Search results for: composite overwrapped pressure vessels
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6036

Search results for: composite overwrapped pressure vessels

5766 Influence of the Test Environment on the Dynamic Response of a Composite Beam

Authors: B. Moueddene, B. Labbaci, L. Missoum, R. Abdeldjebar

Abstract:

Quality estimation of the experimental simulation of boundary conditions is one of the problems encountered while performing an experimental program. In fact, it is not easy to estimate directly the effective influence of these simulations on the results of experimental investigation. The aim of this is article to evaluate the effect of boundary conditions uncertainties on structure response, using the change of the dynamics characteristics. The experimental models used and the correlation by the Frequency Domain Assurance Criterion (FDAC) allowed an interpretation of the change in the dynamic characteristics. The application of this strategy to stratified composite structures (glass/ polyester) has given satisfactory results.

Keywords: vibration, composite, endommagement, correlation

Procedia PDF Downloads 342
5765 Synthesis and Characterization of Nanocellulose Based Bio-Composites

Authors: Krishnakant Bhole, Neerakallu D. Shivakumar, Shakti Singh Chauhan, Sanketh Tonannavar, Rajath S

Abstract:

Synthesis of natural-based composite materials is state of the art. This work discusses the preparation and characterization of cellulose nanofibers (CNF) extracted from the bamboo pulp using TEMPO-oxidization and high-pressure homogenization methods. Bio-composites are prepared using synthesized CNF and bamboo particles. Nanocellulose prepared is characterized using SEM and XRD for morphological and crystallinity analysis, and the formation of fibers at the nano level is ensured. Composite specimens are fabricated using these natural sources and subjected to tensile and flexural tests to characterize the mechanical properties such as modulus of elasticity (MOE), modulus of rupture (MOR), and interfacial strength. Further, synthesized nanocellulose is used as a binding agent to prepare particleboards using various natural sources like bamboo, areca nut, and banana in the form of fibers. From the results, it can be inferred that nanocellulose prepared from bamboo pulp acts as a binding agent for making bio-composites. Hence, the concept of using matrix and reinforcement derived from natural sources can be used to prepare green composites that are highly degradable.

Keywords: nanocellulose, biocomposite, CNF, bamboo

Procedia PDF Downloads 57
5764 CFD Simulation of the Inlet Pressure Effects on the Cooling Capacity Enhancement for Vortex Tube with Couple Vortex Chambers

Authors: Nader Pourmahmoud, Amir Hassanzadeh

Abstract:

This article investigates the effects of inlet pressure in a newly introduced vortex tube which has been equipped with an additional vortex chamber. A 3-D compressible turbulent flow computation has been carried out toward analysis of complex flow field in this apparatus. Numerical results of flows are derived by utilizing the standard k-ε turbulence model for analyzing high rotating complex flow field. The present research has focused on cooling effect and given a characteristics curve for minimum cool temperature. In addition, the effect of inlet pressure for both chambers has been studied in details. To be presented numerical results show that the effect of inlet pressure in second chamber has more important role in improving the performance of the vortex tube than first one. By increasing the pressure in the second chamber, cold outlet temperature reaches a higher decrease. When both chambers are fed with high pressure fluid, best operation condition of vortex tube occurs. However, it is not possible to feed both chambers with high pressure due to the conditions of working environment.

Keywords: energy separation, inlet pressure, numerical simulation, vortex chamber, vortex tube

Procedia PDF Downloads 344
5763 Numerical Study of Off-Design Performance of a Highly Loaded Low Pressure Turbine Cascade

Authors: Shidvash Vakilipour, Mehdi Habibnia, Rouzbeh Riazi, Masoud Mohammadi, Mohammad H. Sabour

Abstract:

The flow field passing through a highly loaded low pressure (LP) turbine cascade is numerically investigated at design and off-design conditions. The Field Operation And Manipulation (OpenFOAM) platform is used as the computational Fluid Dynamics (CFD) tool. Firstly, the influences of grid resolution on the results of k-ε, k-ω, and LES turbulence models are investigated and compared with those of experimental measurements. A numerical pressure under-shoot is appeared near the end of blade pressure surface which is sensitive to grid resolution and flow turbulence modeling. The LES model is able to resolve separation on a coarse and fine grid resolutions. Secondly, the off-design flow condition is modeled by negative and positive inflow incidence angles. The numerical experiments show that a separation bubble generated on blade pressure side is predicted by LES. The total pressure drop is also been calculated at incidence angle between -20◦ and +8◦. The minimum total pressure drop is obtained by k-ω and LES at the design point.

