Search results for: concrete filled steel I-girder
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3836

Search results for: concrete filled steel I-girder

3776 Fresh State Properties of Steel Fiber Reinforced Self Compacting Concrete

Authors: Anil Nis, Nilufer Ozyurt Zihnioglu

Abstract:

The object of the study is to investigate fresh state properties of the steel fiber reinforced self-compacting concrete (SFR-SCC). Three different steel fibers; straight (Vf:0.5%), hooked-end long (Vf:0.5% and 1%) and hybrid fibers (0.5%short+0.5%long) were used in the research aiming to obtain flow properties of non-fibrous self-compacting concrete. Fly ash was used as a supplementary with an optimum dosage of 30% of the total cementitious materials. Polycarboxylic ether based high-performance concrete superplasticizer was used to get high flowability with percentages ranging from 0.81% (non-fibrous SCC) to 1.07% (hybrid SF-SCC) of the cement weight. The flowability properties of SCCs were measured via slump flow and V-funnel tests; passing ability properties of SCCs were measured with J-Ring, L-Box, and U-Box tests. Workability results indicate that small increase on the superplasticizer dosages compensate the adverse effects of steel fibers on flowability properties of SSC. However, higher dosage fiber addition has a negative effect on passing ability properties, causing blocking of the mixes. In addition, compressive strength, tensile strength, and four point bending results were given. Results indicate that SCCs including steel fibers have superior performances on tensile and bending strength of concrete. Crack bridging capability of steel fibers prevents concrete from splitting, yields higher deformation and energy absorption capacities than non-fibrous SCCs.

Keywords: fiber reinforced self-compacting concrete, fly ash, fresh state properties, steel fiber

Procedia PDF Downloads 199
3775 Development of Tensile Stress-Strain Relationship for High-Strength Steel Fiber Reinforced Concrete

Authors: H. A. Alguhi, W. A. Elsaigh

Abstract:

This paper provides a tensile stress-strain (σ-ε) relationship for High-Strength Steel Fiber Reinforced Concrete (HSFRC). Load-deflection (P-δ) behavior of HSFRC beams tested under four-point flexural load were used with inverse analysis to calculate the tensile σ-ε relationship for various tested concrete grades (70 and 90MPa) containing 60 kg/m3 (0.76 %) of hook-end steel fibers. A first estimate of the tensile (σ-ε) relationship is obtained using RILEM TC 162-TDF and other methods available in literature, frequently used for determining tensile σ-ε relationship of Normal-Strength Concrete (NSC) Non-Linear Finite Element Analysis (NLFEA) package ABAQUS® is used to model the beam’s P-δ behavior. The results have shown that an element-size dependent tensile σ-ε relationship for HSFRC can be successfully generated and adopted for further analyzes involving HSFRC structures.

Keywords: tensile stress-strain, flexural response, high strength concrete, steel fibers, non-linear finite element analysis

Procedia PDF Downloads 337
3774 Finite Element Modeling Techniques of Concrete in Steel and Concrete Composite Members

Authors: J. Bartus, J. Odrobinak

Abstract:

The paper presents a nonlinear analysis 3D model of composite steel and concrete beams with web openings using the Finite Element Method (FEM). The core of the study is the introduction of basic modeling techniques comprehending the description of material behavior, appropriate elements selection, and recommendations for overcoming problems with convergence. Results from various finite element models are compared in the study. The main objective is to observe the concrete failure mechanism and its influence on the structural performance of numerical models of the beams at particular load stages. The bearing capacity of beams, corresponding deformations, stresses, strains, and fracture patterns were determined. The results show how load-bearing elements consisting of concrete parts can be analyzed using FEM software with various options to create the most suitable numerical model. The paper demonstrates the versatility of Ansys software usage for structural simulations.

Keywords: Ansys, concrete, modeling, steel

Procedia PDF Downloads 98
3773 Minimum Ratio of Flexural Reinforcement for High Strength Concrete Beams

Authors: Azad A. Mohammed, Dunyazad K. Assi, Alan S. Abdulrahman

Abstract:

Current ACI 318 Code provides two limits for minimum steel ratio for concrete beams. When concrete compressive strength be larger than 31 MPa the limit of √(fc')/4fy usually governs. In this paper shortcomings related to using this limit was fairly discussed and showed that the limit is based on 90% safety factor and was derived based on modulus of rupture equation suitable for concretes of compressive strength lower than 31 MPa. Accordingly, the limit is nor suitable and critical for concretes of higher compressive strength. An alternative equation was proposed for minimum steel ratio of rectangular beams and was found that the proposed limit is accurate for beams of wide range of concrete compressive strength. Shortcomings of the current ACI 318 Code equation and accuracy of the proposed equation were supported by test data obtained from testing six reinforced concrete beams.

