Search results for: copper complex
6017 Copper Chelation by 3-(Bromoacetyl) Coumarin Derivative Induced Apoptosis in Cancer Cells: Influence of Copper Chelation Strategy in Cancer Treatment
Authors: Saman Khan, Imrana Naseem
Abstract:
Copper is an essential trace element required for pro-angiogenic co-factors including vascular endothelial growth factor (VEGF). Elevated levels of copper are found in various types of cancer including prostrate, colon, breast, lung and liver for angiogensis and metastasis. Therefore, targeting copper via copper-specific chelators in cancer cells can be developed as effective anticancer treatment strategy. In continuation of our pursuit to design and synthesize copper chelators, herein we opted for a reaction to incorporate di-(2-picolyl) amine in 3-(bromoacetyl) coumarin (parent backbone) for the synthesis of complex 1. We evaluated lipid peroxidation, protein carbonylation, ROS generation, DNA damage and consequent apoptosis by complex 1 in exogenously added Cu(II) in human peripheral lymphocytes (simulate malignancy condition). Results showed that Cu(II)-complex 1 interaction leads to cell proliferation inhibition, apoptosis, ROS generation and DNA damage in human lymphocytes, and these effects were abrogated by cuprous chelator neocuproine and ROS scavengers (thiourea, catalase, SOD). This indicates that complex 1 cytotoxicity is due to redox cycling of copper to generate ROS which leads to pro-oxidant cell death in cancer cells. To further confirm our hypothesis, using the rat model of diethylnitrosamine (DEN) induced hepatocellular carcinoma; we showed that complex 1 mediates DNA breakage and cell death in isolated carcinoma cells. Membrane permeant copper chelator, neocuproine, and ROS scavengers inhibited the complex 1-mediated cellular DNA degradation and apoptosis. In summary, complex 1 anticancer activity is due to its copper chelation capability. These results will provide copper chelation as an effective targeted cancer treatment strategy for selective cytotoxic action against malignant cells without affecting normal cells.Keywords: cancer treatment, copper chelation, ROS generation, DNA damage, redox cycling, apoptosis
Procedia PDF Downloads 2926016 Facile Synthesis of Copper Based Nanowires Suitable for Lithium Ion Battery Application
Authors: Zeinab Sanaee, Hossein Jafaripour
Abstract:
Copper is an excellent conductive material that is widely used in the energy devices such as Lithium-ion batteries and supercapacitors as the current collector. On the other hand, copper oxide nanowires have been used in these applications as potential electrode material. In this paper, nanowires of Copper and Copper oxide have been synthesized through a simple and time and cost-effective approach. The thermally grown Copper oxide nanowires have been converted into Copper nanowires through annealing in the Hydrogen atmosphere in a DC-PECVD system. To have a proper Copper nanostructure formation, an Au nanolayer was coated on the surface of Copper oxide nanowires. The results show the successful achievement of Copper nanowires without deformation or cracking. These structures have a great potential for Lithium-ion batteries and supercapacitors.Keywords: Copper, Copper oxide, nanowires, Hydrogen annealing, Lithium ion battery
Procedia PDF Downloads 876015 The Effect of Ionic Strength on the Extraction of Copper(II) from Perchlorate Solutions by Capric Acid in Chloroform
Abstract:
The liquid-liquid extraction of copper (II) from aqueous solution by capric acid (HL) in chloroform at 25°C has been studied. The ionic strength effect of the aqueous phase shows that the extraction of copper(II) increases with the increase in ionic strength. with different ionic strengths 1, 0.5, 0.25, 0.125 and 0.1M in the aqueous phase. Cu (II) is extracted as the complex CuL2(ClO4).Keywords: liquid-liquid extraction, ionic strength, copper (II), capric acid
Procedia PDF Downloads 5336014 Removal Cobalt (II) and Copper (II) by Solvent Extraction from Sulfate Solutions by Capric Acid in Chloroform
Abstract:
Liquid-liquid extraction is one of the most useful techniques for selective removal and recovery of metal ions from aqueous solutions, applied in purification processes in numerous chemical and metallurgical industries. In this work, The liquid-liquid extraction of cobalt (II) and copper (II) from aqueous solution by capric acid (HL) in chloroform at 25°C has been studied. Our interest in this paper is to study the effect of concentration of capric acid on the extraction of Co(II) and Cu(II) to see the complexes could be formed in the organic phase using various concentration of capric acid. The extraction of cobalt (II) and copper (II) is extracted as the complex CoL2 (HL )2, CuL2 (HL)2.Keywords: capric acid, Cobalt(II), copper(II), liquid-liquid extraction
Procedia PDF Downloads 4416013 Targeted Delivery of Novel Copper-Based Nanoparticles for Advance Cancer Therapeutics
Authors: Arindam Pramanik, Parimal Karmakar
Abstract:
