Search results for: damage scenarios
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3605

Search results for: damage scenarios

3545 Discrete Choice Modeling in Education: Evaluating Early Childhood Educators’ Practices

Authors: Michalis Linardakis, Vasilis Grammatikopoulos, Athanasios Gregoriadis, Kalliopi Trouli

Abstract:

Discrete choice models belong to the family of Conjoint analysis that are applied on the preferences of the respondents towards a set of scenarios that describe alternative choices. The scenarios have been pre-designed to cover all the attributes of the alternatives that may affect the choices. In this study, we examine how preschool educators integrate physical activities into their everyday teaching practices through the use of discrete choice models. One of the advantages of discrete choice models compared to other more traditional data collection methods (e.g. questionnaires and interviews that use ratings) is that the respondent is called to select among competitive and realistic alternatives, rather than objectively rate each attribute that the alternatives may have. We present the effort to construct and choose representative attributes that would cover all possible choices of the respondents, and the scenarios that have arisen. For the purposes of the study, we used a sample of 50 preschool educators in Greece that responded to 4 scenarios (from the total of 16 scenarios that the orthogonal design resulted), with each scenario having three alternative teaching practices. Seven attributes of the alternatives were used in the scenarios. For the analysis of the data, we used multinomial logit model with random effects, multinomial probit model and generalized mixed logit model. The conclusions drawn from the estimated parameters of the models are discussed.

Keywords: conjoint analysis, discrete choice models, educational data, multivariate statistical analysis

Procedia PDF Downloads 430
3544 Restoring Trees Damaged by Cyclone Hudhud at Visakhapatnam, India

Authors: Mohan Kotamrazu

Abstract:

Cyclone Hudhud which battered the city of Visakhapatnam on 12th October, 2014, damaged many buildings, public amenities and infrastructure facilities along the Visakha- Bheemili coastal corridor. More than half the green cover of the city was wiped out. Majority of the trees along the coastal corridor suffered from complete or partial damage. In order to understand the different ways that trees incurred damage during the cyclone, a damage assessment study was carried out by the author. The areas covered by this study included two university campuses, several parks and residential colonies which bore the brunt of the cyclone. Post disaster attempts have been made to restore many of the trees that have suffered from partial or complete damage from the effects of extreme winds. This paper examines the various ways that trees incurred damage from the cyclone Hudhud and presents some examples of the restoration efforts carried out by educational institutions, public parks and religious institutions of the city of Visakhapatnam in the aftermath of the devastating cyclone.

Keywords: defoliaton, salt spray damage, uprooting and wind throw, restoration

Procedia PDF Downloads 489
3543 Structural Damage Detection Using Modal Data Employing Teaching Learning Based Optimization

Authors: Subhajit Das, Nirjhar Dhang

Abstract:

Structural damage detection is a challenging work in the field of structural health monitoring (SHM). The damage detection methods mainly focused on the determination of the location and severity of the damage. Model updating is a well known method to locate and quantify the damage. In this method, an error function is defined in terms of difference between the signal measured from ‘experiment’ and signal obtained from undamaged finite element model. This error function is minimised with a proper algorithm, and the finite element model is updated accordingly to match the measured response. Thus, the damage location and severity can be identified from the updated model. In this paper, an error function is defined in terms of modal data viz. frequencies and modal assurance criteria (MAC). MAC is derived from Eigen vectors. This error function is minimized by teaching-learning-based optimization (TLBO) algorithm, and the finite element model is updated accordingly to locate and quantify the damage. Damage is introduced in the model by reduction of stiffness of the structural member. The ‘experimental’ data is simulated by the finite element modelling. The error due to experimental measurement is introduced in the synthetic ‘experimental’ data by adding random noise, which follows Gaussian distribution. The efficiency and robustness of this method are explained through three examples e.g., one truss, one beam and one frame problem. The result shows that TLBO algorithm is efficient to detect the damage location as well as the severity of damage using modal data.

Keywords: damage detection, finite element model updating, modal assurance criteria, structural health monitoring, teaching learning based optimization

Procedia PDF Downloads 187
3542 Adequacy of Advanced Earthquake Intensity Measures for Estimation of Damage under Seismic Excitation with Arbitrary Orientation

Authors: Konstantinos G. Kostinakis, Manthos K. Papadopoulos, Asimina M. Athanatopoulou

Abstract:

An important area of research in seismic risk analysis is the evaluation of expected seismic damage of structures under a specific earthquake ground motion. Several conventional intensity measures of ground motion have been used to estimate their damage potential to structures. Yet, none of them was proved to be able to predict adequately the seismic damage of any structural system. Therefore, alternative advanced intensity measures which take into account not only ground motion characteristics but also structural information have been proposed. The adequacy of a number of advanced earthquake intensity measures in prediction of structural damage of 3D R/C buildings under seismic excitation which attacks the building with arbitrary incident angle is investigated in the present paper. To achieve this purpose, a symmetric in plan and an asymmetric 5-story R/C building are studied. The two buildings are subjected to 20 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along horizontal orthogonal axes forming 72 different angles with the structural axes. The response is computed by non-linear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures determined for incident angle 0° as well as their maximum values over all seismic incident angles are correlated with 9 structure-specific ground motion intensity measures. The research identified certain intensity measures which exhibited strong correlation with the seismic damage of the two buildings. However, their adequacy for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.

