

Procedia PDF Downloads 101
13145 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line

Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez

Abstract:

Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.

Keywords: deep-learning, image classification, image identification, industrial engineering.

Procedia PDF Downloads 134
13144 Understanding and Improving Neural Network Weight Initialization

Authors: Diego Aguirre, Olac Fuentes

Abstract:

In this paper, we present a taxonomy of weight initialization schemes used in deep learning. We survey the most representative techniques in each class and compare them in terms of overhead cost, convergence rate, and applicability. We also introduce a new weight initialization scheme. In this technique, we perform an initial feedforward pass through the network using an initialization mini-batch. Using statistics obtained from this pass, we initialize the weights of the network, so the following properties are met: 1) weight matrices are orthogonal; 2) ReLU layers produce a predetermined number of non-zero activations; 3) the output produced by each internal layer has a unit variance; 4) weights in the last layer are chosen to minimize the error in the initial mini-batch. We evaluate our method on three popular architectures, and a faster converge rates are achieved on the MNIST, CIFAR-10/100, and ImageNet datasets when compared to state-of-the-art initialization techniques.

Keywords: deep learning, image classification, supervised learning, weight initialization

Procedia PDF Downloads 108
13143 Evaluation Metrics for Machine Learning Techniques: A Comprehensive Review and Comparative Analysis of Performance Measurement Approaches

Authors: Seyed-Ali Sadegh-Zadeh, Kaveh Kavianpour, Hamed Atashbar, Elham Heidari, Saeed Shiry Ghidary, Amir M. Hajiyavand

Abstract:

Evaluation metrics play a critical role in assessing the performance of machine learning models. In this review paper, we provide a comprehensive overview of performance measurement approaches for machine learning models. For each category, we discuss the most widely used metrics, including their mathematical formulations and interpretation. Additionally, we provide a comparative analysis of performance measurement approaches for metric combinations. Our review paper aims to provide researchers and practitioners with a better understanding of performance measurement approaches and to aid in the selection of appropriate evaluation metrics for their specific applications.

Keywords: evaluation metrics, performance measurement, supervised learning, unsupervised learning, reinforcement learning, model robustness and stability, comparative analysis

Procedia PDF Downloads 26
13142 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography

Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai

Abstract:

Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.

Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics

Procedia PDF Downloads 68