Keywords: concrete beam, compressive strength, minimum steel ratio, modulus of rupture

Procedia PDF Downloads 515
3772 Flexural Strength of Alkali Resistant Glass Textile Reinforced Concrete Beam with Prestressing

Authors: Jongho Park, Taekyun Kim, Jungbhin You, Sungnam Hong, Sun-Kyu Park

Abstract:

Due to the aging of bridges, increasing of maintenance costs and decreasing of structural safety is occurred. The steel corrosion of reinforced concrete bridge is the most common problem and this phenomenon is accelerating due to abnormal weather and increasing CO2 concentration due to climate change. To solve these problems, composite members using textile have been studied. A textile reinforced concrete can reduce carbon emissions by reduced concrete and without steel bars, so a lot of structural behavior studies are needed. Therefore, in this study, textile reinforced concrete beam was made and flexural test was performed. Also, the change of flexural strength according to the prestressing was conducted. As a result, flexural strength of TRC with prestressing was increased compared and flexural behavior was shown as reinforced concrete.

Keywords: AR-glass, flexural strength, prestressing, textile reinforced concrete

Procedia PDF Downloads 303
3771 Embedment Design Concept of Signature Tower in Chennai

Authors: M. Gobinath, S. Balaji

Abstract:

Assumptions in model inputs: Grade of concrete=40 N/mm2 (for slab), Grade of concrete=40 N/mm2 (for shear wall), Grade of Structural steel (plate girder)=350 N/mm2 (yield strength), Ultimate strength of structural steel=490 N/mm2, Grade of rebar=500 N/mm2 (yield strength), Applied Load=1716 kN (un-factored). Following assumptions are made for the mathematical modelling of RCC with steel embedment: (1) The bond between the structural steel and concrete is neglected. (2) The stiffener is provided with shear studs to transfer the shear force. Hence nodal connectivity is established between solid nodes (concrete) and shell elements (stiffener) at those locations. (3) As the end reinforcements transfer either tension/compression, it is modeled as line element and connected to solid nodes. (4) In order to capture the bearing of bottom flange on to the concrete, the line element of plan size of solid equal to the cross section of line elements is connected between solid and shell elements below for bottom flange and above for top flange. (5) As the concrete cannot resist tension at the interface (i.e., between structural steel and RCC), the tensile stiffness is assigned as zero and only compressive stiffness is enabled to take. Hence, non-linear static analysis option is invoked.

Keywords: structure, construction, signature tower, embedment design concept

Procedia PDF Downloads 272
3770 Structural Evaluation of Cell-Filled Pavement

Authors: Subrat Roy

Abstract:

This paper describes the findings of a study carried out for evaluating the performance of cell-filled pavement for low volume roads. Details of laboratory investigations and the methodology adopted for construction of cell-filled pavement are presented. The aim of this study is to evaluate the structural behaviour of cement concrete filled cell pavement laid over three different types of subbases (water bound macadam, soil-cement and moorum). A formwork of cells of a thin plastic sheet was used to construct the cell-filled pavements to form flexible, interlocked block pavements. Surface deflections were measured using falling weight deflectometer and benkelman beam methods. Resilient moduli of pavement layers were estimated from the measured deflections. A comparison of deflections obtained from both the methodology is also presented.

Keywords: cell-filled pavement, WBM, FWD, Moorum

Procedia PDF Downloads 271
3769 Influence of Structural Cracks on Transport Performance of Reinforced Concrete

Authors: V. A. Okenyi, K. Yang, P. A. M. Basheer

Abstract:

Concrete structures in service are constantly under the influence of load. Microstructural cracks often develop in them and considering those in the marine environment; these microcracks often serve as a means for transportation of harmful fluids into the concrete. This paper studies the influence of flexural tensile stress that structural elements undergo on the transport properties of such concrete in the tensile zone of the structural member. Reinforced concrete beams of 1200mm ⨉ 230mm ⨉ 150mm in dimension in a four-point bending set up were subjected to various levels of the loading required to cause a microcrack width of 100µm. The use of Autoclam permeability tests, sorptivity tests as well as the Permit chloride ion migration tests were employed, and results showed that air permeability, sorptivity and water permeability all increased as the load increased in the concrete tensile zone. For air permeability, an increase in stress levels led to more permeability, and the addition of steel macrofibers had no significant effect until at 75% of stress level where it decreased air permeability. For sorptivity, there was no absorption into concrete when no load was added, but water sorptivity index was high at 75% stress levels and higher in steel fiber reinforced concrete (SFRC). Steel macrofibers produced more water permeability into the concrete at 75% stress level under the 100µm crack width considered while steel macrofibers helped in slightly reducing the migration of chloride into concrete by 8.8% reduction, compared to control samples at 75% stress level. It is clear from this research that load-induced cracking leads to an increase in fluid permeability into concrete and the effect of the addition of steel macrofiber to concrete for durability is not significant under 100µm crack width.

Keywords: durability, microcracks, SFRC, stress Level, transport properties

Procedia PDF Downloads 102
3768 Conceptual Design of Panel Based Reinforced Concrete Floating Substructure for 10 MW Offshore Wind Turbine

Authors: M. Sohail Hasan, Wichuda Munbua, Chikako Fujiyama, Koichi Maekawa

Abstract:

During the past few years, offshore wind energy has become the key parameter to reduce carbon emissions. In most of the previous studies, floaters in floating offshore wind turbines (FOWT) are made up of steel. However, fatigue and corrosion are always major concerns of steel marine structures. Recently, researchers are working on concrete floating substructures. In this paper, the conceptual design of pre-cast panel-based economical and durable reinforced concrete floating substructure for a 10 MW offshore wind turbine is proposed. The new geometrical shape, i.e., hexagon with inside hollow boxes, is proposed under static conditions. To design the outer panel/side walls to resist hydrostatic forces, special consideration for durability is given to limit the crack width within permissible range under service limit state. A comprehensive system is proposed for transferring the ultimate moment and shear due to strong wind at the connection between steel tower and concrete floating substructure. Moreover, a stable connection is also designed considering the fatigue of concrete and steel due to the fluctuation of stress from the mooring line. This conceptual design will be verified by subsequent dynamic analysis soon.