Keywords: damage indices, non-linear response, seismic excitation angle, structure-specific intensity measures

Procedia PDF Downloads 470
3541 Fatigue Life Prediction under Variable Loading Based a Non-Linear Energy Model

Authors: Aid Abdelkrim

Abstract:

A method of fatigue damage accumulation based upon application of energy parameters of the fatigue process is proposed in the paper. Using this model is simple, it has no parameter to be determined, it requires only the knowledge of the curve W–N (W: strain energy density N: number of cycles at failure) determined from the experimental Wöhler curve. To examine the performance of nonlinear models proposed in the estimation of fatigue damage and fatigue life of components under random loading, a batch of specimens made of 6082 T 6 aluminium alloy has been studied and some of the results are reported in the present paper. The paper describes an algorithm and suggests a fatigue cumulative damage model, especially when random loading is considered. This work contains the results of uni-axial random load fatigue tests with different mean and amplitude values performed on 6082T6 aluminium alloy specimens. The proposed model has been formulated to take into account the damage evolution at different load levels and it allows the effect of the loading sequence to be included by means of a recurrence formula derived for multilevel loading, considering complex load sequences. It is concluded that a ‘damaged stress interaction damage rule’ proposed here allows a better fatigue damage prediction than the widely used Palmgren–Miner rule, and a formula derived in random fatigue could be used to predict the fatigue damage and fatigue lifetime very easily. The results obtained by the model are compared with the experimental results and those calculated by the most fatigue damage model used in fatigue (Miner’s model). The comparison shows that the proposed model, presents a good estimation of the experimental results. Moreover, the error is minimized in comparison to the Miner’s model.

Keywords: damage accumulation, energy model, damage indicator, variable loading, random loading

Procedia PDF Downloads 367
3540 An Acoustical Diagnosis of a Shaft-Wood Phyto-Pathogenic Damage of Sequoiadendron giganteum (Lindl.) Buccholz

Authors: Yuri V. Plugatar, Vladimir P. Koba, Vladimir V. Papelbu, Vladimir N. Gerasimchuk, Tatjana M. Sakhno

Abstract:

Using a supersonic shaft–wood tomography, the evaluation of a shaft-wood phyto-pathogenic damage level of Sequoiadendron giganteum (Lindl.) Buccholz was prosecuted. The digital bivariate reflections of the shaft tissue damage were obtained, the characteristics of comparative parameters of the wood-decay degree were given. The investigation results allowed to show up the role of some edaphic factors in their affection on a vital condition and the level of destructive processes while shaft tissue damaging of S.giganteum. It was pinned up that soil consolidation, and hydro-morphication equally make for a phyto-pathogenic damage of plants. While soil consolidation negative acting the shaft-wood damage is located in an underneath of a shaft. In the conditions of an enlarged hydro-morphication a tissue degradation runs less intensively, the destructive processes more active spread in a vertical section of a shaft. The use of a supersonic tomography method gives wide possibilities to diagnose a shaft-wood phyto-pathogenic damage.

Keywords: Sequoiadendron giganteum (Lindl.) Buccholz, supersonic tomography, diagnosis, phyto-pathogenic damage, a vital condition

Procedia PDF Downloads 185
3539 An ANN Approach for Detection and Localization of Fatigue Damage in Aircraft Structures

Authors: Reza Rezaeipour Honarmandzad

Abstract:

In this paper we propose an ANN for detection and localization of fatigue damage in aircraft structures. We used network of piezoelectric transducers for Lamb-wave measurements in order to calculate damage indices. Data gathered by the sensors was given to neural network classifier. A set of neural network electors of different architecture cooperates to achieve consensus concerning the state of each monitored path. Sensed signal variations in the ROI, detected by the networks at each path, were used to assess the state of the structure as well as to localize detected damage and to filter out ambient changes. The classifier has been extensively tested on large data sets acquired in the tests of specimens with artificially introduced notches as well as the results of numerous fatigue experiments. Effect of the classifier structure and test data used for training on the results was evaluated.

Keywords: ANN, fatigue damage, aircraft structures, piezoelectric transducers, lamb-wave measurements

Procedia PDF Downloads 385
3538 Study of Seismic Damage Reinforced Concrete Frames in Variable Height with Logistic Statistic Function Distribution

Authors: P. Zarfam, M. Mansouri Baghbaderani

Abstract:

In seismic design, the proper reaction to the earthquake and the correct and accurate prediction of its subsequent effects on the structure are critical. Choose a proper probability distribution, which gives a more realistic probability of the structure's damage rate, is essential in damage discussions. With the development of design based on performance, analytical method of modal push over as an inexpensive, efficacious, and quick one in the estimation of the structures' seismic response is broadly used in engineering contexts. In this research three concrete frames of 3, 6, and 13 stories are analyzed in non-linear modal push over by 30 different earthquake records by OpenSEES software, then the detriment indexes of roof's displacement and relative displacement ratio of the stories are calculated by two parameters: peak ground acceleration and spectra acceleration. These indexes are used to establish the value of damage relations with log-normal distribution and logistics distribution. Finally the value of these relations is compared and the effect of height on the mentioned damage relations is studied, too.