Keywords: low pressure turbine, off-design performance, openFOAM, turbulence modeling, flow separation

Procedia PDF Downloads 332
5762 Numerical Modelling and Experiment of a Composite Single-Lap Joint Reinforced by Multifunctional Thermoplastic Composite Fastener

Authors: Wenhao Li, Shijun Guo

Abstract:

Carbon fibre reinforced composites are progressively replacing metal structures in modern civil aircraft. This is because composite materials have large potential of weight saving compared with metal. However, the achievement to date of weight saving in composite structure is far less than the theoretical potential due to many uncertainties in structural integrity and safety concern. Unlike the conventional metallic structure, composite components are bonded together along the joints where structural integrity is a major concern. To ensure the safety, metal fasteners are used to reinforce the composite bonded joints. One of the solutions for a significant weight saving of composite structure is to develop an effective technology of on-board Structural Health Monitoring (SHM) System. By monitoring the real-life stress status of composite structures during service, the safety margin set in the structure design can be reduced with confidence. It provides a means of safeguard to minimize the need for programmed inspections and allow for maintenance to be need-driven, rather than usage-driven. The aim of this paper is to develop smart composite joint. The key technology is a multifunctional thermoplastic composite fastener (MTCF). The MTCF will replace some of the existing metallic fasteners in the most concerned locations distributed over the aircraft composite structures to reinforce the joints and form an on-board SHM network system. Each of the MTCFs will work as a unit of the AU and AE technology. The proposed MTCF technology has been patented and developed by Prof. Guo in Cranfield University, UK in the past a few years. The manufactured MTCF has been successfully employed in the composite SLJ (Single-Lap Joint). In terms of the structure integrity, the hybrid SLJ reinforced by MTCF achieves 19.1% improvement in the ultimate failure strength in comparison to the bonded SLJ. By increasing the diameter or rearranging the lay-up sequence of MTCF, the hybrid SLJ reinforced by MTCF is able to achieve the equivalent ultimate strength as that reinforced by titanium fastener. The predicted ultimate strength in simulation is in good agreement with the test results. In terms of the structural health monitoring, a signal from the MTCF was measured well before the load of mechanical failure. This signal provides a warning of initial crack in the joint which could not be detected by the strain gauge until the final failure.

Keywords: composite single-lap joint, crack propagation, multifunctional composite fastener, structural health monitoring

Procedia PDF Downloads 131
5761 Pedagogy of Possibility: Exploring the TVET of Southern African Workers on Foreign Vessels Mediated by Ubiquitous Google and Microsoft apps

Authors: Robin Ferguson

Abstract:

The context which this paper explores is the provision of Technical Vocational Education and Training (TVET) of southern African workers at sea on local and foreign vessels using a blended learning approach. The pedagogical challenge of providing quality education in this context is that multiple African and foreign languages and cultural norms are found amongst the all-male crew; and there are widely differing levels of education, low levels of digital literacy and limited connectivity. The methodology used is a nested case study. The study describes the mechanisms used to provide ongoing, real-time workplace TVET on two foreign vessels. Some training was done in person when the vessels came into port, however, the majority of the TVET was achieved from shore to ship using a combination of commonly available Google and Microsoft Apps and WhatsApp. Voice, video and text in multiple languages were used to accommodate different learning styles. The learning was supported by the development of learning networks using social media. This paper also reflects on the shore-based organisational change processes required to support sea learning. The conceptual framework used is the Theory of Practice Architectures (TPA) as is provides a site-ontological perspective of the sayings/thinkings, doings and relatings of this workplace training which is multiplanar as it plays out at sea and ashore, in-person and on-line. Using TPA, the overarching practice architectures and supporting structures which confound or enable these learning practices are revealed. The contribution which this paper makes is an insight into an innovative vocational pedagogy which promotes ICT-mediated learning amongst workers who suffer from low levels of literacies and limited ICT-access and who work and live in remote places. It is a pedagogy of possibility which crosses the digital divide.

Keywords: theory of practice architecture, microsoft, google, whatsapp, vocational pedagogy, mariners, distributed workplaces

Procedia PDF Downloads 41
5760 Numerical Study on the Heat Transfer Characteristics of Composite Phase Change Materials

Authors: Gui Yewei, Du Yanxia, Xiao Guangming, Liu Lei, Wei Dong, Yang Xiaofeng

Abstract:

A phase change material (PCM) is a substance which absorbs a large amount of energy when undergoing a change of solid-liquid phase. The good physical and chemical properties of C or SiC foam reveal the possibility of using them as a thermal conductivity enhancer for the PCM. C or SiC foam composite PCM has a high effective conductivity and becomes one of the most interesting thermal storage techniques due to its advantage of simplicity and reliability. The paper developed a numerical method to simulate the heat transfer of SiC and C foam composite PCM, a finite volume technique was used to discretize the heat diffusion equation while the phase change process was modeled using the equivalent specific heat method. The effects of the porosity were investigated based on the numerical method, and the effects of the geometric model of the microstructure on the equivalent thermal conductivity was studies.

Keywords: SiC foam, composite, phase change material, heat transfer

Procedia PDF Downloads 484
5759 Experimental Analysis of Composite Timber-Concrete Beam with CFRP Reinforcement

Authors: O. Vlcek

Abstract:

The paper deals with current issues in research of advanced methods to increase reliability of traditional timber structural elements. It analyses the issue of strengthening of bent timber beams, such as ceiling beams in old (historical) buildings with additional concrete slab in combination with externally bonded fibre - reinforced polymer. The paper describes experimental testing of composite timber-concrete beam with FRP reinforcement and compares results with FEM analysis.