Keywords: cracks width control, mooring line, reinforced concrete floater, steel tower

Procedia PDF Downloads 190
3767 Data and Model-based Metamodels for Prediction of Performance of Extended Hollo-Bolt Connections

Authors: M. Cabrera, W. Tizani, J. Ninic, F. Wang

Abstract:

Open section beam to concrete-filled tubular column structures has been increasingly utilized in construction over the past few decades due to their enhanced structural performance, as well as economic and architectural advantages. However, the use of this configuration in construction is limited due to the difficulties in connecting the structural members as there is no access to the inner part of the tube to install standard bolts. Blind-bolted systems are a relatively new approach to overcome this limitation as they only require access to one side of the tubular section to tighten the bolt. The performance of these connections in concrete-filled steel tubular sections remains uncharacterized due to the complex interactions between concrete, bolt, and steel section. Over the last years, research in structural performance has moved to a more sophisticated and efficient approach consisting of machine learning algorithms to generate metamodels. This method reduces the need for developing complex, and computationally expensive finite element models, optimizing the search for desirable design variables. Metamodels generated by a data fusion approach use numerical and experimental results by combining multiple models to capture the dependency between the simulation design variables and connection performance, learning the relations between different design parameters and predicting a given output. Fully characterizing this connection will transform high-rise and multistorey construction by means of the introduction of design guidance for moment-resisting blind-bolted connections, which is currently unavailable. This paper presents a review of the steps taken to develop metamodels generated by means of artificial neural network algorithms which predict the connection stress and stiffness based on the design parameters when using Extended Hollo-Bolt blind bolts. It also provides consideration of the failure modes and mechanisms that contribute to the deformability as well as the feasibility of achieving blind-bolted rigid connections when using the blind fastener.

Keywords: blind-bolted connections, concrete-filled tubular structures, finite element analysis, metamodeling

Procedia PDF Downloads 134
3766 Reinforced Concrete, Problems and Solutions: A Literature Review

Authors: Omar Alhamad, Waleed Eid

Abstract:

Reinforced concrete is a concrete lined with steel so that the materials work together in the resistance forces. Reinforcement rods or mesh are used for tensile, shear, and sometimes intense pressure in a concrete structure. Reinforced concrete is subject to many natural problems or industrial errors. The result of these problems is that it reduces the efficiency of the reinforced concrete or its usefulness. Some of these problems are cracks, earthquakes, high temperatures or fires, as well as corrosion of reinforced iron inside reinforced concrete. There are also factors of ancient buildings or monuments that require some techniques to preserve them. This research presents some general information about reinforced concrete, the pros and cons of reinforced concrete, and then presents a series of literary studies of some of the late published researches on the subject of reinforced concrete and how to preserve it, propose solutions or treatments for the treatment of reinforced concrete problems, raise efficiency and quality for a longer period. These studies have provided advanced and modern methods and techniques in the field of reinforced concrete.

Keywords: reinforced concrete, treatment, concrete, corrosion, seismic, cracks

Procedia PDF Downloads 124
3765 Strength and Permeability Characteristics of Fiber Reinforced Concrete

Authors: Amrit Pal Singh Arora

Abstract:

The paper reports the results of a study undertaken to study the effects of addition of steel fibres of different aspect ratios on the permeability and strength characteristics of steel fiber reinforced fly ash concrete (SFRC). Corrugated steel fibres having a diameter of 0.6 mm and lengths of 12.5 mm, 30 mm and 50 mm were used in this study. Cube samples of 100 mm x 100 mm x 100 mm were cast from mixes replacing 0%, 10%, 20% and 30% cement content by fly ash with and without fibres and tested for the determination of coefficient of water permeability, compressive and split tensile strengths after 7 and 28 days of curing. Plain concrete samples were also cast and tested for reference purposes. Permeability was observed to decrease significantly for all concrete mixes with the addition of steel fibers as compared to plain concrete. The replacement of cement content by fly ash results in an increase in the coefficient of water permeability. With the addition of fly ash to the plain mix the7 day compressive and split tensile strengths decreased, however both the compressive and split tensile strengths increased with increase in curing age.

Keywords: curing age, fiber shape, fly ash, Darcy’s law, Ppermeability

Procedia PDF Downloads 280
3764 Flexural Behavior for Prefabricated Angle Truss Composite Beams Using Precast Concrete

Authors: Jo Kwang-Won, Lee Ho-Jun, Choi In-Rak, Park Hong-Gun

Abstract:

Prefabricated angle truss composited beam is a kind of concrete encased composite beam. It is prefabricated at factory as Pratt truss with steel members. Double angle is used for top, bottom chords and vertical web member. Moreover, diagonal web member is steel plate. Its sectional shape looks like I-shape. This beam system has two stages. The first is construction stage in which the beam is directly connected to the column for resist construction load. This stage beam consists of Pratt truss and precast concrete. The stability of the beam is verified. The second is service stage. After the connection, cast-in-place concrete is used for composite action. Ultimate flexural capacity is verified and show advantage than RC and steel. In this paper, the beam flexural capacity is verified in both stages. And examined the flexural behavior of the beam.