Keywords: modal pushover analysis, concrete structure, seismic damage, log-normal distribution, logistic distribution

Procedia PDF Downloads 219
3537 A FE-Based Scheme for Computing Wave Interaction with Nonlinear Damage and Generation of Harmonics in Layered Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos

Abstract:

A Finite Element (FE) based scheme is presented for quantifying guided wave interaction with Localised Nonlinear Structural Damage (LNSD) within structures of arbitrary layering and geometric complexity. The through-thickness mode-shape of the structure is obtained through a wave and finite element method. This is applied in a time domain FE simulation in order to generate time harmonic excitation for a specific wave mode. Interaction of the wave with LNSD within the system is computed through an element activation and deactivation iteration. The scheme is validated against experimental measurements and a WFE-FE methodology for calculating wave interaction with damage. Case studies for guided wave interaction with crack and delamination are presented to verify the robustness of the proposed method in classifying and identifying damage.

Keywords: layered structures, nonlinear ultrasound, wave interaction with nonlinear damage, wave finite element, finite element

Procedia PDF Downloads 123
3536 Flood Scenarios for Hydrological and Hydrodynamic Modelling

Authors: M. Sharif Imam Ibne Amir, Mohammad Masud Kamal Khan, Mohammad Golam Rasul, Raj H. Sharma, Fatema Akram

Abstract:

Future flood can be predicted using the probable maximum flood (PMF). PMF is calculated using the historical discharge or rainfall data considering the other climatic parameter stationary. However, climate is changing globally and the key climatic variables are temperature, evaporation, rainfall and sea level rise (SLR). To develop scenarios to a basin or catchment scale these important climatic variables should be considered. Nowadays scenario based on climatic variables is more suitable than PMF. Six scenarios were developed for a large Fitzroy basin and presented in this paper.

Keywords: climate change, rainfall, potential evaporation, scenario, sea level rise (SLR), sub-catchment

Procedia PDF Downloads 485
3535 Thermomechanical Damage Modeling of F114 Carbon Steel

Authors: A. El Amri, M. El Yakhloufi Haddou, A. Khamlichi

Abstract:

The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.

Keywords: thermo-mechanical fatigue, failure, numerical simulation, fracture, damage

Procedia PDF Downloads 365
3534 Contribution in Fatigue Life Prediction of Composite Material

Authors: Mostefa Bendouba, Djebli Abdelkader, Abdelkrim Aid, Mohamed Benguediab

Abstract:

The damage evolution mechanism is one of the important focuses of fatigue behaviour investigation of composite materials and also is the foundation to predict fatigue life of composite structures for engineering application. This paper is dedicated to a damage investigation under two block loading cycle fatigue conditions submitted to composite material. The loading sequence effect and the influence of the cycle ratio of the first stage on the cumulative fatigue life were studied herein. Two loading sequences, i.e., high-to-low and low-to-high cases are considered in this paper. The proposed damage indicator is connected cycle by cycle to the S-N curve and the experimental results are in agreement with model expectations. Some experimental researches are used to validate this proposition.

Keywords: fatigue, damage acumulation, composite, evolution

Procedia PDF Downloads 459
3533 Quality of Life after Damage Control Laparotomy for Trauma

Authors: Noman Shahzad, Amyn Pardhan, Hasnain Zafar

Abstract:

Introduction: Though short term survival advantage of damage control laparotomy in management of critically ill trauma patients is established, there is little known about the long-term quality of life of these patients. Facial closure rate after damage control laparotomy is reported to be 20-70 percent. Abdominal wall reconstruction in those who failed to achieve facial closure is challenging and can potentially affect quality of life of these patients. Methodology: We conducted retrospective matched cohort study. Adult patients who underwent damage control laparotomy from Jan 2007 till Jun 2013 were identified through medical record. Patients who had concomitant disabling brain injury or limb injuries requiring amputation were excluded. Age, gender and presentation time matched non exposure group of patients who underwent laparotomy for trauma but no damage control were identified for each damage control laparotomy patient. Quality of life assessment was done via telephonic interview at least one year after the operation, using Urdu version of EuroQol Group Quality of Life (QOL) questionnaire EQ5D after permission. Wilcoxon signed rank test was used to compare QOL scores and McNemar test was used to compare individual parameters of QOL questionnaire. Study was approved by institutional ethical review committee. Results: Out of 32 patients who underwent damage control laparotomy during study period, 20 fulfilled the selection criteria for which 20 matched controls were selected. Median age of patients (IQ Range) was 33 (26-40) years. Facial closure rate in damage control laparotomy group was 40% (8/20). One third of those who did not achieve facial closure (4/12) underwent abdominal wall reconstruction. Self-reported QOL score of damage control laparotomy patients was significantly worse than non-damage control group (p = 0.032). There was no statistically significant difference in two groups regarding individual QOL measures. Significantly, more patients in damage control group were requiring use of abdominal binder, and more patients in damage control group had to either change their job or had limitations in continuing previous job. Our study was not adequately powered to detect factors responsible for worse QOL in damage control group. Conclusion: Quality of life of damage control patients is worse than their age and gender matched patients who underwent trauma laparotomy but not damage control. Adequately powered studies need to be conducted to explore factors responsible for this finding for potential improvement.