Keywords: timber-concrete composite, strengthening, fibre-reinforced polymer, experimental analysis

Procedia PDF Downloads 448
5758 Flexural Behavior of Composite Hybrid Beam Models Combining Steel Inverted T-Section and RC Flange

Authors: Abdul Qader Melhem, Hacene Badache

Abstract:

This paper deals with the theoretical and experimental study of shear connection via simple steel reinforcement shear connectors, which are steel reinforcing bars bent into L-shapes, instead of commonly used headed studs. This suggested L-shape connectors are readily available construction material in steel reinforcement. The composite section, therefore, consists of steel inverted T-section being embedded within a lightly reinforced concrete flange at the top slab as a unit. It should be noted that the cross section of these composite models involves steel inverted T-beam, replacing the steel top flange of a standard commonly employed I-beam section. The paper concentrates on the elastic and elastic-plastic behavior of these composite models. Failure modes either by cracking of concrete or shear connection be investigated in details. Elastic and elastoplastic formulas of the composite model have been computed for different locations of NA. Deflection formula has been derived, its value was close to the test value. With a supportive designing curve, this curve is valuable for both designing engineers and researchers. Finally, suggested designing curves and valuable equations will be presented. A check is made between theoretical and experimental outcomes.

Keywords: composite, elastic-plastic, failure, inverted T-section, L-Shape connectors

Procedia PDF Downloads 196
5757 Optimizing Fire Tube Boiler Design for Efficient Saturated Steam Production at 2000kg/h

Authors: Yoftahe Nigussie Worku

Abstract:

This study focused on designing a Fire tube boiler to generate saturated steam with a 2000kg/h capacity at a 12bar design pressure. The primary project goal is to achieve efficient steam production while minimizing costs. This involves selecting suitable materials for component parts, employing cost-effective construction methods, and optimizing various parameters. The analysis phase employs iterative processes and relevant formulas to determine key design parameters. This includes optimizing the diameter of tubes for overall heat transfer coefficient, considering a two-pass configuration due to tube and shell size, and using heavy oil fuel no.6 with specific heating values. The designed boiler consumes 140.37kg/hr of fuel, producing 1610kw of heat at an efficiency of 85.25%. The fluid flow is configured as cross flow, leveraging its inherent advantages. The tube arrangement involves welding the tubes inside the shell, which is connected to the tube sheet using a combination of gaskets and welding. The design of the shell adheres to the European Standard code for pressure vessels, accounting for weight and supplementary accessories and providing detailed drawings for components like lifting lugs, openings, ends, manholes, and supports.

Keywords: efficiency, coefficient, saturated steam, fire tube

Procedia PDF Downloads 24
5756 [Keynote Speech]: Experimental Study on the Effects of Water-in-Oil Emulsions to the Pressure Drop in Pipeline Flow

Authors: S. S. Dol, M. S. Chan, S. F. Wong, J. S. Lim

Abstract:

Emulsion formation is unavoidable and can be detrimental to an oil field production. The presence of stable emulsions also reduces the quality of crude oil and causes more problems in the downstream refinery operations, such as corrosion and pipeline pressure drop. Hence, it is important to know the effects of emulsions in the pipeline. Light crude oil was used for the continuous phase in the W/O emulsions where the emulsions pass through a flow loop to test the pressure drop across the pipeline. The results obtained shows that pressure drop increases as water cut is increased until it peaks at the phase inversion of the W/O emulsion between 30% to 40% water cut. Emulsions produced by gradual constrictions show a lower stability as compared to sudden constrictions. Lower stability of emulsions in gradual constriction has the higher influence of pressure drop compared to a sudden sharp decrease in diameter in sudden constriction. Generally, sudden constriction experiences pressure drop of 0.013% to 0.067% higher than gradual constriction of the same ratio. Lower constriction ratio cases cause larger pressure drop ranging from 0.061% to 0.241%. Considering the higher profitability in lower emulsion stability and lower pressure drop at the developed flow region of different constrictions, an optimum design of constriction is found to be gradual constriction with a ratio of 0.5.

Keywords: constriction, pressure drop, turbulence, water-in-oil emulsions

Procedia PDF Downloads 298
5755 Effect of Swelling Pressure on Drug Release from Polyelectrolyte Micro-Hydrogel Particles

Authors: Mina Boroujerdi, Javad Tavakoli

Abstract:

Hydrogels are extensively studied as matrices for the controlled release of drugs. To evaluate the mobility of embedded molecules, these drug delivery systems are usually characterized by release studies. In this contribution, an electronic device for swelling pressure measurement during drug release from hydrogel network was developed. Also, poly acrylic acid micro particles were prepared for prolonged and sustained controlled acetaminophen release. Effect of swelling pressure on drug release from micro particles studied under different environment pH in order to predict release profile in gastro-intestine medium. Swelling ratio and swelling pressure were measured in different pH.