Keywords: composite beam, prefabrication, angle, precast concrete, pratt truss

Procedia PDF Downloads 266
3763 Effects of Rice Husk Ash on the Properties of Scrap Tyre Steel Fiber Reinforced High Performance Concrete (RHA-STSFRHAC)

Authors: Isyaka Abdulkadir, Egbe-Ngu Ntui Ogork

Abstract:

This research aims to investigate the effect of Rice Husk Ash (RHA) on Scrap Tyre Steel Fiber Reinforced High Performance Concrete (STSFRHPC). RHA was obtained by control burning of rice husk in a kiln to a temperature of 650-700oC and when cooled sieved through 75µm sieve and characterized. The effect of RHA were investigated on grade 50 STSFRHPC of 1:1.28:1.92 with water cement ratio of 0.39 at additions of Scrap Tyre Steel Fiber (STSF) of 1.5% by volume of concrete and partial replacement of cement with RHA at percentages of 0, 5, 10, 15 and 20. The fresh concrete was tested for slump while the hardened concrete was tested for compressive and splitting tensile strengths respectively at curing ages of 3, 7, 28 and 56 days in accordance with standard procedure. Results of RHA-STSFRHPC indicated a reduction in slump and compressive strength with increase in RHA content, while splitting tensile strength increased with RHA replacement up to 10% and reduction in strength above 10% RHA content. The 28 days compressive strength of RHA-STSFRHPC with up to 10% RHA attained the desired characteristic strength of 50N/mm2 and therefore up to 10% RHA is considered as the optimum replacement dosage in STSFRHPC-RHA.

Keywords: compressive strength, high performance concrete, rice husk ash, scrap tyre steel fibers

Procedia PDF Downloads 301
3762 Influence of Yield Stress and Compressive Strength on Direct Shear Behaviour of Steel Fibre-Reinforced Concrete

Authors: Bensaid Boulekbache, Mostefa Hamrat, Mohamed Chemrouk, Sofiane Amziane

Abstract:

This study aims in examining the influence of the paste yield stress and compressive strength on the behaviour of fibre-reinforced concrete (FRC) versus direct shear. The parameters studied are the steel fibre contents, the aspect ratio of fibres and the concrete strength. Prismatic specimens of dimensions 10x10x35cm made of concrete of various yield stress reinforced with steel fibres hooked at the ends with three fibre volume fractions (i.e. 0, 0.5, and 1%) and two aspects ratio (65 and 80) were tested to direct shear. Three types of concretes with various compressive strength and yield stress were tested, an ordinary concrete (OC), a self-compacting concrete (SCC) and a high strength concrete (HSC). The concrete strengths investigated include 30 MPa for OC, 60 MPa for SCC and 80 MPa for HSC. The results show that the shear strength and ductility are affected and have been improved very significantly by the fibre contents, fibre aspect ratio and concrete strength. As the compressive strength and the volume fraction of fibres increase, the shear strength increases. However, yield stress of concrete has an important influence on the orientation and distribution of the fibres in the matrix. The ductility was much higher for ordinary and self-compacting concretes (concrete with good workability). The ductility in direct shear depends on the fibre orientation and is significantly improved when the fibres are perpendicular to the shear plane. On the contrary, for concrete with poor workability, an inadequate distribution and orientation of fibres occurred, leading to a weak contribution of the fibres to the direct shear behaviour.

Keywords: concrete, fibre, direct shear, yield stress, orientation, strength

Procedia PDF Downloads 504
3761 Experimental Study on Strengthening Systems of Reinforced Concrete Cantilever Slabs

Authors: Aymen H. Khalil, Ashraf M. Heniegal, Bassam A. Abdelsalam

Abstract:

There are many problems related to cantilever slabs such as the time-dependent deformation, corrosion problems of steel reinforcement, and lack of experimental studies on the strength of strengthened cantilever slabs. This paper presents an investigation to evaluate the behavior of reinforced concrete cantilever slabs after strengthening with different techniques. Six medium scale specimens, divided into three groups, were tested along with a control slab. The first group consists of two specimens which were repaired and strengthened using reinforced concrete jacket above with and without shear connector bars, whereas the second group contained two slabs which were strengthened using two strips of two layers of glass fiber reinforced polymer (GFRP) covering 60% and 90% from the cantilever length. The last group involves two specimens strengthened with two steel plates. In one specimen, the steel plates were glued to the surface using epoxy resin. The second specimen, the steel plates were affixed to the concrete surface using expansion bolts. The loading was conducted in two phases. Firstly, the samples were subjected to 40% of the ultimate load of the control slab. Secondly, the specimens reloaded after being strengthened up to failure. The load-deflection, steel strain, concrete strain, failure mode, toughness, and ductility index are discussed in this paper.