Keywords: damage control laparotomy, laparostomy, quality of life

Procedia PDF Downloads 247
3532 Visualization of Corrosion at Plate-Like Structures Based on Ultrasonic Wave Propagation Images

Authors: Aoqi Zhang, Changgil Lee Lee, Seunghee Park

Abstract:

A non-contact nondestructive technique using laser-induced ultrasonic wave generation method was applied to visualize corrosion damage at aluminum alloy plate structures. The ultrasonic waves were generated by a Nd:YAG pulse laser, and a galvanometer-based laser scanner was used to scan specific area at a target structure. At the same time, wave responses were measured at a piezoelectric sensor which was attached on the target structure. The visualization of structural damage was achieved by calculating logarithmic values of root mean square (RMS). Damage-sensitive feature was defined as the scattering characteristics of the waves that encounter corrosion damage. The corroded damage was artificially formed by hydrochloric acid. To observe the effect of the location where the corrosion was formed, the both sides of the plate were scanned with same scanning area. Also, the effect on the depth of the corrosion was considered as well as the effect on the size of the corrosion. The results indicated that the damages were successfully visualized for almost cases, whether the damages were formed at the front or back side. However, the damage could not be clearly detected because the depth of the corrosion was shallow. In the future works, it needs to develop signal processing algorithm to more clearly visualize the damage by improving signal-to-noise ratio.

Keywords: non-destructive testing, corrosion, pulsed laser scanning, ultrasonic waves, plate structure

Procedia PDF Downloads 276
3531 Damage Detection in a Cantilever Beam under Different Excitation and Temperature Conditions

Authors: A. Kyprianou, A. Tjirkallis

Abstract:

Condition monitoring of structures in service is very important as it provides information about the risk of damage development. One of the essential constituents of structural condition monitoring is the damage detection methodology. In the context of condition monitoring of in service structures a damage detection methodology analyses data obtained from the structure while it is in operation. Usually, this means that the data could be affected by operational and environmental conditions in a way that could mask the effects of a possible damage on the data. This, depending on the damage detection methodology, could lead to either false alarms or miss existing damages. In this article a damage detection methodology that is based on the Spatio-temporal continuous wavelet transform (SPT-CWT) analysis of a sequence of experimental time responses of a cantilever beam is proposed. The cantilever is subjected to white and pink noise excitation to simulate different operating conditions. In addition, in order to simulate changing environmental conditions, the cantilever is subjected to heating by a heat gun. The response of the cantilever beam is measured by a high-speed camera. Edges are extracted from the series of images of the beam response captured by the camera. Subsequent processing of the edges gives a series of time responses on 439 points on the beam. This sequence is then analyzed using the SPT-CWT to identify damage. The algorithm proposed was able to clearly identify damage under any condition when the structure was excited by white noise force. In addition, in the case of white noise excitation, the analysis could also reveal the position of the heat gun when it was used to heat the structure. The analysis could identify the different operating conditions i.e. between responses due to white noise excitation and responses due to pink noise excitation. During the pink noise excitation whereas damage and changing temperature were identified it was not possible to clearly identify the effect of damage from that of temperature. The methodology proposed in this article for damage detection enables the separation the damage effect from that due to temperature and excitation on data obtained from measurements of a cantilever beam. This methodology does not require information about the apriori state of the structure.

Keywords: spatiotemporal continuous wavelet transform, damage detection, data normalization, varying temperature

Procedia PDF Downloads 256
3530 Prediction of Seismic Damage Using Scalar Intensity Measures Based on Integration of Spectral Values

Authors: Konstantinos G. Kostinakis, Asimina M. Athanatopoulou

Abstract:

A key issue in seismic risk analysis within the context of Performance-Based Earthquake Engineering is the evaluation of the expected seismic damage of structures under a specific earthquake ground motion. The assessment of the seismic performance strongly depends on the choice of the seismic Intensity Measure (IM), which quantifies the characteristics of a ground motion that are important to the nonlinear structural response. Several conventional IMs of ground motion have been used to estimate their damage potential to structures. Yet, none of them has been proved to be able to predict adequately the seismic damage. Therefore, alternative, scalar intensity measures, which take into account not only ground motion characteristics but also structural information have been proposed. Some of these IMs are based on integration of spectral values over a range of periods, in an attempt to account for the information that the shape of the acceleration, velocity or displacement spectrum provides. The adequacy of a number of these IMs in predicting the structural damage of 3D R/C buildings is investigated in the present paper. The investigated IMs, some of which are structure specific and some are nonstructure-specific, are defined via integration of spectral values. To achieve this purpose three symmetric in plan R/C buildings are studied. The buildings are subjected to 59 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along the structural axes. The response is determined by nonlinear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures are correlated with seven scalar ground motion IMs. The comparative assessment of the results revealed that the structure-specific IMs present higher correlation with the seismic damage of the three buildings. However, the adequacy of the IMs for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.