We have explored the synergistic anti-cancer activity of copper ion and acetylacetone complex containing 1,3 diketone group (like curcumin) in metallorganic compound “Copper acetylacetonate” (CuAA). The cytotoxicity mechanism of CuAA complex was evaluated on various cancer cell lines in vitro. Among these, reactive oxygen species (ROS), glutathione level (GSH) in the cell was found to increase. Further mitochondrial membrane damage was observed. The fate of cell death was found to be induced by apoptosis. For application purpose, we have developed a novel biodegradable, non-toxic polymer-based nanoparticle which has hydrophobically modified core for loading of the CuAA. Folic acid is conjugated on the surface of the polymer (chitosan) nanoparticle for targeting to cancer cells for minimizing toxicity to normal cells in-vivo. Thus, this novel drug CuAA has an efficient anticancer activity which has been targeted specifically to cancer cells through polymer nanoparticle.Keywords: anticancer, apoptosis, copper nanoparticle, targeted drug delivery
Procedia PDF Downloads 4846012 Boiling Heat Transfer Enhancement Using Hydrophilic Millimeter Copper Free Particles
Authors: Abbasali Abouei Mehrizi, Hao Wang, Leping Zhou
Abstract:
Modification of surface wettability is one of the conventional approaches to manipulate the boiling heat transfer. Instead of direct surface modification, in the present study, the surface is decorated with free copper particles with different hydrophobicity. We used millimeter-sized copper particles with two different hydrophobicity. The surface is covered with untreated, hydrophilic, and a combination of hydrophobic and hydrophilic copper particles separately, and the heat flux and wall superheat temperature was measured experimentally and compared with the bare polished copper surface. The results show that the untreated copper particles can slightly improve the boiling heat transfer when the hydrophilic copper particles have better performance. Combining hydrophilic and hydrophobic copper particles reduces boiling heat transfer.Keywords: boiling heat transfer, copper balls, hydrophobic, hydrophilic
Procedia PDF Downloads 716011 Effect of Edta in the Phytoextraction of Copper by Terminalia catappa (Talisay) Linnaeus
Authors: Ian Marc G. Cabugsa, Zarine M. Hermita
Abstract:
Phytoextraction capability of T. catappa in contaminated soils was done in the improvised greenhouse. The plant samples were planted to the soil which contained different concentrations of copper. Chelating agent EDTA was added to observe the uptake and translocation of copper in the plant samples. Results showed a significant increase of copper accumulation with the addition of EDTA at 250 and 1250 mgˑkg-1 concentration of copper in the contaminated soils (p<0.05). While translocation of copper was observed in all treatments, translocation of copper is not significantly enhanced by the addition of EDTA (p>0.05). Uptake and translocation were not directly affected the presence of EDTA. Furthermore, this study suggests that the T. catappa is not a hyperaccumulator of copper, and there is no relationship observed between the length of the plant and the copper uptake in all treatments.Keywords: chelating agent EDTA, hyperaccumulator, phytoextraction, phytoremediation, terminalia catappa
Procedia PDF Downloads 3856010 Copper Removal from Synthetic Wastewater by a Novel Fluidized-bed Homogeneous Crystallization (FBHC) Technology
Authors: Cheng-Yen Huang, Yu-Jen Shih, Ming-Chun Yen, Yao-Hui Huang
Abstract:
This research developed a fluidized-bed homogeneous crystallization (FBHC) process to remove copper from synthetic wastewater in terms of recovery of highly pure malachite (Cu2(OH)2CO3) pellets. The experimental parameters of FBHC which included pH, molar ratio of copper to carbonate, copper loading, upper flowrate and bed height were tested in the absence of seed particles. Under optimized conditions, both the total copper removal (TR) and crystallization ratio (CR) reached 99%. The malachite crystals were characterized by XRD and SEM. FBHC was capable of treating concentrated copper (1600 ppm) wastewater and minimizing the sludge production.Keywords: copper, carbonate, fluidized-bed, crystallization, malachite
Procedia PDF Downloads 4236009 Application of Various Methods for Evaluation of Heavy Metal Pollution in Soils around Agarak Copper-Molybdenum Mine Complex, Armenia
Authors: K. A. Ghazaryan, H. S. Movsesyan, N. P. Ghazaryan
Abstract:
The present study was aimed in assessing the heavy metal pollution of the soils around Agarak copper-molybdenum mine complex and related environmental risks. This mine complex is located in the south-east part of Armenia, and the present study was conducted in 2013. The soils of the five riskiest sites of this region were studied: surroundings of the open mine, the sites adjacent to processing plant of Agarak copper-molybdenum mine complex, surroundings of Darazam active tailing dump, the recultivated tailing dump of “ravine - 2”, and the recultivated tailing dump of “ravine - 3”. The mountain cambisol was the main soil type in the study sites. The level of soil contamination by heavy metals was assessed by Contamination factors (Cf), Degree of contamination (Cd), Geoaccumulation index (I-geo) and Enrichment factor (EF). The distribution pattern of trace metals in the soil profile according to Cf, Cd, I-geo and EF values