Keywords: repair, strengthened, GFRP layers, reloaded, jacketing, cantilever slabs

Procedia PDF Downloads 175
3760 Numerical Simulation of Flexural Strength of Steel Fiber Reinforced High Volume Fly Ash Concrete by Finite Element Analysis

Authors: Mahzabin Afroz, Indubhushan Patnaikuni, Srikanth Venkatesan

Abstract:

It is well-known that fly ash can be used in high volume as a partial replacement of cement to get beneficial effects on concrete. High volume fly ash (HVFA) concrete is currently emerging as a popular option to strengthen by fiber. Although studies have supported the use of fibers with fly ash, a unified model along with the incorporation into finite element software package to estimate the maximum flexural loads need to be developed. In this study, nonlinear finite element analysis of steel fiber reinforced high strength HVFA concrete beam under static loadings was conducted to investigate their failure modes in terms of ultimate load. First of all, the experimental investigation of mechanical properties of high strength HVFA concrete was done and validates with developed numerical model with the appropriate modeling of element size and mesh by ANSYS 16.2. To model the fiber within the concrete, three-dimensional random fiber distribution was simulated by spherical coordinate system. Three types of high strength HVFA concrete beams were analyzed reinforced with 0.5, 1 and 1.5% volume fractions of steel fibers with specific mechanical and physical properties. The result reveals that the use of nonlinear finite element analysis technique and three-dimensional random fiber orientation exhibited fairly good agreement with the experimental results of flexural strength, load deflection and crack propagation mechanism. By utilizing this improved model, it is possible to determine the flexural behavior of different types and proportions of steel fiber reinforced HVFA concrete beam under static load. So, this paper has the originality to predict the flexural properties of steel fiber reinforced high strength HVFA concrete by numerical simulations.

Keywords: finite element analysis, high volume fly ash, steel fibers, spherical coordinate system

Procedia PDF Downloads 114
3759 Thermodynamic Performance Tests for 3D Printed Steel Slag Powder Concrete Walls

Authors: Li Guoyou, Zhang Tao, Ji Wenzhan, Huo Liang, Lin Xiqiang, Zhang Nan

Abstract:

The three dimensional (3D) printing technology has undergone rapid development in the last few years and it is possible to print engineering structures. 3D printing buildings use wastes from constructions, industries and mine tailings as “ink”, and mix it with property improved materials, such as cement, fiber etc. This paper presents a study of the Thermodynamic performance of 3D printed walls using cement and steel slag powder. Analyses the thermal simulation regarding 3D printed walls and solid brick wall by the way of the hot-box methods and the infrared technology, and the results were contrasted with theoretical calculation. The results show that the excellent thermodynamic performance of 3D printed concrete wall made it suitable as the partial materials for self-thermal insulation walls in residential buildings. The thermodynamic performance of 3D printed concrete walls depended on the density of materials, distribution of holes, and the filling materials. Decreasing the density of materials, increasing the number of holes or replacing the filling materials with foamed concrete could improve its thermodynamic performance significantly. The average of heat transfer coefficient and thermal inertia index of 3D printed steel slag powder concrete wall all better than the traditional solid brick wall with a thickness of 240mm.

Keywords: concrete, 3D printed walls, thermodynamic performance, steel slag powder

Procedia PDF Downloads 158
3758 Application of NBR 14861: 2011 for the Design of Prestress Hollow Core Slabs Subjected to Shear

Authors: Alessandra Aparecida Vieira França, Adriana de Paula Lacerda Santos, Mauro Lacerda Santos Filho

Abstract:

The purpose of this research i to study the behavior of precast prestressed hollow core slabs subjected to shear. In order to achieve this goal, shear tests were performed using hollow core slabs 26,5cm thick, with and without a concrete cover of 5 cm, without cores filled, with two cores filled and three cores filled with concrete. The tests were performed according to the procedures recommended by FIP (1992), the EN 1168:2005 and following the method presented in Costa (2009). The ultimate shear strength obtained within the tests was compared with the values of theoretical resistant shear calculated in accordance with the codes, which are being used in Brazil, noted: NBR 6118:2003 and NBR 14861:2011. When calculating the shear resistance through the equations presented in NBR 14861:2011, it was found that provision is much more accurate for the calculation of the shear strength of hollow core slabs than the NBR 6118 code. Due to the large difference between the calculated results, even for slabs without cores filled, the authors consulted the committee that drafted the NBR 14861:2011 and found that there is an error in the text of the standard, because the coefficient that is suggested, actually presents the double value than the needed one! The ABNT, later on, soon issued an amendment of NBR 14861:2011 with the necessary corrections. During the tests for the present study, it was confirmed that the concrete filling the cores contributes to increase the shear strength of hollow core slabs. But in case of slabs 26,5 cm thick, the quantity should be limited to a maximum of two cores filled, because most of the results for slabs with three cores filled were smaller. This confirmed the recommendation of NBR 14861:2011which is consistent with standard practice. After analyzing the configuration of cracking and failure mechanisms of hollow core slabs during the shear tests, strut and tie models were developed representing the forces acting on the slab at the moment of rupture. Through these models the authors were able to calculate the tensile stress acting on the concrete ties (ribs) and scaled the geometry of these ties. The conclusions of the research performed are the experiments results have shown that the mechanism of failure of the hollow-core slabs can be predicted using the strut-and-tie procedure, within a good range of accuracy. In addition, the needed of the correction of the Brazilian standard to review the correction factor σcp duplicated (in NBR14861/2011), and the limitation of the number of cores (Holes) to be filled with concrete, to increase the strength of the slab for the shear resistance. It is also suggested the increasing the amount of test results with 26.5 cm thick, and a larger range of thickness slabs, in order to obtain results of shear tests with cores concreted after the release of prestressing force. Another set of shear tests on slabs must be performed in slabs with cores filled and cover concrete reinforced with welded steel mesh for comparison with results of theoretical values calculated by the new revision of the standard NBR 14861:2011.