Keywords: damage measures, bidirectional excitation, spectral based IMs, R/C buildings

Procedia PDF Downloads 293
3529 On implementing Sumak Kawsay in Post Bellum Principles: The Reconstruction of Natural Damage in the Aftermath of War

Authors: Lisa Tragbar

Abstract:

In post-war scenarios, reconstruction is a principle towards creating a Just Peace in order to restore a stable post-war society. Just peace theorists explore normative behaviour after war, including the duties and responsibilities of different actors and peacebuilding strategies to achieve a lasting, positive peace. Environmental peace ethicists have argued for including the role of nature in the Ethics of War and Peace. This text explores the question of why and how to rethink the value of nature in post-war scenarios. The aim is to include the rights of nature within a maximalist account of reconstruction by highlighting sumak kawsay in the post-war period. Destruction of nature is usually considered collateral damage in war scenarios. Common universal standards for post-war reconstruction are restitution, compensation and reparation programmes, which is mostly anthropocentric approach. The problem of reconstruction in the aftermath of war is the instrumental value of nature. The responsibility to rebuild needs to be revisited within a non-anthropocentric context. There is an ongoing debate about a minimalist or maximalist approach to post-war reconstruction. While Michael Walzer argues for minimalist in-and-out interventions, Alex Bellamy argues for maximalist strategies such as the responsibility to protect, a UN-concept on how face mass atrocity crimes and how to reconstruct peace. While supporting the tradition of maximalist responsibility to rebuild, these normative post-Bellum concepts do not yet sufficiently consider the rights of nature in the aftermath of war. While reconstruction of infrastructures seems important and necessary, concepts that strengthen the intrinsic value of nature in post-bellum measures must also be included. Peace is not Just Peace without a thriving nature that provides the conditions and resources to live and guarantee human rights. Ecuador's indigenous philosophy of life can contribute to the restoration of nature after war by changing the perspective on the value of nature. The sumak kawsay includes the de-hierarchisation of humans and nature and the principle of reciprocity towards nature. Transferring this idea of life and interconnectedness to post-war reconstruction practices, post bellum perpetrators have restorative obligations not only to people but also to nature. This maximalist approach would include both a restitutive principle, by restoring the balance between humans and nature, and a retributive principle, by punishing the perpetrators through compensatory duties to nature. A maximalist approach to post-war reconstruction that takes into account the rights of nature expands the normative post-war questions to include a more complex field of responsibilities. After a war, Just Peace is restored once not only human rights but also the rights of nature are secured. A minimalist post-bellum approach to reconstruction does not locate future problems at their source and does not offer a solution for the inclusion of obligations to nature. There is a lack of obligations towards nature after a war, which can be changed through a different perspective: The indigenous philosophy of life provides the necessary principles for a comprehensive reconstruction of Just Peace.

Keywords: normative ethics, peace, post-war, sumak kawsay, applied ethics

Procedia PDF Downloads 52
3528 Collapse Capacity and Energy Absorption Mechanism of High Rise Steel Moment Frame Considering Aftershock Effects

Authors: Mohammadmehdi Torfehnejad, Serhan Sensoy

Abstract:

Many structures sustain damage during a mainshock earthquake but undergo severe damage under aftershocks following the mainshock. Past researches have studied aftershock effects through different methodologies, but few structural systems have been evaluated for these effects. Collapse capacity and energy absorption mechanism of the Special Steel Moment Frame (SSMF) system is evaluated in this study, under aftershock earthquakes when prior damage is caused by the mainshock. A twenty-story building is considered in assessing the residual collapse capacity and energy absorption mechanism under aftershock excitation. In addition, various levels of mainshock damage are considered and reflected through two different response parameters. Aftershock collapse capacity is estimated using incremental dynamic analysis (IDA) applied following the mainshock. The study results reveal that the collapse capacity of high-rise structures undergoes a remarkable reduction for high level of mainshock damage. The energy absorption in the columns is decreased by increasing the level of mainshock damage.

Keywords: seismic collapse, mainshock-aftershock effect, incremental dynamic analysis, energy absorption

Procedia PDF Downloads 103
3527 Multi-Scale Damage and Mechanical Behavior of Sheet Molding Compound Composites Subjected to Fatigue, Dynamic, and Post-Fatigue Dynamic Loadings

Authors: M. Shirinbayan, J. Fitoussi, N. Abbasnezhad, A. Lucas, A. Tcharkhtchi

Abstract:

Sheet Molding Compounds (SMCs) with special microstructures are very attractive to use in automobile structures especially when they are accidentally subjected to collision type accidents because of their high energy absorption capacity. These are materials designated as standard SMC, Advanced Sheet Molding Compounds (A-SMC), Low-Density SMC (LD-SMC) and etc. In this study, testing methods have been performed to compare the mechanical responses and damage phenomena of SMC, LD-SMC, and A-SMC under quasi-static and high strain rate tensile tests. The paper also aims at investigating the effect of an initial pre-damage induced by fatigue on the tensile dynamic behavior of A-SMC. In the case of SMCs and A-SMCs, whatever the fibers orientation and applied strain rate are, the first observed phenomenon of damage corresponds to decohesion of the fiber-matrix interface which is followed by coalescence and multiplication of these micro-cracks and their propagations. For LD-SMCs, damage mechanisms depend on the presence of Hollow Glass Microspheres (HGM) and fibers orientation.