shows that the soil is much polluted. Almost in all studied sites, Cu, Mo, Pb, and Cd were the main polluting heavy metals, and this was conditioned by Agarak copper-molybdenum mine complex activity. It is necessary to state that the pollution problem becomes pressing as some parts of these highly polluted region are inhabited by population, and agriculture is highly developed there; therefore, heavy metals can be transferred into human bodies through food chains and have direct influence on public health. Since the induced pollution can pose serious threats to public health, further investigations on soil and vegetation pollution are recommended. Finally, Cf calculating based on distance from the pollution source and the wind direction can provide more reasonable results.Keywords: Agarak copper-molybdenum mine complex, heavy metals, soil contamination, enrichment factor (EF), Armenia
Procedia PDF Downloads 2376008 Synthesis of Bimetallic Fe/Cu Nanoparticles with Different Copper Loading Ratios
Authors: May Thant Zin, Josephine Borja, Hirofumi Hinode, Winarto Kurniawan
Abstract:
Nanotechnology has multiple and enormous advantages for all application. Therefore, this research is carried out to synthesize and characterize bimetallic iron with copper nano-particles. After synthesizing nano zero valent iron by reduction of ferric chloride by sodium borohydride under nitrogen purging environment, bimetallic iron with copper nanoparticles are synthesized by varying different loads of copper chloride. Due to different standard potential (E0) values of copper and iron, copper is coupled with iron at (Cu to Fe ratio of 1:5, 1:6.7, 1:10, 1:20). It is found that the resulted bimetallic Fe/Cu nanoparticles are composing phases of iron and copper. According to the diffraction patterns indicating the state of chemical combination of the bimetallic nanoparticles, the particles are well-combined and crystalline sizes are less than 1000 Ao (or 100 nm). Specifically, particle sizes of synthesized bimetallic Fe/Cu nanoparticles are ranging from 44.583 nm to 85.149 nm. Procedia PDF Downloads 4466007 The Optimization of Copper Sulfate and Tincalconite Molar Ratios on the Hydrothermal Synthesis of Copper Borates
Authors: E. Moroydor Derun, N. Tugrul, F. T. Senberber, A. S. Kipcak, S. Piskin
Abstract:
In this research, copper borates are synthesized by the reaction of copper sulfate pentahydrate (CuSO4.5H2O) and tincalconite (Na2O4B7.10H2O). The experimental parameters are selected as 80°C reaction temperature and 60 of reaction time. The effect of mole ratio of CuSO4.5H2O to Na2O4B7.5H2O is studied. For the identification analyses X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques are used. At the end of the experiments, synthesized copper borate is matched with the powder diffraction file of “00-001-0472” [Cu(BO2)2] and characteristic vibrations between B and O atoms are seen. The proper crystals are obtained at the mole ratio of 3:1. This study showed that simplified synthesis process is suitable for the production of copper borate minerals.Keywords: hydrothermal synthesis, copper borates, copper sulfate, tincalconite
Procedia PDF Downloads 3816006 Polyacrylate Modified Copper Nanoparticles with Controlled Size
Authors: Robert Prucek, Aleš Panáček, Jan Filip, Libor Kvítek, Radek Zbořil
Abstract:
The preparation of Cu nanoparticles (NPs) through the reduction of copper ions by sodium borohydride in the presence of sodium polyacrylate with a molecular weight of 1200 is reported. Cu NPs were synthesized at a concentration of copper salt equal to 2.5, 5, and 10 mM, and at a molar ratio of copper ions and monomeric unit of polyacrylate equal to 1:2. The as-prepared Cu NPs have diameters of about 2.5–3 nm for copper concentrations of 2.5 and 5 mM, and 6 nm for copper concentration of 10 mM. Depending on the copper salt concentration and concentration of additionally added polyacrylate to Cu particle dispersion, primarily formed NPs grow through the process of aggregation and/or coalescence into clusters and/or particles with a diameter between 20–100 nm. The amount of additionally added sodium polyacrylate influences the stability of Cu particles against air oxidation. The catalytic efficiency of the prepared Cu particles for the reduction of 4-nitrophenol is discussed.Keywords: copper, nanoparticles, sodium polyacrylate, catalyst, 4-nitrophenol
Procedia PDF Downloads 2786005 Effect of Copper Complexes on Human Colon Carcinoma Cell Line and Human Breast Carcinoma Cell Line
Authors: Katarína Koňariková, Georgios A. Perdikaris, Lucia Andrezálová, Zdeňka Ďuračková, Lucia Laubertová, Helena Gbelcová, Ingrid Žitňanová
Abstract:
Introduction: The continuous demand for new anti-cancer drugs has stimulated chemotherapeutic research based on the use of essential metalloelements with the aim to develop potential drugs with lower toxicity and higher antiproliferative activity against tumors. Copper(II) and its complexes play an important role as suitable species for antiproliferative tests. Objectives: The central objective of the current study was to investigate the potential in vitro anti-proliferative effects of N-salicylidene-L-glutamato copper (II) complexes and molecular mechanism of apoptosis induced by tested complexes. In our project we tested N-salicylidene-L-glutamato copper (II) complexes ZK1 - [Cu(N-salicylidene-L-glutamato)(H2O)2].H2O; MK0 - ([Cu2(N-sal-D,L-glu)2(isoquinoline)2].2H2O); MK1 - [Cu(N-salicylidene-5-methyl-L-glutamato)(H2O)].H2O; MK3 - transbis(ethanol)tetrakis(imidazol)Cu(II)(2+)bis(N-salicylidene-D,L-glutamato-N,O)-KO:KO´-(imidazol); MK5 - [Cu(N-salicylidene-D,L- glutamato)(2-methylimidazol] at concentration range 0.001-100 µmol/L against human colon carcinoma cell line HT-29 and human breast carcinoma cell line MCF-7. Methods: Viability was assessed by direct counting of 0.4% trypan blue dye-excluding cells after 24, 48 and 72 hour cultivations with or without copper complex and by MTT assay. To analyze the type of cell death and its mechanism induced by our copper complex we used different methods. To distinguish apoptosis from necrosis we used electrophoretic analysis, to study the activity of caspases 8 and 9 – luminometric analysis and caspase activity 3 colorimetric assay. Results: The observed anti-proliferative effect of the copper complexes appeared to be dose-, time- and cell line- dependent. Human colon carcinoma cells HT-29 appeared to be more sensitive to the complex MK0 ([Cu2(N-sal-D,L-glu)2(isoquinoline)2].2H2O) than to ZK1 ([Cu(N-salicylidene-L-glutamato)(H2O)2].H2O) and MK1 ([Cu(N-salicylidene-5-methyl-L-glutamato)(H2O)].H2O)). Human colon carcinoma cells HT-29 appeared to be more sensitive to the complex than human breast carcinoma cells MCF-7. IC50 decreased with time of incubation (24, 48 and 72h) for HT-29, but increased for MCF-7. By electrophoresis we found apoptotic cell death induced by our copper complexes in HT-29 at concentrations 1, 10, 50 and 100 µmol/L after 48h (ZK1) and 72h (MK0, MK1) and in MCF-7 we did not find apoptosis. We also studied molecular mechanism of apoptosis in HT-29 induced by copper complexes. We found active caspase 9 in HT-29 after ZK1 ([Cu(N-salicylidene-L-glutamato)(H2O)2].H2O) and MK1 ([Cu(N-salicylidene-5-methyl-L-glutamato)(H2O)].H2O)) influence and active caspase 8 after MK0 ([Cu2(N-sal-D,L-glu)2(isoquinoline)2].2H2O) influence. Conclusion: Our copper complexes showed cytotoxic activities against human colon carcinoma cells HT-29 and breast cancer cell line MCF-7 in vitro. Apoptosis was activated by mitochondrial pathway (intrinsic pathway) in case of ZK1 [Cu(N-salicylidene-L-glutamato)(H2O)2].H2O; MK1 [Cu(N-salicylidene-5-methyl-L-glutamato)(H2O)].H2O; MK3 - transbis(ethanol)tetrakis(imidazol)Cu(II)(2+)bis(N-salicylidene-D,L-glutamato-N,O)-KO:KO´-(imidazol) and MK5 - [Cu(N-salicylidene-D,L- glutamato)(2-methylimidazol] copper complexes and by death receptors (extrinsic pathway) in case of MK0 [Cu2(N-sal-D,L-glu)2(isoquinoline)2].2H2O copper complex in HT-29.Keywords: apoptosis, copper complex, cancer, carcinoma cell line
Procedia PDF Downloads 2936004 Copper Related Toxicity of 1-Hydroxy-2-Thiopyridines
Authors: Elena G. Salina, Vadim A. Makarov
Abstract:
With the emergence of primary resistance to the current drugs and wide distribution of latent tuberculosis infection, a need for new compounds with a novel mode of action is growing steadily. Copper-mediated innate immunity and antibacterial toxicity propose novel strategies in TB drug discovery and development. Transcriptome of M. tuberculosis was obtained by RNA-seq, intracellular copper content was measured by ISP MS and complexes of 1-hydroxy-2-thiopyridines with copper were detected by HPLC.1-hydroxy-2-thiopyridine derivatives were found to be highly active in vitro against both actively growing and dormant non-culturable M. tuberculosis. Transcriptome response to 1-hydroxy-2-thiopyridines revealed signs of copper toxicity in M. tuberculosis bacilli. Indeed, Cu was found to accumulate inside cells treated with 1-hydroxy-2-thiopyridines. These compounds were found to form stable charged lipophylic complexes with Cu²⁺ ions which transport into mycobacterial cell. Subsequent metabolic destruction of the complex led to transformation of 1-hydroxy-2-thiopyridines into 2-methylmercapto-2-ethoxycarbonylpyridines, which did not possess antitubercular activity and releasing of free Cu²⁺ in the cytoplasm. 1-hydroxy-2-thiopyridines are a potent class of Cu-dependent inhibitors of M. tuberculosis which may control M. tuberculosis infection by impairment of copper homeostasis. Acknowledgment: This work was financially supported by the Ministry of Education and Science of the RussianFederation (Agreement No 14.616.21.0065; unique identifier RFMEFI61616X0065).Keywords: copper toxicity, drug discovery, M. tuberculosis inhibitors, 2-thiopyridines
Procedia PDF Downloads 1706003 Electro-Winning of Dilute Solution of Copper Metal from Sepon Mine, Lao PDR
Authors: S. Vasailor, C. Rattanakawin
Abstract:
Electro-winning of copper metal from dilute sulfate solution (13.7 g/L) was performed in a lab electrolytic cell with stainless-steel cathode and lead-alloy anode. The effects of various parameters including cell voltage, electro-winning temperature and time were studied in order to acquire an appropriate current efficiency of copper deposition. The highest efficiency is about 95% obtaining from electro-winning condition of 3V, 55°C and 3,600 s correspondingly. The cathode copper with 95.5% Cu analyzed using atomic absorption spectrometry can be obtained from this single-winning condition. In order to increase the copper grade, solvent extraction should be used to increase the sulfate concentration, say 50 g/L, prior to winning the cathode copper effectively.Keywords: copper metal, current efficiency, dilute sulfate solution, electro-winning
Procedia PDF Downloads 1386002 Parameters Affecting the Removal of Copper and Cobalt from Aqueous Solution onto Clinoptilolite by Ion-Exchange Process
Authors: John Kabuba, Hilary Rutto
Abstract:
Ion exchange is one of the methods used to remove heavy metal such as copper and cobalt from wastewaters. Parameters affecting the ion-exchange of copper and cobalt aqueous solutions using clinoptilolite are the objectives of this study. Synthetic solutions were prepared with the concentration of 0.02M, 0.06M and 0.1M. The cobalt solution was maintained to 0.02M while varying the copper solution to the above stated concentrations. The clinoptilolite was activated with HCl and H2SO4 for removal efficiency. The pHs of the solutions were found to be acidic hence enhancing the copper and cobalt removal. The natural clinoptilolite performance was also found to be lower compared to the HCl and H2SO4 activated one for the copper removal ranging from 68% to 78% of Cu2+ uptake with the natural clinoptilolite to 66% to 51% with HCl and H2SO4 respectively. It was found that the activated clinoptilolite removed more copper and cobalt than the natural one and found that the electronegativity of the metal plays a role in the metal removal and the clinoptilolite selectivity.Keywords: clinoptilolite, cobalt and copper, ion-exchange, mass dosage, pH
Procedia PDF Downloads 2986001 Copper Doped P-Type Nickel Oxide Transparent Conducting Oxide Thin Films
Authors: Kai Huang, Assamen Ayalew Ejigu, Mu-Jie Lin, Liang-Chiun Chao
Abstract:
Nickel oxide and copper-nickel oxide thin films have been successfully deposited by reactive ion beam sputter deposition. Experimental results show that nickel oxide deposited at 300°C is single phase NiO while best crystalline quality is achieved with an O_pf of 0.5. XRD analysis of nickel-copper oxide deposited at 300°C shows a Ni2O3 like crystalline structure at low O_pf while changes to NiO like crystalline structure at high O_pf. EDS analysis shows that nickel-copper oxide deposited at low O_pf is CuxNi2-xO3 with x = 1, while nickel-copper oxide deposited at high O_pf is CuxNi1-xO with x = 0.5, which is supported by Raman analysis. The bandgap of NiO is ~ 3.5 eV regardless of O_pf while the band gap of nickel-copper oxide decreases from 3.2 to 2.3 eV as Opf reaches 1.0.Keywords: copper, ion beam, NiO, oxide, resistivity, transparent
Procedia PDF Downloads 3126000 Characterization of Copper Slag and Jarofix Waste Materials for Road Construction
Authors: V. K. Arora, V. G. Havanagi, A. K. Sinha
Abstract:
Copper slag and Jarofix are waste materials, generated during the manufacture of copper and zinc respectively, which have potential for utility in embankment and road construction. Accordingly, a research project was carried out to study the characteristics of copper slag and Jarofix to utilize in the construction of road. In this study, copper slag and Jarofix were collected from Tuticorin, State of Tamil Nadu and Hindustan Zinc Ltd., Chittorgarh, Rajasthan state, India respectively. These materials were investigated for their physical, chemical, and geotechnical characteristics. The materials were collected from the disposal area and laboratory investigations were carried out to study its feasibility for use in the construction of embankment and sub grade layers of road pavement. This paper presents the results of physical, chemical and geotechnical characteristics of copper slag and Jarofix. It was concluded that copper slag and Jarofix may be utilized in the construction of road.Keywords: copper slag, Jarofix waste, material, road construction
Procedia PDF Downloads 4495999 Gastroprotective Effect of Copper Complex On Indomethacin-Induced Gastric Ulcer In Rats. Histological and Immunohistochemical Study
Authors: Heba M. Saad Eldien, Ola Abdel-Tawab Hussein, Ahmed Yassein Nassar
Abstract:
Background: Indomethacin is a non-steroidal anti inflammatory drug. Indomethacin induces an injury to gastrointestinal mucosa in experimental animals and humans and their use is associated with a significant risk of hemorrhage, erosions and perforation of both gastric and intestinal ulcers. The anti-inflammatory action of copper complexes is an important activity of their anti-ulcer effect achieved by their intermediary role as a transport form of copper that allow activation of the several copper-dependent enzymes. Therefore, several copper complexes were synthesized and investigated as promising alternative anti-ulcer therapy. Aim of the work: The purpose of this study was to evaluate a copper chelating complex consisting of egg albumin and copper as one of the copper peptides that can be used as anti-inflammatory agent and effective in ameliorates the hazards of the indomethacin on the