Keywords: prestressed hollow core slabs, shear, strut, tie models

Procedia PDF Downloads 303
3757 Evaluation of Modulus of Elasticity by Non-Destructive Method of Hybrid Fiber Reinforced Concrete

Authors: Erjola Reufi, Thomas Beer

Abstract:

Plain, unreinforced concrete is a brittle material, with a low tensile strength, limited ductility and little resistance to cracking. In order to improve the inherent tensile strength of concrete there is a need of multi directional and closely spaced reinforcement, which can be provided in the form of randomly distributed fibers. Fiber reinforced concrete (FRC) is a composite material consisting of cement, sand, coarse aggregate, water and fibers. In this composite material, short discrete fibers are randomly distributed throughout the concrete mass. The behavioral efficiency of this composite material is far superior to that of plain concrete and many other construction materials of equal cost. The present experimental study considers the effect of steel fibers and polypropylene fiber on the modulus of elasticity of concrete. Hook end steel fibers of length 5 cm and 3 cm at volume fraction of 0.25%, 0.5% and 1.% were used. Also polypropylene fiber of length 12, 6, 3 mm at volume fraction 0.1, 0.25, and 0.4 % were used. Fifteen mixtures has been prepared to evaluate the effect of fiber on modulus of elasticity of concrete. Ultrasonic pulse velocity (UPV) and resonant frequency methods which are two non-destructive testing techniques have been used to measure the elastic properties of fiber reinforced concrete. This study found that ultrasonic wave propagation is the most reliable, easy and cost effective testing technique to use in the determination of the elastic properties of the FRC mix used in this study.

Keywords: fiber reinforced concrete(FRC), polypropylene fiber, resonance, ultrasonic pulse velocity, steel fiber

Procedia PDF Downloads 273
3756 Comparing the Behaviour of the FRP and Steel Reinforced Shear Walls under Cyclic Seismic Loading in Aspect of the Energy Dissipation

Authors: H. Rahman, T. Donchev, D. Petkova

Abstract:

Earthquakes claim thousands of lives around the world annually due to inadequate design of lateral load resisting systems particularly shear walls. Additionally, corrosion of the steel reinforcement in concrete structures is one of the main challenges in construction industry. Fibre Reinforced Polymer (FRP) reinforcement can be used as an alternative to traditional steel reinforcement. FRP has several excellent mechanical properties than steel such as high resistance to corrosion, high tensile strength and light self-weight; additionally, it has electromagnetic neutrality advantageous to the structures where it is important such as hospitals, some laboratories and telecommunications. This paper is about results of experimental research and it is incorporating experimental testing of two medium-scale concrete shear wall samples; one reinforced with Basalt FRP (BFRP) bar and one reinforced with steel bars as a control sample. The samples are tested under quasi-static-cyclic loading following modified ATC-24 protocol standard seismic loading. The results of both samples are compared to allow a judgement about performance of BFRP reinforced against steel reinforced concrete shear walls. The results of the conducted researches show a promising momentum toward utilisation of the BFRP as an alternative to traditional steel reinforcement with the aim of improving durability with suitable energy dissipation in the reinforced concrete shear walls.  

Keywords: shear walls, internal fibre reinforced polymer reinforcement, cyclic loading, energy dissipation, seismic behaviour

Procedia PDF Downloads 97
3755 S-N-Pf Relationship for Steel Fibre Reinforced Concrete Made with Cement Additives

Authors: Gurbir Kaur, Surinder Pal Singh

Abstract:

The present study is a part of the research work on the effect of limestone powder (LP), silica fume (SF) and metakaolin (MK), on the flexural fatigue performance of steel fibre reinforced concrete (SFRC). Corrugated rectangular steel fibres of size 0.6x2.0x35 mm at a constant volume fraction of 1.0% have been incorporated in all mix combinations as the reinforcing material. Three mix combinations were prepared by replacing 30% of ordinary Portland cement (OPC) by weight with these cement additives in binary and ternary fashion to demonstrate their contribution. An experimental programme was conducted to obtain the fatigue lives of all mix combinations at various stress levels. The fatigue life data have been analysed as an attempt to determine the relationship between stress level ‘S’, number of cycles to failure ‘N’ and probability of failure ‘Pf’ for all mix combinations. The experimental coefficients of the fatigue equation have also been obtained from the fatigue data to represent the S-N-Pf curves analytically.