Keywords: SMC, Sheet Molding Compound, LD-SMC, Low-Density SMC, A-SMC, Advanced Sheet Molding Compounds, HGM, Hollow Glass Microspheres, damage

Procedia PDF Downloads 182
3526 Automatic Algorithm for Processing and Analysis of Images from the Comet Assay

Authors: Yeimy L. Quintana, Juan G. Zuluaga, Sandra S. Arango

Abstract:

The comet assay is a method based on electrophoresis that is used to measure DNA damage in cells and has shown important results in the identification of substances with a potential risk to the human population as innumerable physical, chemical and biological agents. With this technique is possible to obtain images like a comet, in which the tail of these refers to damaged fragments of the DNA. One of the main problems is that the image has unequal luminosity caused by the fluorescence microscope and requires different processing to condition it as well as to know how many optimal comets there are per sample and finally to perform the measurements and determine the percentage of DNA damage. In this paper, we propose the design and implementation of software using Image Processing Toolbox-MATLAB that allows the automation of image processing. The software chooses the optimum comets and measuring the necessary parameters to detect the damage.

Keywords: artificial vision, comet assay, DNA damage, image processing

Procedia PDF Downloads 270
3525 Structural Health Monitoring and Damage Structural Identification Using Dynamic Response

Authors: Reza Behboodian

Abstract:

Monitoring the structural health and diagnosing their damage in the early stages has always been one of the topics of concern. Nowadays, research on structural damage detection methods based on vibration analysis is very extensive. Moreover, these methods can be used as methods of permanent and timely inspection of structures and prevent further damage to structures. Non-destructive methods are the low-cost and economical methods for determining the damage of structures. In this research, a non-destructive method for detecting and identifying the failure location in structures based on dynamic responses resulting from time history analysis is proposed. When the structure is damaged due to the reduction of stiffness, and due to the applied loads, the displacements in different parts of the structure were increased. In the proposed method, the damage position is determined based on the calculation of the strain energy difference in each member of the damaged structure and the healthy structure at any time. Defective members of the structure are indicated by the amount of strain energy relative to the healthy state. The results indicated that the proper accuracy and performance of the proposed method for identifying failure in structures.

Keywords: failure, time history analysis, dynamic response, strain energy

Procedia PDF Downloads 99
3524 Life Cycle Assessment of Almond Processing: Off-ground Harvesting Scenarios

Authors: Jessica Bain, Greg Thoma, Marty Matlock, Jeyam Subbiah, Ebenezer Kwofie

Abstract:

The environmental impact and particulate matter emissions (PM) associated with the production and packaging of 1 kg of almonds were evaluated using life cycle assessment (LCA). The assessment began at the point of ready to harvest with a system boundary was a cradle-to-gate assessment of almond packaging in California. The assessment included three scenarios of off-ground harvesting of almonds. The three general off-ground harvesting scenarios with variations include the harvested almonds solar dried on a paper tarp in the orchard, the harvested almonds solar dried on the floor in a separate lot, and the harvested almonds dried mechanically. The life cycle inventory (LCI) data for almond production were based on previously published literature and data provided by Almond Board of California (ABC). The ReCiPe 2016 method was used to calculate the midpoint impacts. Using consequential LCA model, the global warming potential (GWP) for the three harvesting scenarios are 2.90, 2.86, and 3.09 kg CO2 eq/ kg of packaged almond for scenarios 1, 2a, and 3a, respectively. The global warming potential for conventional harvesting method was 2.89 kg CO2 eq/ kg of packaged almond. The particulate matter emissions for each scenario per hectare for each off-ground harvesting scenario is 77.14, 9.56, 66.86, and 8.75 for conventional harvesting and scenarios 1, 2, and 3, respectively. The most significant contributions to the overall emissions were from almond production. The farm gate almond production had a global warming potential of 2.12 kg CO2 eq/ kg of packaged almond, approximately 73% of the overall emissions. Based on comparisons between the GWP and PM emissions, scenario 2a was the best tradeoff between GHG and PM production.