histological structure of the fundus of the stomach that could be added to raise the efficacy of the currently used simple and cheap gastric anti-inflammatory drug mucogel. Material &methods: This study was carried out on 40 adult male albino rats,divided equally into 4 groups;Group I(control group) received distilled water,Group II(indomethacin treated group) received (25 mg/kg body weight, oral intubation) once, Group III (mucogel treated group)2 mL/rat once daily, oral incubation, Group IV(copper complex group) 1 mL /rat of 30 gm of copper albumin complex was mixed uniformly with mucogel to 100 mL. Treatment has been started six hour after Induction of Ulcers and continued till the 3rd day. The animals sacrificed and was processed for light, transmission electron microscopy(TEM) and immunostaining for inducible nitric oxide synthase(iNOS). Results: Fundic mucosa of group II, showed exfoliation of epithelial cells lining the gland, discontinuity of surface epithelial cells (ulcer formation), vacuolation and detachment of cells, eosinophilic infiltration and congestion of blood vessels in the lamina propria and submucosa. There was thickening and disarrangement of mucosa, weak positive reaction for PAS and marked increase in the collagen fibers lamina propria and the submucosa of the fundus. TEM revealed degeneration of cheif and parietal cells.Marked increase positive reactive of iNOS in all cells of the fundic gland. Group III showed reconstruction of gastric gland with cystic dilatation and vacuolation, moderate decrease of collagen fibers, reduced the intensity of iNOS while in Group IV healthy mucosa with normal surface lining epithelium and fundic glands, strong positive reaction for PAS, marked decrease of collagen fibers and positive reaction for iNOS. TEM revealed regeneration of cheif and parietal cells. Conclusion: Co treatment of copper-albumin complex seems to be useful for gastric ulcer treatment and ameliorates most of hazards of indomethacin.Keywords: copper complex, gastric ulcer, indomethacin, rat
Procedia PDF Downloads 3395998 Potential Biosorption of Rhodococcus erythropolis, an Isolated Strain from Sossego Copper Mine, Brazil
Authors: Marcela dos P. G. Baltazar, Louise H. Gracioso, Luciana J. Gimenes, Bruno Karolski, Ingrid Avanzi, Elen A. Perpetuo
Abstract:
In this work, bacterial strains were isolated from environmental samples from a copper mine and three of them presented potential for bioremediation of copper. All the strains were identified by mass spectrometry (MALDI-TOF-Biotyper) and grown in three diferent media supplemented with 100 ppm of copper chloride in flasks of 500mL and it was incubated at 28 °C and 180 rpm. Periodically, samples were taken and monitored for cellular growth and copper biosorption by spectrophotometer UV-Vis (600 nm) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), respectively. At the end of exponential phase of cellular growth, the biomass was utilized to construct a correlation curve between absorbance and dry mass of the cells. Among the three isolates with potential for biorremediation, 1 strain exhibit capacity the most for bioremediation of effluents contaminated by copper being identified as Rhodococcus erythropolis.Keywords: bioprocess, bioremediation, biosorption, copper
Procedia PDF Downloads 3885997 Leaching of Copper from Copper Ore Using Sulphuric Acid in the Presence of Hydrogen Peroxide as an Oxidizing Agent: An Optimized Process
Authors: Hilary Rutto
Abstract:
Leaching with acids are the most commonly reagents used to remove copper ions from its copper ores. It is important that the process conditions are optimized to improve the leaching efficiency. In the present study the effects of pH, oxidizing agent (hydrogen peroxide), stirring speed, solid to liquid ratio and acid concentration on the leaching of copper ions from it ore were investigated using a pH Stat apparatus. Copper ions were analyzed at the end of each experiment using Atomic Absorption (AAS) machine. Results showed that leaching efficiency improved with an increase in acid concentration, stirring speed, oxidizing agent, pH and decreased with an increase in the solid to liquid ratio.Keywords: leaching, copper, oxidizing agent, pH stat apparatus
Procedia PDF Downloads 3785996 Green Synthesis of Copper Oxide and Cobalt Oxide Nanoparticles Using Spinacia Oleracea Leaf Extract
Authors: Yameen Ahmed, Jamshid Hussain, Farman Ullah, Sohaib Asif
Abstract:
The investigation aims at the synthesis of copper oxide and cobalt oxide nanoparticles using Spinacia oleracea leaf extract. These nanoparticles have many properties and applications. They possess antimicrobial catalytic properties and also they can be used in energy storage materials, gas sensors, etc. The Spinacia oleracea leaf extract behaves as a reducing agent in nanoparticle synthesis. The plant extract was first prepared and then treated with copper and cobalt salt solutions to get the precipitate. The salt solutions used for this purpose are copper sulfate pentahydrate (CuSO₄.5H₂O) and cobalt chloride hexahydrate (CoCl₂.6H₂O). The UV-Vis, XRD, EDX, and SEM techniques are used to find the optical, structural, and morphological properties of copper oxide and cobalt oxide nanoparticles. The UV absorption peaks are at 326 nm and 506 nm for copper oxide and cobalt oxide nanoparticles.Keywords: cobalt oxide, copper oxide, green synthesis, nanoparticles