Keywords: cement additives, fatigue life, probability of failure, steel fibre reinforced concrete

Procedia PDF Downloads 393
3754 Investigating the Properties of Asphalt Concrete Containing Recycled Fillers

Authors: Hasan Taherkhani

Abstract:

Increasingly accumulation of the solid waste materials has become a major environmental problem of communities. In addition to the protection of environment, the recycling and reusing of the waste materials are financially beneficial. Waste materials can be used in highway construction. This study aimed to investigate the applicability of recycled concrete, asphalt and steel slag powder, as a replacement of the primary mineral filler in asphalt concrete has been investigated. The primary natural siliceous aggregate filler, as control, has been replaced with the secondary recycled concrete, asphalt and steel slag powders, and some engineering properties of the mixtures have been evaluated. Marshal Stability, flow, indirect tensile strength, moisture damage, static creep and volumetric properties of the mixtures have been evaluated. The results show that, the Marshal Stability of the mixtures containing recycled powders is higher than that of the control mixture. The flow of the mixtures containing recycled steel slag is lower, and that of the mixtures containing recycled asphalt and cement concrete powder is found to be higher than that of the control mixture. It is also found that the resistance against moisture damage and permanent deformation of the mixture can be improved by replacing the natural filler with the recycled powders. The volumetric properties of the mixtures are not significantly influenced by replacing the natural filler with the recycled powders.

Keywords: filler, steel slag, recycled concrete, recycled asphalt concrete, tensile strength, moisture damage, creep

Procedia PDF Downloads 246
3753 Finite Element Analysis of Steel-Concrete Composite Structures Considering Bond-Slip Effect

Authors: WonHo Lee, Hyo-Gyoung Kwak

Abstract:

A numerical model considering slip behavior of steel-concrete composite structure is introduced. This model is based on a linear bond stress-slip relation along the interface. Single node was considered at the interface of steel and concrete member in finite element analysis, and it improves analytical problems of model that takes double nodes at the interface by adopting spring elements to simulate the partial interaction. The slip behavior is simulated by modifying material properties of steel element contacting concrete according to the derived formulation. Decreased elastic modulus simulates the slip occurrence at the interface and decreased yield strength simulates drop in load capacity of the structure. The model is verified by comparing numerical analysis applying this model with experimental studies. Acknowledgment—This research was supported by a grant(13SCIPA01) from Smart Civil Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport(MOLIT) of Korea government and Korea Agency for Infrastructure Technology Advancement(KAIA) and financially supported by Korea Ministry of Land, Infrastructure and Transport(MOLIT) as U-City Master and Doctor Course Grant Program.

Keywords: bond-slip, composite structure, partial interaction, steel-concrete structure

Procedia PDF Downloads 158
3752 Calculating Quantity of Steel Bar Placed in Mesh Form in a Circular Slab or Dome

Authors: Karam Chand Gupta

Abstract:

When steel reinforcement is placed in mesh form in circular concrete slab at base or domes at top in case of over head service reservoir or any other structure, it is difficult to estimate/measure the total quantity of steel that would be needed or placed. For the purpose of calculating the total length of the steel bars, at present, the practice is – the length of each bar is measured and then added up. This is tiresome and time consuming process. I have derived a mathematics formula with the help of which we can calculate in one line the quantity of total steel that will be needed. This will not only make it easy and time saving but also avoids any error in making entries and calculations.

Keywords: dome, mesh, slab, steel

Procedia PDF Downloads 632
3751 Effect of the Concrete Cover on the Bond Strength of the FRP Wrapped and Non-Wrapped Reinforced Concrete Beam with Lap Splice under Uni-Direction Cyclic Loading

Authors: Rayed Alyousef, Tim Topper, Adil Al-Mayah

Abstract:

Many of the reinforced concrete structures subject to cyclic load constructed before the modern bond and fatigue design code. One of the main issue face on exists structure is the bond strength of the longitudinal steel bar and the surrounding concrete. A lap splice is a common connection method to transfer the force between the steel rebar in a reinforced concrete member. Usually, the lap splice is the weak connection on the bond strength. Fatigue flexural loading imposes severe demands on the strength and ductility of the lap splice region in reinforced concrete structures and can lead to a brittle and sudden failure of the member. This paper investigates the effect of different concrete covers on the fatigue bond strength of reinforcing concrete beams containing a lap splice under a fatigue loads. It includes tests of thirty-seven beams divided into three groups. Each group has beams with 30 mm and 50 mm clear side and bottom concrete covers. The variables that were addressed where the concrete cover, the presence or absence of CFRP or GFRP sheet wrapping, the type of loading (monotonic or fatigue) and the fatigue load ranges. The test results showed that an increase in the concrete cover led to an increase in the bond strength under both monotonic and fatigue loading for both the unwrapped and wrapped beams. Also, the FRP sheets increased both the fatigue strength and the ductility for both the 30 mm and the 50 mm concrete covers.