Keywords: life cycle assessment, low moisture foods, sustainability, LCA

Procedia PDF Downloads 51
3523 Identification of Environmental Damage Due to Mining Area Bangka Islands in Indonesia

Authors: Aroma Elmina Martha

Abstract:

Environment affects the continuity of life and human well-being and the bodies of other living. Environmental quality is very closely related to the quality of life. Sustainability must be protected from damage due to the use of natural resources, such as tin mining in Bangka island. This research is a descriptive study, which identifies the environmental damage caused by mining land and sea in Bangka district. The approach used is juridical, social and economic. The study uses primary legal materials, secondary, and tertiary, equipped with field research. The analysis technique used is qualitative analysis. The impacts of mining on land among other physical and chemical damage, erosion and widening the depth of the river, a pool of micro-climate, the quality and feasibility, vegetation, wildlife and biodiversity, land values, social and economic. This mining causes damage to the soil structure, and puddles in the former digs which were not backfilled again. The impact of mining on the ocean such as changes in current surge, erosion and abrasion basic coastal waters, shoreline change, marine water quality changes, and changes in marine communities. The findings of the research show that tin mining in the sea also potentially have a significant impact on the life of the reef, populations of marine organisms. However, mining on land needs to consider the impact of the damage, so that the damage can be minimized. In the recovery process needs to be pursued by exploiting the rest of the pile of tin. Thus, mining activities should take into account the distance of beach sediment size, wave height, wave length, wave period, and the acceleration of gravity. The process of the tin washing should be done in a fairly safe area, thus avoiding damage to the coral reefs that will eventually reduce the population of marine life.

Keywords: abration, environmental damage, mining, shoreline

Procedia PDF Downloads 294
3522 Probabilistic Damage Tolerance Methodology for Solid Fan Blades and Discs

Authors: Andrej Golowin, Viktor Denk, Axel Riepe

Abstract:

Solid fan blades and discs in aero engines are subjected to high combined low and high cycle fatigue loads especially around the contact areas between blade and disc. Therefore, special coatings (e.g. dry film lubricant) and surface treatments (e.g. shot peening or laser shock peening) are applied to increase the strength with respect to combined cyclic fatigue and fretting fatigue, but also to improve damage tolerance capability. The traditional deterministic damage tolerance assessment based on fracture mechanics analysis, which treats service damage as an initial crack, often gives overly conservative results especially in the presence of vibratory stresses. A probabilistic damage tolerance methodology using crack initiation data has been developed for fan discs exposed to relatively high vibratory stresses in cross- and tail-wind conditions at certain resonance speeds for limited time periods. This Monte-Carlo based method uses a damage databank from similar designs, measured vibration levels at typical aircraft operations and wind conditions and experimental crack initiation data derived from testing of artificially damaged specimens with representative surface treatment under combined fatigue conditions. The proposed methodology leads to a more realistic prediction of the minimum damage tolerance life for the most critical locations applicable to modern fan disc designs.

Keywords: combined fatigue, damage tolerance, engine, surface treatment

Procedia PDF Downloads 444
3521 Comparison of Risk Analysis Methodologies Through the Consequences Identification in Chemical Accidents Associated with Dangerous Flammable Goods Storage

Authors: Daniel Alfonso Reséndiz-García, Luis Antonio García-Villanueva

Abstract:

As a result of the high industrial activity, which arises from the search to satisfy the needs of products and services for society, several chemical accidents have occurred, causing serious damage to different sectors: human, economic, infrastructure and environmental losses. Historically, with the study of this chemical accidents, it has been determined that the causes are mainly due to human errors (inexperienced personnel, negligence, lack of maintenance and deficient risk analysis). The industries have the aim to increase production and reduce costs. However, it should be kept in mind that the costs involved in risk studies, implementation of barriers and safety systems is much cheaper than paying for the possible damages that could occur in the event of an accident, without forgetting that there are things that cannot be replaced, such as human lives.Therefore, it is of utmost importance to implement risk studies in all industries, which provide information for prevention and planning. The aim of this study is to compare risk methodologies by identifying the consequences of accidents related to the storage of flammable, dangerous goods for decision making and emergency response.The methodologies considered in this study are qualitative and quantitative risk analysis and consequence analysis. The latter, by means of modeling software, which provides radius of affectation and the possible scope and magnitude of damages.By using risk analysis, possible scenarios of occurrence of chemical accidents in the storage of flammable substances are identified. Once the possible risk scenarios have been identified, the characteristics of the substances, their storage and atmospheric conditions are entered into the software.The results provide information that allows the implementation of prevention, detection, control, and combat elements for emergency response, thus having the necessary tools to avoid the occurrence of accidents and, if they do occur, to significantly reduce the magnitude of the damage.This study highlights the importance of risk studies applying tools that best suited to each case study. It also proves the importance of knowing the risk exposure of industrial activities for a better prevention, planning and emergency response.

Keywords: chemical accidents, emergency response, flammable substances, risk analysis, modeling

Procedia PDF Downloads 43
3520 The Effect of Traffic Load on the Maximum Response of a Cable-Stayed Bridge under Blast Loads

Authors: S. K. Hashemi, M. A. Bradford, H. R. Valipour

Abstract:

The Recent collapse of bridges has raised the awareness about safety and robustness of bridges subjected to extreme loading scenarios such as intentional/unintentional blast loads. The air blast generated by the explosion of bombs or fuel tankers leads to high-magnitude short-duration loading scenarios that can cause severe structural damage and loss of critical structural members. Hence, more attentions need to put towards bridge structures to develop guidelines to increase the resistance of such structures against the probable blast. Recent advancements in numerical methods have brought about the viable and cost effective facilities to simulate complicated blast scenarios and subsequently provide useful reference for safeguarding design of critical infrastructures. In the previous studies common bridge responses to blast load, the traffic load is sometimes not included in the analysis. Including traffic load will increase the axial compression in bridge piers especially when the axial load is relatively small. Traffic load also can reduce the uplift of girders and deck when the bridge experiences under deck explosion. For more complicated structures like cable-stayed or suspension bridges, however, the effect of traffic loads can be completely different. The tension in the cables increase and progressive collapse is likely to happen while traffic loads exist. Accordingly, this study is an attempt to simulate the effect of traffic load cases on the maximum local and global response of an entire cable-stayed bridge subjected to blast loadings using LS-DYNA explicit finite element code. The blast loads ranged from small to large explosion placed at different positions above the deck. Furthermore, the variation of the traffic load factor in the load combination and its effect on the dynamic response of the bridge under blast load is investigated.