Keywords: swelling pressure, drug delivery, hydrogel, polyelectrolyte

Procedia PDF Downloads 270
5754 Mechanisms of O-1602 Induced Endothelium-Independent Vasorelaxation of Rat Small Mesenteric Artery

Authors: Yousuf Al Suleimani, Ahmed Al Mahruqi

Abstract:

A typical cannabinoid O-1602 induces vasorelaxation and activates the orphan G protein-coupled receptor GPR55 in human endothelial cells. The aim of this study is to characterize the mechanisms of endothelium-independent relaxation of O-1602 in the rat small mesenteric artery using wire myograph. In endothelium-denuded vessels, O-1602 partially produced concentration-dependent vasorelaxation. In vessels depleted of intracellular Ca2+ (by EGTA and methoxamine), CaCl2 produced concentration-dependent contraction. Preincubation with O-1602 (at 10 µM and 30 µM) abolished the contractile responses (P<0.01). The putative antagonist at novel “endothelial anandamide receptor” O-1918 (10 µM) significantly reversed the inhibitory effect of O-1602 on CaCl2-induced vasoconstriction. It is likely that the mechanism of endothelium-independent vasorelaxation to O-1602 is mediated by interfering with Ca2+ entry via an O-1918-sensitive pathway.

Keywords: O-1602, endothelium, vasorelaxation, calcium

Procedia PDF Downloads 332
5753 Effect of Number of Baffles on Pressure Drop and Heat Transfer in a Shell and Tube Heat Exchanger

Authors: A. Falavand Jozaei, A. Ghafouri, M. Mosavi Navaei

Abstract:

In this paper for a given heat duty, study of number of baffles on pressure drop and heat transfer is considered in a STHX (Shell and Tube Heat Exchanger) with single segmental baffles. The effect of number of baffles from 9 to 52 baffles (baffle spacing variations from 4 to 24 inches) over OHTC (Overall Heat Hransfer Coefficient) to pressure drop ratio (U/Δp ratio). The results show that U/Δp ratio is low when baffle spacing is minimum (4 inches) because pressure drop is high; however, heat transfer coefficient is very significant. Then, with the increase of baffle spacing, pressure drop rapidly decreases and OHTC also decreases, but the decrease of OHTC is lower than pressure drop, so (U/Δp) ratio increases. After increasing baffles more than 12 inches, variation in pressure drop is gradual and approximately constant and OHTC decreases; Consequently, U/Δp ratio decreases again. If baffle spacing reaches to 24 inches, STHX will have minimum pressure drop, but OHTC decreases, so required heat transfer surface increases and U/Δp ratio decreases. After baffle spacing more than 12 inches, variation of shell side pressure drop is negligible. So optimum baffle spacing is suggested between 8 to 12 inches (43 to 63 percent of inside shell diameter) for a sufficient heat duty and low pressure drop.

Keywords: shell and tube heat exchanger, single segmental baffle, overall heat transfer coefficient, pressure drop

Procedia PDF Downloads 507
5752 Food Insecurity and Other Correlates of Individual Components of Metabolic Syndrome in Women Living with HIV (WLWH) in the United States

Authors: E. Wairimu Mwangi, Daniel Sarpong

Abstract:

Background: Access to effective antiretroviral therapy in the United States has resulted in the rise in longevity in people living with HIV (PLHIV). Despite the progress, women living with HIV (WLWH) experience increasing rates of cardiometabolic disorders compared with their HIV-negative counterparts. Studies focusing on the predictors of metabolic disorders in this population have largely focused on the composite measure of metabolic syndrome (METs). This study seeks to identify the predictors of composite and individual METs factors in a nationally representative sample of WLWH. In particular, the study also examines the role of food security in predicting METs. Methods: The study comprised 1800 women, a subset of participants from the Women’s Interagency HIV Study (WIHS). The primary exposure variable, food security, was measured using the U.S. 10-item Household Food Security Survey Module. The outcome measures are the five metabolic syndrome indicators (elevated blood pressure [systolic BP > 130 mmHg and diastolic BP ≥ 85 mmHg], elevated fasting glucose [≥ 110 mg/dL], elevated fasting triglyceride [≥ 150 mg/dL], reduced HDL cholesterol [< 50 mg/dL], and waist circumference > 88 cm) and the composite measure - Metabolic Syndrome (METs) Status. Each metabolic syndrome indicator was coded one if yes and 0 otherwise. The values of the five indicators were summed, and participants with a total score of 3 or greater were classified as having metabolic syndrome. Participants classified as having metabolic syndrome were assigned a code of 1 and 0 otherwise for analysis. The covariates accounted for in this study fell into sociodemographic factors and behavioral and health characteristics. Results: The participants' mean (SD) age was 47.1 (9.1) years, with 71.4% Blacks and 10.9% Whites. About a third (33.1%) had less than a high school (HS) diploma, 60.4% were married, 32.8% were employed, and 53.7% were low-income. The prevalence of worst dietary diversity, low, moderate, and high food security were 24.1%, 26.6%, 17.0%, and 56.4%, respectively. The correlate profile of the five individual METs factors plus the composite measure of METs differ significantly, with METs based on HDL having the most correlates (Age, Education, Drinking Status, Low Income, Body Mass Index, and Health Perception). Additionally, metabolic syndrome based on waist circumference was the only metabolic factor where food security was significantly correlated (Food Security, Age, and Body Mass Index). Age was a significant predictor of all five individual METs factors plus the composite METs measure. Except for METs based on Fasting Triglycerides, body mass index (BMI) was a significant correlate of the various measures of metabolic syndrome. Conclusion: High-density Lipoprotein (HDL) cholesterol significantly correlated with most predictors. BMI was a significant predictor of all METs factors except Fasting Triglycerides. Food insecurity, the primary predictor, was only significantly associated with waist circumference.