Procedia PDF Downloads 2135995 Conductivity and Selection of Copper Clad Steel Wires for Grounding Applications
Authors: George Eduful, Kingsford J. A. Atanga
Abstract:
Copper clad steel wire (CCS) is primarily used for grounding applications to reduce the high incidence of copper ground conductor theft in electrical installations. The cross sectional area of the CCS is selected by relating the diameter equivalence to a copper conductor. The main difficulty is how to use a simple analytical relation to determine the right conductivity of CCS for a particular application. The use of Eddy-Current instrument for measuring conductivity is known but in most cases, the instrument is not readily available. The paper presents a simplified approach on how to size and determine CCS conductivity for a given application.Keywords: copper clad steel wire, conductivity, grounding, skin effect
Procedia PDF Downloads 2855994 In Situ Laser-Induced Synthesis of Copper Microstructures with High Catalytic Properties and Sensory Characteristics
Authors: Maxim Panov, Evgenia Khairullina, Sergey Ermakov, Oleg Gundobin, Vladimir Kochemirovsky
Abstract:
The continuous in situ laser-induced catalysis proceeding via generation and growth of nano-sized copper particles was discussed. Also, the simple and lost-cost method for manufacturing of microstructural copper electrodes was proposed. The electrochemical properties of these electrodes were studied by cyclic voltammetry and impedance spectroscopy. The surface of the deposited copper structures (electrodes) was investigated by X-ray photoelectron spectroscopy and atomic force microscopy. These microstructures are highly conductive and porous with a dispersion of pore size ranging from 50 nm to 50 μm. An analytical response of the fabricated copper electrode is 30 times higher than those observed for a pure bulk copper with similar geometric parameters. A study of sensory characteristics for hydrogen peroxide determination showed that the value of Faraday current at the fabricated copper electrode is 2-2.5 orders of magnitude higher than for etalon one.Keywords: laser-induced deposition, electrochemical electrodes, non-enzymatic sensors, copper
Procedia PDF Downloads 2465993 Investigation of Parameters Affecting Copper Recovery from Brass Melting Dross
Authors: Sercan Basit, Muhlis N. Sarıdede
Abstract:
Metal amounts of copper based compounds in the various wastes have been recovered successfully by hydrometallurgical treatment methods in the literature. X-ray diffraction pattern of the brass melting slag demonstrates that it contains sufficient amount of recoverable copper. Recovery of copper from brass melting dross by sulfuric acid leaching and the effect of temperature and acid and oxidant concentration on recovery rate of copper have been investigated in this study. Experiments were performed in a temperature-controlled reactor in sulfuric acid solution in different molarities using solid liquid ratio of 100 g/L, with leaching time of 300 min. Temperature was changed between 25 °C and 80 °C and molarity was between 0.5 and 3M. The results obtained showed that temperature has important positive effect on recovery whereas it decreases with time. Also copper was recovered in larger amounts from brass dross in the presence of H2O2 as an oxidant according to the case that oxidant was not used.Keywords: brass dross, copper recovery, hydrogen peroxide, leaching
Procedia PDF Downloads 3345992 Influence of Nano Copper Slag in Strength Behavior of Lime Stabilized Soil
Authors: V. K. Stalin, M. Kirithika, K. Shanmugam, K. Tharini
Abstract:
Nanotechnology has been widely used in many applications such as medical, electronics, robotics and also in geotechnical engineering area through stabilization of bore holes, grouting etc. In this paper, an attempt is made for understanding the influence of nano copper slag (1%, 2% & 3%) on the index, compaction and UCC strength properties of natural soil (CH type) with and without lime stabilization for immediate and 7 days curing period. Results indicated that upto 1% of Nano copper slag, there is an increment in UC strength of virgin soil and lime stabilised soil. Beyond 1% nano copper slag, there is a steep reduction in UC strength and increase of plasticity both in lime stabilised soil and virgin soil. The effect of lime is found to show more influence on large surface area of nano copper slag in natural soil. For both immediate and curing effect, with 1% of Nano copper slag, the maximum unconfined compressive strength was 38% and 106% higher than that of the virgin soil strength.Keywords: lime, nano copper slag, SEM, XRD, stabilisation
Procedia PDF Downloads 4345991 Copper Complexe Derivative of Chalcone: Synthesis, Characterization, Electrochemical Properties and XRD/Hirschfeld Surface
Authors: Salima Tabti, Amel Djedouani., Djouhra Aggoun, Ismail Warad
Abstract:
The reaction of copper (II) with 4-hydroxy-3-[(2E)-3-(1H-indol-3-yl)prop-2-enoyl]-6-methyl-2H-pyran-2-one (HL) lead to a new complexe: Cu(L)₂(DMF)₂. The crystal structure of the Cu(L)₂(DMF)₂ complex have been determined by X-ray diffraction methods. The Cu(II) lying on an inversion centre is coordinated to six oxygen atoms forming an octahedral elongated. Additionally, the electrochemical behavior of the metal complexe was investigated by cyclic voltammetry at a glassy carbon electrode (GC) in CH₃CN solution, showing the quasi-reversible redox process ascribed to the reduction of the MII/MI couple. The X-ray single crystal structure data of the complex was matched excellently with the optimized monomer structure of the desired compound; Hirschfeld surface analysis supported the packed crystal lattice 3D network intermolecular forces.Keywords: chalcones, cyclic voltametry, X-ray, Hirschfeld surface
Procedia PDF Downloads 655990 Antimicrobial Properties of Copper in Gram-Negative and Gram-Positive Bacteria
Authors: Travis J. Meyer, Jasodra Ramlall, Phyo Thu, Nidhi Gadura
Abstract:
For centuries humans have used the antimicrobial properties of copper to their advantage. Yet, after all these years the underlying mechanisms of copper mediated cell death in various microbes remain unclear. We had explored the hypothesis that copper mediated increased levels of lipid peroxidation in the membrane fatty acids is responsible for increased killing inEscherichia coli. In this study we show that in both gram positive (Staphylococcus aureus) and gram negative (Pseudomonas aeruginosa) bacteria there is a strong correlation between copper mediated cell death and increased levels of lipid peroxidation. Interestingly, the non-spore forming gram positive bacteria as well as gram negative bacteria show similar patterns of cell death, increased levels of lipid peroxidation, as well as genomic DNA degradation, however there is some difference inloss in membrane integrity upon exposure to copper alloy surface.Keywords: antimicrobial, copper, gram positive, gram negative
Procedia PDF Downloads 4835989 Depression of Copper-Activated Pyrite by Potassium Ferrate in Copper Ore Flotation Using High Salinity Process Water
Authors: Yufan Mu
Abstract:
High salinity process water (HSPW) is often applied in copper ore flotation to alleviate freshwater shortage; however, it is detrimental to copper flotation as it strongly enhances copper activation of pyrite. In this study, the depression effect of a strong oxidiser, potassium ferrate (𝐾₂𝐹₄), on the flotation of copper-activated pyrite was tested to realise the selective separation of pyrite from copper minerals (e.g., chalcopyrite) in flotation using HSPW. The flotation results show that when (𝐾₂𝐹₄) was added in the flotation cell during conditioning, (𝐾₂𝐹₄) could selectively depress copper-activated pyrite while improving chalcopyrite flotation. The depression mechanism of (𝐾₂𝐹₄) on pyrite was ascribed to the significant increase in the pulp potential (Eₕ), dissolved oxygen (DO) concentration and the amount of ferric oxyhydroxides as a result of ferrate decomposition. In the flotation cell, the high Eh and DO concentration promoted the oxidation of low valency metal species (𝐶⁺𝐹e²⁺) released from mineral surfaces and forged steel grinding media, and the resultant high valency metal oxyhydroxides 𝐶u(𝑂H)₂⁄Fe(OH)₃ together with the ferric oxyhydroxides from ferrate decomposition preferentially precipitated on pyrite surface due to its more cathodic nature compared with chalcopyrite, which increased pyrite surface hydrophilicity and reduced its floatability. This study reveals that (𝐾₂𝐹₄) is a highly efficient depressant for pyrite when separating copper minerals from pyrite in flotation using HSPW if dosed properly.Keywords: copper flotation, pyrite depression, copper-activated pyrite, potassium ferrate, high salinity process water
Procedia PDF Downloads 745988 Synthesizing CuFe2O4 Spinel Powders by a Combustion-Like Process for Solid Oxide Fuel Cell Interconnects Coating
Authors: Seyedeh Narjes Hosseini, Mohammad Hossein Enayati, Fathallah Karimzadeh, Nigel Mark Sammes
Abstract:
The synthesis of CuFe2O4 spinel powders by an optimized combustion-like process followed by calcinations is described herein. The samples were characterized by X-ray diffraction (XRD), differential thermal analysis (TG/DTA), scanning electron microscopy (SEM), dilatometry and 4-probe DC methods. Different glycine to nitrate (G/N) ratios of 1 (fuel-deficient), 1.48 (stoichiometric) and 2 (fuel-rich) were employed. Calcining the as-prepared powders at 800 and 1000°C for 5 hours showed that the 2 ratio results in the formation of desired copper spinel single phase at both calcinations temperatures. For G/N=1, formation of CuFe2O4 takes place in three steps. First, iron and copper nitrates decomposes to iron oxide and pure copper. Then, copper transforms to copper oxide and finally, copper and iron oxides react to each other to form copper ferrite spinel phase. The electrical conductivity and the coefficient of thermal expansion of the sintered pelletized samples were obtained 2 S.cm-1 (800°C) and 11×10-6 °C-1 (25-800°C), respectively.Keywords: SOFC interconnect coatings, Copper ferrite, Spinels, electrical conductivity, Glycine–nitrate process
Procedia PDF Downloads 481