Keywords: blast, cable-stayed bridge, LS-DYNA, numerical, traffic load

Procedia PDF Downloads 305
3519 An Integrated Experimental and Numerical Approach to Develop an Electronic Instrument to Study Apple Bruise Damage

Authors: Paula Pascoal-Faria, Rúben Pereira, Elodie Pinto, Miguel Belbut, Ana Rosa, Inês Sousa, Nuno Alves

Abstract:

Apple bruise damage from harvesting, handling, transporting and sorting is considered to be the major source of reduced fruit quality, resulting in loss of profits for the entire fruit industry. The three factors which can physically cause fruit bruising are vibration, compression load and impact, the latter being the most common source of bruise damage. Therefore, prediction of the level of damage, stress distribution and deformation of the fruits under external force has become a very important challenge. In this study, experimental and numerical methods were used to better understand the impact caused when an apple is dropped from different heights onto a plastic surface and a conveyor belt. Results showed that the extent of fruit damage is significantly higher for plastic surface, being dependent on the height. In order to support the development of a biomimetic electronic device for the determination of fruit damage, the mechanical properties of the apple fruit were determined using mechanical tests. Preliminary results showed different values for the Young’s modulus according to the zone of the apple tested. Along with the mechanical characterization of the apple fruit, the development of the first two prototypes is discussed and the integration of the results obtained to construct the final element model of the apple is presented. This work will help to reduce significantly the bruise damage of fruits or vegetables during the entire processing which will allow the introduction of exportation destines and consequently an increase in the economic profits in this sector.

Keywords: apple, fruit damage, impact during crop and post-crop, mechanical characterization of the apple, numerical evaluation of fruit damage, electronic device

Procedia PDF Downloads 270
3518 Study of Laser Induced Damage Threshold in HfO₂/SiO₂ Multilayer Films after β-Ray Irradiation

Authors: Meihua Fang, Tao Fei

Abstract:

Post-processing can effectively improve the resistance to laser damage in multilayer films used in a high power laser system. In this work, HfO₂/SiO₂ multilayer films are prepared by e-beam evaporation and then β-ray irradiation is employed as the post-processing method. The particle irradiation affects the laser induced damage threshold (LIDT), which includes defects, surface roughness, packing density, and residual stress. The residual stress that is relaxed during irradiation changes from compressive stress into tensile stress. Our results indicate that appropriate tensile stress can improve LIDT remarkably. In view of the fact that LIDT rises from 8 J/cm² to 12 J/cm², i.e., 50% increase, after the film has been irradiated by 2.2×10¹³/cm² β-ray, the particle irradiation can be used as a controllable and desirable post-processing method to improve the resistance to laser induced damage.

Keywords: β-ray irradiation, multilayer film, residual stress, laser-induced damage threshold

Procedia PDF Downloads 112
3517 A Game Theory Analysis of the Effectiveness of Passenger Profiling for Transportation Security

Authors: Yael Deutsch, Arieh Gavious

Abstract:

The threat of aviation terrorism and its potential damage became significant after the 9/11 terror attacks. These attacks have led authorities and leaders to suggest that security personnel should overcome politically correct scruples about profiling and use it openly. However, there is a lack of knowledge about the smart usage of profiling and its advantages. We analyze game models that are suitable to specific real-world scenarios, focusing on profiling as a tool to detect potential violators, such as terrorists and smugglers. We provide analytical and clear answers to difficult questions, and by that help fighting against harmful violation acts.

Keywords: game theory, profiling, security, nash equilibrium

Procedia PDF Downloads 77
3516 Kernel Parallelization Equation for Identifying Structures under Unknown and Periodic Loads

Authors: Seyed Sadegh Naseralavi

Abstract:

This paper presents a Kernel parallelization equation for damage identification in structures under unknown periodic excitations. Herein, the dynamic differential equation of the motion of structure is viewed as a mapping from displacements to external forces. Utilizing this viewpoint, a new method for damage detection in structures under periodic loads is presented. The developed method requires only two periods of load. The method detects the damages without finding the input loads. The method is based on the fact that structural displacements under free and forced vibrations are associated with two parallel subspaces in the displacement space. Considering the concept, kernel parallelization equation (KPE) is derived for damage detection under unknown periodic loads. The method is verified for a case study under periodic loads.

Keywords: Kernel, unknown periodic load, damage detection, Kernel parallelization equation

Procedia PDF Downloads 255