Keywords: blood pressure, food insecurity, fasting glucose, fasting triglyceride, high-density lipoprotein, metabolic syndrome, waist circumference, women living with HIV

Procedia PDF Downloads 28
5751 Importance of Solubility and Bubble Pressure Models to Predict Pressure of Nitrified Oil Based Drilling Fluid in Dual Gradient Drilling

Authors: Sajjad Negahban, Ruihe Wang, Baojiang Sun

Abstract:

Gas-lift dual gradient drilling is a solution for deepwater drilling challenges. As well, Continuous development of drilling technology leads to increase employment of mineral oil based drilling fluids and synthetic-based drilling fluids, which have adequate characteristics such as: high rate of penetration, lubricity, shale inhibition and low toxicity. The paper discusses utilization of nitrified mineral oil base drilling for deepwater drilling and for more accurate prediction of pressure in DGD at marine riser, solubility and bubble pressure were considered in steady state hydraulic model. The Standing bubble pressure and solubility correlations, and two models which were acquired from experimental determination were applied in hydraulic model. The effect of the black oil correlations, and new solubility and bubble pressure models was evaluated on the PVT parameters such as oil formation volume factor, density, viscosity, volumetric flow rate. Eventually, the consequent simulated pressure profile due to these models was presented.

Keywords: solubility, bubble pressure, gas-lift dual gradient drilling, steady state hydraulic model

Procedia PDF Downloads 244
5750 Non-Enzymatic Electrochemical Detection of Glucose in Disposable Paper-Based Sensor Using a Graphene and Cobalt Phthalocyanine Composite

Authors: Sudkate Chaiyo, Weena Siangproh, Orawon Chailapakul, Kurt Kalcher

Abstract:

In the present work, a simple and sensitive non-enzymatic electrochemical detection of glucose in disposable paper-based sensor was developed at ionic liquid/graphene/cobalt phthalocyanine composite (IL/G/CoPc) modified electrode. The morphology of the fabricated composite was characterized and confirmed by scanning electron microscopy and UV-Vis spectroscopy. The UV-Vis spectroscopy results confirmed that the G/CoPc composite formed via the strong π–π interaction between CoPc and G. Amperometric i-t technique was used for the determination of glucose. The response of glucose was linear over the concentration ranging from 10 µM to 1.5 mM. The response time of the sensor was found as 30 s with a limit of detection of 0.64 µM (S/N=3). The fabricated sensor also exhibited its good selectivity in the presence of common interfering species. In addition, the fabricated sensor exhibited its special advantages such as low working potential, good sensitivity along with good repeatability and reproducibility for the determination of glucose.

Keywords: glucose, paper-based sensor, ionic liquid/graphene/cobalt phthalocyanine composite, electrochemical detection

Procedia PDF Downloads 143
5749 Viable Use of Natural Extract Solutions from Tuberous and Cereals to Enhance the Synthesis of Activated Carbon-Graphene Composite

Authors: Pamphile Ndagijimana, Xuejiao Liu, Zhiwei Li, Yin Wang

Abstract:

Enhancing the properties of activated carbon is very imperative for various applications. Indeed, the activated carbon has promising physicochemical properties desired for a considerable number of applications. In this regard, we are proposing an enhanced and green technology for increasing the efficiency and performance of the activated carbon to various applications. The technique poses on the use of natural extracts from tuberous and cereals based-solutions. These solutions showed high potentiality to be used in the synthesis of activated carbon-graphene composite with only 3 mL. The extracted liquid from tuberous sourcing was enough to induce precipitation within a fraction of a minute in contrast to that from cereal sourced. Using these extracts, a synthesis of activated carbon-graphene composite was successful. Different characterization techniques such as XRD, SEM, FTIR, BET, and Raman spectroscopy were performed to investigate the composite materials. The results confirmed a conjugation between activated carbon and graphene material.