Keywords: bond strength, fatigue, Lap splice, FRp wrapping

Procedia PDF Downloads 455
3750 High Performance Fibre Reinforced Alkali Activated Slag Concrete

Authors: A. Sivakumar, K. Srinivasan

Abstract:

The main objective of the study is focused in producing slag based geopolymer concrete obtained with the addition of alkali activator. Test results indicated that the reaction of silicates in slag is based on the reaction potential of sodium hydroxide and the formation of alumino-silicates. The study also comprises on the evaluation of the efficiency of polymer reaction in terms of the strength gain properties for different geopolymer mixtures. Geopolymer mixture proportions were designed for different binder to total aggregate ratio (0.3 & 0.45) and fine to coarse aggregate ratio (0.4 & 0.8). Geopolymer concrete specimens casted with normal curing conditions reported a maximum 28 days compressive strength of 54.75 MPa. The addition of glued steel fibres at 1.0% Vf in geopolymer concrete showed reasonable improvements on the compressive strength, split tensile strength and flexural properties of different geopolymer mixtures. Further, comparative assessment was made for different geopolymer mixtures and the reinforcing effects of steel fibres were investigated in different concrete matrix.

Keywords: accelerators, alkali activators, geopolymer, hot air oven curing, polypropylene fibres, slag, steam curing, steel fibres

Procedia PDF Downloads 240
3749 An Evaluation of Full-Scale Reinforced Concrete and Steel Girder Composite Members Using High Volume Fly-Ash

Authors: Sung-Won Yoo, Chul-Hyeon Kang, Kyoung-Tae Park, Hae-Sik Woo

Abstract:

Numerous studies were dedicated on the High Volume Fly-Ash (HVFA) concrete using high volume fly ash. The material properties of HVFA concrete have been the primordial topics of early studies, and interest shifted gradually toward the structural behavior of HVFA concrete such as elasticity modulus, stress-strain relationship, and structural behavior. However, structural studies consider small-scale members limited to the scope of reinforced concrete only. Therefore, in this paper, on the basis of recent studies on the structural behavior, 2 full-scale test members were manufactured with 7.5 m span length, fly ash replacement ratio of 50 % and concrete compressive strength of 50 MPa in order to evaluate the practicability of HVFA to real structures. In addition, 2 steel composite test members were also manufactured with span length of 3 m and using the same HVFA concrete for the same purpose. The test results of full-scale RC members showed that the practical use of HVFA on such structures is not hard despite small differences between test results and existing research results on the stress-strain relationship. The flexural test revealed very little difference between 50% fly ash concrete and general concrete in view of the similarity exhibited by the displacement and strain patterns. The experimental concrete shear strength being very close to that of design code, the existing design code can be applied. From the flexural test results of steel girder composite members, the composite behavior can be secured as much as that using normal concrete under the condition of sufficient arrangement of reinforcing bar.

Keywords: composite, fly ash, full-scale, high volume

Procedia PDF Downloads 191
3748 Reliability of Slender Reinforced Concrete Columns: Part 1

Authors: Metwally Abdel Aziz Ahmed, Ahmed Shaban Abdel Hay Gabr, Inas Mohamed Saleh

Abstract:

The main objective of structural design is to ensure safety and functional performance requirements of a structural system for its target reliability levels. In this study, the reliability index for the reinforcement concrete slender columns with rectangular cross section is studied. The variable parameters studied include the loads, the concrete compressive strength, the steel yield strength, the dimensions of concrete cross-section, the reinforcement ratio, and the location of steel placement. Risk analysis program was used to perform the analytical study. The effect of load eccentricity on the reliability index of reinforced concrete slender column was studied and presented. The results of this study indicate that the good quality control improve the performance of slender reinforced columns through increasing the reliability index β.

Keywords: reliability, reinforced concrete, safety, slender column

Procedia PDF Downloads 416
3747 The Structural Behavior of Fiber Reinforced Lightweight Concrete Beams: An Analytical Approach

Authors: Jubee Varghese, Pouria Hafiz

Abstract:

Increased use of lightweight concrete in the construction industry is mainly due to its reduction in the weight of the structural elements, which in turn reduces the cost of production, transportation, and the overall project cost. However, the structural application of these lightweight concrete structures is limited due to its reduced density. Hence, further investigations are in progress to study the effect of fiber inclusion in improving the mechanical properties of lightweight concrete. Incorporating structural steel fibers, in general, enhances the performance of concrete and increases its durability by minimizing its potential to cracking and providing crack arresting mechanism. In this research, Geometric and Materially Non-linear Analysis (GMNA) was conducted for Finite Element Modelling using a software known as ABAQUS, to investigate the structural behavior of lightweight concrete with and without the addition of steel fibers and shear reinforcement. 21 finite element models of beams were created to study the effect of steel fibers based on three main parameters; fiber volume fraction (Vf = 0, 0.5 and 0.75%), shear span to depth ratio (a/d of 2, 3 and 4) and ratio of area of shear stirrups to spacing (As/s of 0.7, 1 and 1.6). The models created were validated with the previous experiment conducted by H.K. Kang et al. in 2011. It was seen that the lightweight fiber reinforcement can replace the use of fiber reinforced normal weight concrete as structural elements. The effect of an increase in steel fiber volume fraction is dominant for beams with higher shear span to depth ratio than for lower ratios. The effect of stirrups in the presence of fibers was very negligible; however; it provided extra confinement to the cracks by reducing the crack propagation and extra shear resistance than when compared to beams with no stirrups.

Keywords: ABAQUS, beams, fiber-reinforced concrete, finite element, light weight, shear span-depth ratio, steel fibers, steel-fiber volume fraction

Procedia PDF Downloads 79