Keywords: activated carbon, cereals, extract solution, graphene, tuberous

Procedia PDF Downloads 111
5748 Environmental Effects on Coconut Coir Fiber Epoxy Composites Having TiO₂ as Filler

Authors: Srikanth Korla, Mahesh Sharnangat

Abstract:

Composite materials are being widely used in Aerospace, Naval, Defence and other branches of engineering applications. Studies on natural fibers is another emerging research area as they are available in abundance, and also due to their eco-friendly in nature. India being one of the major producer of coir, there is always a scope to study the possibilities of exploring coir as reinforment, and with different combinations of other elements of the composite. In present investigation effort is made to utilize properties possessed by natural fiber and make them enable with polymer/epoxy resin. In natural fiber coconut coir is used as reinforcement fiber in epoxy resin with varying weight percentages of fiber and filler material. Titanium dioxide powder (TiO2) is used as filler material with varying weight percentage including 0%, 2% and 4% are considered for experimentation. Environmental effects on the performance of the composite plate are also studied and presented in this project work; Moisture absorption test for composite specimens is conducted using different solvents including Kerosene, Mineral Water and Saline Water, and its absorption capacity is evaluated. Analysis is carried out in different combinations of Coir as fiber and TiO2 as filler material, and the best suitable composite material considering the strength and environmental effects is identified in this work. Therefore, the significant combination of the composite material is with following composition: 2% TiO2 powder 15% of coir fibre and 83% epoxy, under unique mechanical and environmental conditions considered in the work.

Keywords: composite materials, moisture test, filler material, natural fibre composites

Procedia PDF Downloads 179
5747 Geometrically Nonlinear Analysis of Initially Stressed Hybrid Laminated Composite Structures

Authors: Moumita Sit, Chaitali Ray

Abstract:

The present article deals with the free vibration analysis of hybrid laminated composite structures with initial stresses developed in the laminates. Generally initial stresses may be developed in the laminates by temperature and moisture effect. In this study, an eight noded isoparametric plate bending element has been used for the finite element analysis of composite plates. A numerical model has been developed to assess the geometric nonlinear response of composite plates based on higher order shear deformation theory (HSDT) considering the Green–Lagrange type nonlinearity. A computer code based on finite element method (FEM) has also been developed in MATLAB to perform the numerical calculations. To validate the accuracy of the proposed numerical model, the results obtained from the present study are compared with those available in published literature. Effects of the side to thickness ratio, different boundary conditions and initial stresses on the natural frequency of composite plates have been studied. The free vibration analysis of a hollow stiffened hybrid laminated panel has also been carried out considering initial stresses and presented as case study.

Keywords: geometric nonlinearity, higher order shear deformation theory (HSDT), hybrid composite laminate, the initial stress

Procedia PDF Downloads 125
5746 Determination of Foaming Behavior in Thermoplastic Composite Nonwoven Structures for Automotive Applications

Authors: Zulfiye Ahan, Mustafa Dogu, Elcin Yilmaz

Abstract:

The use of nonwoven textile materials in many application areas is rapidly increasing thanks to their versatile performance properties. The automotive industry is one of the largest sectors in the world with a potential market of more than 2 billion euros for nonwoven textile materials applications. Lightweight materials having higher mechanical performance, better sound and heat insulation properties are of interest in many applications. Since the usage of nonwoven surfaces provides many of these advantages, the demand for this kind of materials is gradually growing especially in the automotive industry. Nonwoven materials used in lightweight vehicles can contain economical and high strength thermoplastics as well as durable components such as glass fiber. By bringing these composite materials into foam structure containing micro or nanopores, products with high absorption ability, light and mechanically stronger can be fabricated. In this respect, our goal is to produce thermoplastic composite nonwoven by using nonwoven glass fiber fabric reinforced polypropylene (PP). Azodicarbonamide (ADC) was selected as a foaming agent and a thermal process was applied to obtain porous structure. Various foaming temperature ranges and residence times were studied to examine the foaming behaviour of the thermoplastic composite nonwoven. Physicochemical and mechanical tests were applied in order to analyze the characteristics of composite foams.

Keywords: composite nonwoven, thermoplastic foams, foaming agent, foaming behavior

Procedia PDF Downloads 201
5745 Development of Expanded Perlite-Caprylicacid Composite for Temperature Maintainance in Buildings

Authors: Akhila Konala, Jagadeeswara Reddy Vennapusa, Sujay Chattopadhyay

Abstract:

The energy consumption of humankind is growing day by day due to an increase in the population, industrialization and their needs for living. Fossil fuels are the major source of energy to satisfy energy needs, which are non-renewable energy resources. So, there is a need to develop green resources for energy production and storage. Phase change materials (PCMs) derived from plants (green resources) are well known for their capacity to store the thermal energy as latent heat during their phase change from solid to liquid. This property of PCM could be used for storage of thermal energy. In this study, a composite with fatty acid (caprylic acid; M.P 15°C, Enthalpy 179kJ/kg) as a phase change material and expanded perlite as support porous matrix was prepared through direct impregnation method for thermal energy storage applications. The prepared composite was characterized using Differential scanning calorimetry (DSC), Field Emission Scanning Electron Microscope (FESEM), Thermal Gravimetric Analysis (TGA), and Fourier Transform Infrared (FTIR) spectrometer. The melting point of the prepared composite was 15.65°C, and the melting enthalpy was 82kJ/kg. The surface nature of the perlite was observed through FESEM. It was observed that there are micro size pores in the perlite surface, which were responsible for the absorption of PCM into perlite. In TGA thermogram, the PCM loss from composite was started at ~90°C. FTIR curves proved there was no chemical interaction between the perlite and caprylic acid. So, the PCM composite prepared in this work could be effective to use in temperature maintenance of buildings.

Keywords: caprylic acid, composite, phase change materials, PCM, perlite, thermal energy

Procedia PDF Downloads 99
5744 The Effect of Peer Pressure and Leisure Boredom on Substance Use Among Adolescents in Low-Income Communities in Capetown

Authors: Gaironeesa Hendricks, Shazly Savahl, Maria Florence

Abstract:

The aim of the study is to determine whether peer pressure and leisure boredom influence substance use among adolescents in low-income communities in Cape Town. Non-probability sampling was used to select 296 adolescents between the ages of 16–18 from schools located in two low-income communities. The measurement tools included the Drug Use Disorders Identification Test, the Resistance to Peer Influence and Leisure Boredom Scales. Multiple regression revealed that the combined influence of peer pressure and leisure boredom predicted substance use, while peer pressure emerged as a stronger predictor than leisure boredom on substance use among adolescents.

Keywords: substance use, peer pressure, leisure boredom, adolescents, multiple regression

Procedia PDF Downloads 576
5743 Study of Composite Beam under the Effect of Shear Deformation

Authors: Hamid Hamli Benzahar

Abstract:

The main goal of this research is to study the deflection of a composite beam CB taking into account the effect of shear deformation. The structure is made up of two beams of different sections, joined together by thin adhesive, subjected to end moments and a distributed load. The fundamental differential equation of CB can be obtained from the total energy equation while considering the shear deformation. The differential equation found will be compared with those found in CB, where the shear deformation is zero. The CB system is numerically modeled by the finite element method, where the numerical results of deflection will be compared with those found theoretically.

Keywords: composite beam, shear deformation, moments, finites elements

Procedia PDF Downloads 42
5742 Determination of Foaming Behavior in thermoplastic Composite Nonwoven Structures for Automotive Applications

Authors: Zulfiye Ahan, Mustafa Dogu, Elcin Yilmaz

Abstract:

The use of nonwoven textile materials in many application areas is rapidly increasing thanks to their versatile performance properties. The automotive industry is one of the largest sectors in the world, with a potential market of more than 2 billion euros for nonwoven textile materials applications. Lightweight materials having higher mechanical performance, better sound and heat insulation properties are of interest in many applications. Since the usage of nonwoven surfaces provides many of these advantages, the demand for this kind of material is gradually growing, especially in the automotive industry. Nonwoven materials used in lightweight vehicles can contain economical and high strength thermoplastics as well as durable components such as glass fiber. By bringing these composite materials into foam structure containing micro or nanopores, products with high absorption ability, light and mechanically stronger can be fabricated. In this respect, our goal is to produce thermoplastic composite nonwoven by using nonwoven glass fiber fabric reinforced polypropylene (PP). Azodicarbonamide (ADC) was selected as a foaming agent, and a thermal process was applied to obtain a porous structure. Various foaming temperature ranges and residence times were studied to examine the foaming behaviour of the thermoplastic composite nonwoven. Physicochemical and mechanical tests were applied in order to analyze the characteristics of composite foams.

Keywords: composite nonwoven, thermoplastic foams, foaming agent, foaming behavior

Procedia PDF Downloads 193
5741 Dynamic Active Earth Pressure on Flexible Cantilever Retaining Wall

Authors: Snehal R. Pathak, Sachin S. Munnoli

Abstract:

Evaluation of dynamic earth pressure on retaining wall is a topic of primary importance. In present paper, dynamic active earth pressure and displacement of flexible cantilever retaining wall has been evaluated analytically using 2-DOF mass-spring-dashpot model by incorporating both wall and backfill properties. The effect of wall flexibility on dynamic active earth pressure and wall displacement are studied and presented in graphical form. The obtained results are then compared with the various conventional methods, experimental analysis and also with PLAXIS analysis. It is observed that the dynamic active earth pressure decreases with increase in the wall flexibility while wall displacement increases linearly with flexibility of the wall. The results obtained by proposed 2-DOF analytical model are found to be more realistic and economical.

Keywords: earth pressure, earthquake, 2-DOF model, Plaxis, retaining walls, wall movement

Procedia PDF Downloads 504
5740 Biodegradable Polymer Film Incorporated with Polyphenols for Active Packaging

Authors: Shubham Sharma, Swarna Jaiswal, Brendan Duffy, Amit Jaiswal

Abstract:

The key features of any active packaging film are its biodegradability and antimicrobial properties. Biological macromolecules such as polyphenols (ferulic acid (FA) and tannic acids (TA)) are naturally found in plants such as grapes, berries, and tea. In this study, antimicrobial activity screening of several polyphenols was carried out by using minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against two strains of gram-negative bacteria - Salmonella typhimurium, Escherichia coli, and two-gram positive strains - Staphylococcus aureus and Listeria monocytogenes. FA and TA had shown strong antibacterial activity at the low concentration against both gram-positive and gram-negative bacteria. The selected polyphenols FA and TA were incorporated at various concentrations (1%, 5%, and 10% w/w) in the poly(lactide) – poly (butylene adipate-co-terephthalate) (PLA-PBAT) composite film by using the solvent casting method. The effect of TA and FA incorporation in the packaging was characterized based on morphological, optical, color, mechanical, thermal, and antimicrobial properties. The thickness of the FA composite film was increased by 1.5 – 7.2%, while for TA composite film, it increased by 0.018 – 1.6%. FA and TA (10 wt%) composite film had shown approximately 65% - 66% increase in the UV barrier property. As the FA and TA concentration increases from 1% - 10% (w/w), the TS value increases by 1.98 and 1.80 times, respectively. The water contact angle of the film was observed to decrease significantly with the increase in the FA and TA content in the composite film. FA has shown more significant increase in antimicrobial activity than TA in the composite film against Listeria monocytogenes and E. coli. The FA and TA composite film has the potential for its application as an active food packaging.

Keywords: active packaging, biodegradable film, polyphenols, UV barrier, tensile strength

Procedia PDF Downloads 126
5739 Fabrication of Titania and Thermally Reduced Graphene Oxide Composite Nanofibers by Electrospinning Process

Authors: R. F. Louh, Cathy Chou, Victor Wang, Howard Yan

Abstract:

The aim of this study is to manufacture titania and reduced graphene oxide (TiO2/rGO) composite nanofibers via electrospinning (ESP) of precursor fluid consisted of titania sol containing polyvinylpyrrolidone (PVP) and titanium isopropoxide (TTIP) and GO solution. The GO nanoparticles were derived from Hummers’ method. A metal grid ring was used to provide the bias voltage to reach higher ESP yield and nonwoven fabric with dense network of TiO2/GO composite nanofibers. The ESP product was heat treated at 500°C for 2 h in nitrogen atmosphere to acquire TiO2/rGO nanofibers by thermal reduction of GO and phase transformation into anatase TiO2. The TiO2/rGO nanofibers made from various volume fractions of GO solution by ESP were analyzed by FE-SEM, TEM, XRD, EDS, BET and FTIR. Such TiO2/rGO fibers having photocatalytic property, high specific surface area and electrical conductivity can be used for photovoltaics and chemical sensing applications.

Keywords: electrospinning process, titanium oxide, thermally reduced graphene oxide, composite nanofibers

Procedia PDF Downloads 428
5738 Non-Homogeneity in a Thick Walled Rotating Circular Cylinder under Varying Pressure

Authors: Jatinder Kaur, Pankaj Thakur

Abstract:

The effect of pressure and temperature in non-homogeneous circular cylinder by taking non-homogeneity of material in terms of compressibility c=c₀r⁻ᵏ has been observed. From the results, it could be seen that for K<0, high pressure is required in the initial yielding state than for the case K >0. Under thermal conditions for value K<0, lesser amount of pressure is required for initial yielding, and further, the amount keeps on decreasing with an increase in temperature. Curves are drawn between pressure and radii ratio for initial and fully plastic state with and without temperature conditions. Further graphs between stresses (hoop and radial) and radii ratio for fully plastic state with and without temperature conditions are also drawn and concluded that hoop stresses become minimum with the increase in temperature as compared to radial stresses.

Keywords: cylinder, elastic, plastic, copper, steel, stresses, pressure, load

Procedia PDF Downloads 53
5737 Fundamental Natural Frequency of Chromite Composite Floor System

Authors: Farhad Abbas Gandomkar, Mona Danesh

Abstract:

This paper aims to determine Fundamental Natural Frequency (FNF) of a structural composite floor system known as Chromite. To achieve this purpose, FNFs of studied panels are determined by development of Finite Element Models (FEMs) in ABAQUS program. American Institute of Steel Construction (AISC) code in Steel Design Guide Series 11, presents a fundamental formula to calculate FNF of a steel framed floor system. This formula has been used to verify results of the FEMs. The variability in the FNF of the studied system under various parameters such as dimensions of floor, boundary conditions, rigidity of main and secondary beams around the floor, thickness of concrete slab, height of composite joists, distance between composite joists, thickness of top and bottom flanges of the open web steel joists, and adding tie beam perpendicular on the composite joists, is determined. The results show that changing in dimensions of the system, its boundary conditions, rigidity of main beam, and also adding tie beam, significant changes the FNF of the system up to 452.9%, 50.8%, -52.2%, %52.6%, respectively. In addition, increasing thickness of concrete slab increases the FNF of the system up to 10.8%. Furthermore, the results demonstrate that variation in rigidity of secondary beam, height of composite joist, and distance between composite joists, and thickness of top and bottom flanges of open web steel joists insignificant changes the FNF of the studied system up to -0.02%, -3%, -6.1%, and 0.96%, respectively. Finally, the results of this study help designer predict occurrence of resonance, comfortableness, and design criteria of the studied system.

Keywords: Fundamental Natural Frequency, Chromite Composite Floor System, Finite Element Method, low and high frequency floors, Comfortableness, resonance.

Procedia PDF Downloads 430